抗Ⅳ型胶原酶单抗scFv片段与力达霉素构建的基因工程强化融合蛋白及其抗肿瘤作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:The Construction of an Engineered and Energized Fusion Protein Consisting of Lidamycin and Anti-Type Ⅳ Collagenase Monoclonal Antibody and Its Antitumor Activity
  • 作者:李亮
  • 论文级别:博士
  • 学科专业名称:微生物与生化药学
  • 学位年度:2003
  • 导师:甄永苏
  • 学科代码:100705
  • 学位授予单位:中国协和医科大学
  • 论文提交日期:2003-06-01
摘要
应用单克隆抗体(单抗)及其工程抗体衍生物对于肿瘤,尤其是转移性肿瘤进行治疗是一个巨大和快速发展的研究领域。单克隆抗体针对特定的单一抗原表位,具有高度的特异性,这是抗体药物发挥治疗作用的重要基础。抗体药物的重要特点之一是可以定向制造(tailored making),根据需要制备具有不同治疗作用的抗体药物。即随着对某些靶分子生物活性的探讨与确定,针对特定的靶分子,定向制备针对特定靶分子的抗体药物。抗肿瘤抗体药物的研究表明,其特异性主要表现为特异性结合,选择性杀伤,体内靶向性分布以及具有更强的疗效。而且,特定的化疗药物与不同抗体偶联可以作为一种技术平台(technical platform)制备系列化的抗体药物。因而,利用化学偶联方法制备的免疫偶联物或运用基因工程技术构建的基于单链抗体scFv的融合蛋白是针对特定的靶分子定向制备的高效小型的肿瘤靶向性药物,这类导向药物的开发研制符合目前单抗导向药物的小型化、高效化、低免疫原性的研究趋势,显示出巨大的应用潜力。本研究在抗体工程药物的制备和活性分析方面进行探讨。
     一 单抗3G11的生物学活性分析及其偶联物3G11-LDM的实验治疗
     Ⅳ型胶原酶能够破坏基质的代谢平衡,促进肿瘤细胞穿过基底膜和细胞外基质所构成的组织学屏障,进而侵袭周围组织并向远端转移;它在人类前列腺癌、结直肠癌、乳腺癌、鳞癌、恶性星形细胞瘤、转移瘤等细胞株以及肿瘤新生血管内皮细胞中均呈高表达,而且与肿瘤患者的预后密切相关。抑制Ⅳ型胶原酶的活性可以抑制肿瘤细胞的侵袭转移和肿瘤血管生成。本研究采用链霉卵白素—生物素—酶联复合物(SABC)染色方法,对取自北京友谊医院2001-2002年间病理科手术切除的80例肿瘤组织标本进行免疫组织化学(IHC)染色,检测单抗3G11对人体不同肿瘤的选择性识
With the invention of the hybridoma technology that allows production of monoclonal antibody (mAb), a new era of biological therapy for invasive and metastasis cancer has been initiated. A variety of mAbs, with high specificity and affinity for their target antigens, have been utilized in the recent decades for delivery of anticancer agents such as drugs, enzymes, radionuclides, or toxins in cancer therapy. The specificity of mAb to unique epitope is the key to antitumor activity of antibody-based therapeutics. Because of the specificity of mAbs directed to mutant or overexpressed oncogenes, and other tumor-associated antigens, antibody-based drugs have been achieved by tailored making according to various needs. The results of the research on mAbs have shown that their specificities mainly presents high special affinity, selective cytotoxicity to tumor cells in vitro, and targeting distribution in tumors and more effective therapy. Moreover, the antibody-based therapy for cancer has been in favor of offering promise as a technical platform and obtaining a variety of high potent agents for clinical application. Therefore, utilizing chemical method for immunoconjugates or DNA recombinant technology for scFv-fusion protein, miniature and high powerful agents specially targeting to tumors have been made for various needs. Since the promising potent of antibody-based therapeutics has been revealed, this studies focused on characterizations of novel molecular targets, construction and biological analysis of antibody-based drugs.
    1. The characterization of mAb 3G11 and the antitumor effects of immunoconjugate 3G11-LDM
    Type IV collagenases, also termed gelatinases, including MMP-2 of 72 kDa and MMP-9 of 92 kDa play an extremely important role during tumor growth and progression and display as an attractive target for monoclonal antibody-directed therapy. Type IV collagenases degrade type IV collagen which is the major component of basement membrane and other collagens, and destroy the integrality of basement membrane and extracellular matrix, which is in favor of the invasion and metastasis of tumor cells. In addition, the activities of type IV collagenases are higher in endothelial cells stimulated by angiogenesis factors than normal cells. Inhibition of the activities of type IV collagenase may inhibit tumor invasion and metastasis, and angiogenesis. The
引文
1. Stamenkovic I. Matrix metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol 2001, 10:415-433
    2. Parsons SL, Watson SA, Brown PD, et al. Matrix metalloproteinases. Br J Surgery 1997, 84:160-166
    3. Erlichman C, Adjei AA, Alberts SR, et al. Phase Ⅰ study of the matrix metalloproteinase inhibitor BAY 12-9566. Ann Oncol 2001, 12(3):389-3954. Iwata H, Yamamoto M, Nemori R, et al. Localization of Gelatinolytic Activity can be Detected in Breast Cancer Tissues by Film in situ Zymography. Breast Cancer 2001, 8: 111 -115
    5. Talvensaari-Mattila A, Paakko P, Blanco-Sequeiros G, et al. Matrix metalloproteinase-2 (MMP-2) is associated with the risk for a relapse in postmenopausal patients with node-positive breast carcinoma treated with antiestrogen adjuvant therapy. Breast Cancer Res Treat 2001,65: 55-61
    6. Takata T, Zhao M, Uchida T, et al. Immunohistochemical detection and distribution of enamelysin (MMP-20) in human odontogenic tumors. J Dent Res 2000, 79:1608-1613
    7. Schaumburg-Lever G, Lever I, Fehrenbacher B, et al. Melanocytes in nevi and melanomas synthesize basement membrane and basement membrane-like material. An irnmunohistochemical and electron microscopic study including immunoelectron microscopy. J Cutan Pathol 2000, 27: 67-75 Comment in: J Cutan Pathol. 2000,27: 481-486
    8. De Nictolis M, Garbisa S, Lucarini G, et al. 72-kilodalton type IV collagenase, type IV collagen, and Ki 67 antigen in serous tumors or the ovary: a clinicopathologic, irnmunohistochemical, and Serological study. Int J Gynecol Pathol 1996, 15: 102-119
    9. Hoyhtya M, Fridman R, Komarek D, et al. Immunohistochemical localization of matrix metalloproteinase 2 and its specificinhibitor TIMP-2 in neoplastic tissues with monoclonal antibodies. Int J Cancer 1994, 56: 500-506
    10. Autio-Harmainen H, Karttunen T, Hurskainen T, et al. Expression of 72 kilodalton type IV collagenase (gelatinase A) in benign and malignant ovarian tumors. Lab Invest 1993, 69: 312-321
    11. Margulies IM, Hoyhtya M, Evans C, et al. Urinary type IV collagenase: elevated levels are associated with bladder transitional cell carcinoma. Cancer Epidemiol Biomarkers Prev 1992,1: 467-474
    12. Lehr H-A, Jocobs TW, Yaziji H, et al. Quantitative evaluation of HER-2/neu status in breast cancer by fluorescence in situ hybridization and by immunohistochemistry with image analysis. Am J Pathol 2001, 115: 814-822
    13. Kohn E-C and Liotta L-A. Molecular insights into cancer invasion:??strategies for prevention and intervention. Cancer Res 1995, 55:1856-1860
    14. Aznavoorian S, Murphy AN, Stetler-Stevenson WG, et al. Molecular aspects of tumor cell invasion and metastasis. Cancer 1992, 71: 1368-1374.
    15. D' Errico A, Garibisa S, Liotta L, et al. Augmentation of type Ⅳ collagenase, laminin receptor, and Ki67 proliferation antigen associated with human colon, gastric and breast carcinoma progression. Mod Pathol 1991, 4: 239-246.
    16. Mouser PL, Hefler L, Tempfer C, et al. Immunohistochemical detection of matrix metalloproteinases 1 and 2, and tissue inhibitor of metalloproteinase 2 in stage Ⅰ and Ⅱ endometfial cancer. Anticancer Research 1999, 19: 2365-2368
    17. Hewitt RE, Leach IH, Powe DG, et al. Distribution of collagenase and tissue inhibitor of metalloproteinase (TIMP) in colorectal tumours. Int J Cancer 1991, 4: 239-246.
    18.刘小云,单克隆抗体导向药物分子小型化及抗肿瘤作用。2000届博士研究生论文
    19.刘小云,尚伯扬,刘秀均等。应用平阳霉素与单克隆抗体Fab'片段偶联物抑制肝癌生长与肿瘤肝转移。中华医学杂志2001,81:201-205
    20.刘小云,甄永苏。力达霉素构建的小型化单克隆抗体免疫偶联物的抗肿瘤作用。中国医学科学院学报2001,23:45-50
    21.徐琳娜,王维刚,尚伯杨等。抗Ⅳ型胶原酶单抗及其药物偶联物的抗肿瘤作用。国外医学·肿瘤学分册,1998,5:68-72
    22.唐勇,甄永苏。抗Ⅳ型胶原酶单链抗体的表达及其对肿瘤细胞侵袭的抑制作用。癌症2001,20:801-804
    23. Sharpiro SD. Matrix metalloproteinase degradation of extracellular matrix: biological consequences. Curr Opin Cell Biol, 1998; 10:602-611
    24. Riedel F, Gotte K, Schwalb J, et al. Serum levels of matrix mettalloproteinase-2 and -9 in patients with head and neck squamous cell carcinoma. Anticancer Res, 2000; 20:30445-304491. Ockert D, Schmitz M, Hampl M, et al. Advances in cancer immunotherapy. Immunol Today 1999, 20:63-68
    2. Dickman S. Antibodies stage a comeback in cancer treatment. Science 1998, 280:1197-1201
    3. van Der Velden VH, Marvelde JG, Hoogeveen PG, et al. Targeting of the CD33-calicheamicin immunoconjugate Mylotarg (CMA-676) in acute myeloid leukemia: in vivo and in vitro saturation and internalization by leukemic and normal myeloid cells. Blood 2001, 97:3197-3204
    4. Davis ID.An overview of cancer immunotherapy. Immunol and Cell Biology 2000, 78:179-184
    5. Dutton G. MAb manufacturing concerns. Genetic Engineering News 2001: 21:1-7
    6. Dickman S. Antibodies stage a comeback in cancer treatment. Science 1998, 280:1196-1203
    7.甄永苏。单克隆抗体药物治疗肿瘤的研究现状与展望。中国医学科学院学报2000,22:9-148. Weiner LM. An overview of monoclonal antibody therapy of cancer. Semin Oncol 1999, 26:41-46
    9. Brinkmann U. Recombinant antibody fragments and immunotoxin fusions for cancer therapy, in vivo 2000, 14:21-27
    10. Zhen YS, Ming XY, Yu B, et al. A new macromolecular antitumor antibiotics, C-1027. Ⅲ. Antitumor activity. J Antibiot 1989; 42:1294-1301
    11. Sakata N, Keno S, Hori M, Hamada M, Otani T. Cloning and nucleotide sequencing of the antitumor antibiotic C-1027 apoptein gene. Biosci Biotech Biochem 1992, 56:1592-1595
    12.甄永苏,薛玉川,邵荣光。烯二炔类新抗生素C1027的抗肿瘤作用研究。中国抗生素杂志1994,19:164-169
    13.邵荣光,甄永苏。新烯二炔类大分子抗肿瘤抗生素C1027的分子构成与活性关系。药学学报1995;30.336-339
    14.林秀坤,甄永苏。抗癌抗生素C1027活性片段的克隆及其在变铅青链霉菌的表达。中国肿瘤生物治疗杂志1995,2:259-263
    15.李顺强,江敏,甄永苏。抗癌抗生素力达霉素与抗Ⅳ型胶原酶单链抗体的基因工程组装融合蛋白。药学学报2000,35:488-494
    16. Kurkela M, Garcia-Horsman JA, Luukkanen L, et al. Expression and characterization of recombinant human UDP-glucuronosyltransferases (UGTs); UGT1A9 is more resistant to detergent inhibition than the other UGTs, and was purified as an active dimeric enzyme. J Biol Chem 2002, 14: [epub ahead of print]
    17. Taller B, Astier-Gin T, Castroviejo M, et al. One-step chromatographic purification procedure of a His-tag recombinant carboxyl half part of the HTLV-I surface envelope glycoprotein overexpressed in Escherichia coli as a secreted form. J Chromatogr B Biomed Sci Appl 2001,753:17-22
    18. Goel A, Colcher D, Koo JS, et al. Relative position of the hexahistidine tag effects binding properties of a tumor-associated single-chain Fv construct. Biochim Biophys Acta 2000, 1523: 13-20
    19. Schmiedl A, Breitling F, Winter CH, et al. Effects of unpaired cysteines on yield, solubility and activity of different recombinant antibody constructs expressed in E. coli. J Immunol Methods 2000, 242:101-114
    20. Gibert S, Bakalara N, Santarelli X. Three-step chromatographic purification procedure for the production of a his-tag recombinant kinesin overexpressed in E. coli. J Chromatogr B Biomed Sci Appl 2000, 737: 143-15021. Grundy JE, Wirtanen LY, Beauregard M. Addition of a poly-(6X) His tag to Milk Bundle-1 and purification using immobilized metal-affinity chromatography. Protein Expr Purif 1998, 13: 61-66
    22. Muller KM, Amdt KM, Bauer K, et al. Tandem immobilized metal-ion affinity chromatography/immunoaffinity purification of His-tagged proteins—evaluation of two anti-His-tag monoclonal antibodies. Anal Biochem 1998, 259:54-61
    23.唐勇,甄永苏。抗Ⅳ型胶原酶单链抗体的表达及其对肿瘤细胞侵袭的抑制作用。癌症2001,20:801-8041. John A, Tuszynski G. The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol Oncol Res 2001, 7:14-18
    2. Kurizaki T, Toi M, Tominaga T. Relationship between matrix metalloproteinase expression and tumor angiogenesis in human breast carcinoma. Oncol Rep 1998, 5:673-678
    3. Kabari VM, Saarialbo-Kere U. Matrix metalloproteinases and their inhibitors in tumor growth and invasion. Trends in Mol Med 1999, 31: 34-39
    4. Wylie S, MacDonald IC, Varghese H J, et al. The matrix metalloproteinase inhibitor batimastat inhibits angiogenesis in liver metastases of B16F1 melanoma cells. Clin Exp Metastases 1999, 17:111-115
    5.刘小云,甄永苏。力达霉素构建的小型化单克隆抗体免疫偶联物的抗肿瘤作用。中国医学科学院学报2001,23:45-50
    6.徐琳娜,王维刚,尚伯杨等。抗Ⅳ型胶原酶单抗及其药物偶联物的抗肿瘤作用。国外医学·肿瘤学分册1998,5:68-72
    7.唐勇,甄永苏。抗Ⅳ型胶原酶单链抗体的表达及其对肿瘤细胞侵袭的抑制作用。癌症2001,20:801-805
    8.周春水,江敏,徐琳娜等。抗肿瘤侵袭与转移单链抗体scFv-M97基因克隆及分泌性表达。中国医学科学院学报1998,20:81-869.王维刚,张胜华,李毅等。以Ⅳ型胶原酶为靶点的细胞内表达单链抗体的抗肿瘤作用。中国科学(C辑)2000,30:123-128
    10.邵荣光,甄永苏。新抗癌抗生素C1027及其单克隆抗体组装偶联物的抗肿瘤活性。药学学报1992,27:486-491
    11.李军智,江敏,薛玉川等。抗癌抗生素C1027与单克隆抗体Fab片段偶联物的抗肿瘤作用。药学学报1993,28:260-265
    12.刘小云,甄永苏。力达霉素构建的小型化单克隆抗体免疫偶联物的抗肿瘤作用。中国医学科学院学报2001,23:45-50
    13.甄永苏等。抗癌抗生素与单克隆抗体偶联物的抗肿瘤作用。中国肿瘤生物治疗杂志1995,2:98-104
    14.宋旭,包明敏,崔大鹏等。力达霉素对人结肠癌HCT-8细胞凋亡相关基因表达的影响。药学学报1999,34:734-739
    15.崔大鹏,王真,李电东。力达霉素对人结肠癌HCT-8细胞侵袭调节基因表达的影响。药学学报2001,36:246-250
    16.甄红英,薛玉川,甄永苏。抗肿瘤抗生素C1027抑制血管生成及其抗肿瘤转移作用。中华医学杂志1997,77:657-660
    17. Xu YJ, Zhen YS, Goldberg Ⅰ. C0127 chromophore, a potent new enediyne antitumor antibiotic, induces sequence-specific double-strand DNA cleavage. Biochemistry 1994, 33:5947-5952
    18. Jiang B, Li DD, Zhen YS. Induction of apoptosis by enediyne antitumor antibiotic C1027 in HL-60 human promyelocytic leukemia cells. Biochem Biophy Res Commun 1995, 208:238-243
    19. Kwok CS, Cheung WK, Yip TC, et al. A novel vasoactive human interleukin-2/single chain antibody fusion protein for HER-2 positive tumors. Proc Am Assoc Cancer Res 2001, 42:1564-1568
    20. Friedman PN, Chace DF, Trail PA, et al. Antitumor activity of the??single-chain immunotoxin BR96 scFv-PE40 against established breast and lung tumor xenografts. J Immunol 1993, 150:3054-3059
    21. Song MK, Oh MS, Lee JH, et al. Light chain of natural antibody plays a dominant role in protein antigen binding. Biochem Biophy Res Commun 2000, 268:390-394
    22.李顺强,江敏,甄永苏。抗癌抗生素力达霉素与抗Ⅳ型胶原酶单链抗体的基因工程组装融合蛋白。药学学报2000,35:488-4941. John A, Tuszynski G. The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol Oncol Res 2001, 7:14-18
    2. Kwok CS, Cheung WK, Yip TC, et al. A novel vasoactive human interleukin-2/single chain antibody fusion protein for HER-2 positive tumors. Proc Am Assoc Cancer Res 2001, 42:1564-1568
    3. Friedman PN, Chace DF, Trail PA, et al. Antitumor activity of the single-chain immunotoxin BR96 scFv-PE40 against established breast and lung tumor xenografts. J Immunol 1993, 150:3054-3059
    4.刘小云,甄永苏。力达霉素构建的小型化单克隆抗体免疫偶联物的抗肿瘤作用。中国医学科学院学报2001,23:45-50
    5.徐琳娜,王维刚,尚伯杨等。抗Ⅳ型胶原酶单抗及其药物偶联物的抗肿瘤作用。国外医学·肿瘤学分册1998,5:68-72
    6. Reiter Y and Pastan I. Recombinant Fv immunotoxins and Fv fragments as novel agents for cancer therapy and diagnosis. Tibtech December 1998, 16: 1226-1228
    7. Liu BSJ, Sher YP, Ting CC, et al. Treatment of B-cell lymphoma with chimeric IgG and single-chain Fv antibody-intereukin-2 fusion proteins. Blood 1998, 92:2103-2112
    8. Halin C, Rondini S, Nilsson F, et al. Enhancement of the antitttmor activity of interleuldn-12 by targeted delivery to neovasculature. Nat Biotech 2002, 20:264-2691.甄永苏,邵荣光主编。抗体工程药物北京:化学工业出版社2002,1-7
    2. Wels W, Harwerth IM, Mueller M, et al. Selective inhibition of tumor cell growth by a recombinant single-chain antibody-toxin specific for the erbB-2 receptor. Cancer Res 1992, 52:6310-6317
    3. Schmidt M, Vakalopoulou E, Schneider DW, et al. Construction and functional characterization of scFv (14E1)-ETA-a novel, highly potent??antibody-toxin specific for the EGF receptor. Br J Cancer 1997, 75: 1575-1584
    4. Altenschmidt U, Schmidt M, Groner B, et al. Targeted therapy of schwannoma cells in immunocompetent rats with an erbB2-specific antibody-toxin. Int J Cancer 1997, 73: 117-124
    5. Maurer-Gebhard M, Schmidt M, Azemar M, et al. Germany. Systemic treatment with a recombinant erbB-2 receptor-specific tumor toxin efficiently reduces pulmonary metastases in mice injected with genetically modified carcinoma cells. Cancer Res 1998, 58:2661-2666
    6. Bera TK, Pastan I. Comparison of recombinant immunotoxins against LeY antigen expressing tumor cells: influence of affinity, size, and stability. Bioconjug Chem 1998, 9:736-743
    7. Barth S, Huhn M, Wels W, et al. Construction and in vitro evaluation of RFT5(scFv)-ETA', a new recombinant single-chain immunotoxin with specific cytotoxicity toward CD25+ Hodgldn-derived cell lines. Int J Mol Med 1998, 1:249-256
    8. Schmidt M, McWatters A, White RA, et al. Synergistic interaction between an anti-p185HER-2 pseudomonas exotoxin fusion protein [scFv (FRP5)-ETA] and ionizing radiation for inhibiting growth of ovarian cancer cells that overexpress HER-2. Gynecol Oncol 2001, 80:145-155
    9. Wang L, Liu B, Schmidt M, et al. Antitumor effect of an HER2-specific antibody-toxin fusion protein on human prostate cancer cells. Prostate 2001, 47:21-28
    10. Epel M, Ellenhom JD, Diamond D J, et al. A functional recombinant single-chain T cell receptor fragment capable of selectively targeting antigen-presentingcells. Cancer Immunol Immunother 2002, 51: 565-573
    11. Schmidt M, Wels W. Targeted inhibition of tumour cell growth by a bispecific single-chain toxin containing an antibody domain and TGF alpha. Br J Cancer 1996, 74:853-862
    12. Schmidt M, Hynes NE, Groner B, Wels W. A bivalent single-chain??antibody-toxin specific for ErbB-2 and the EGF receptor. Int J Cancer 1996, 65:538-546
    13. Riesbeck K, Billstrom A, Tordsson J, et al. Endothelial cells expressing an inflammatory phenotype are lysed by superantigen-targeted cytotoxic T cells.Clin Diagn Lab Immunol 1998, 5: 675-682
    14. Sakurai N, Kudo T, Suzuki M, et al. SEA-scFv as a bifunctional antibody: construction of a bacterial expression system and its functional analysis. Biochem Biophys Res Commun 1999, 256: 223-230
    15. Tordsson JM, Ohlsson LG, Abrahmsen LB, et al. Phage-selected primate antibodies fused to superantigens for immunotherapy of malignant melanoma. Cancer Immunol Immunother 2000, 48: 691-702
    16. Ueno A, Arakawa F, Abe H, et al. T-cell immunotherapy for human MK-1-expressing tumors using a fusion protein of the superantigen SEA and anti-MK-1 scFv antibody. Anticancer Res 2002, 22(2A): 769-776
    17. Melani C, Figini M, Nicosia D, et al. Targeting of interleukin 2 to human ovarian carcinoma by fusion with a single-chain Fv of antifolate receptor antibody. Cancer Res 1998, 58:4146-4154
    18. Liao S, Khare PD, Arakawa F, et al. Targeting of LAK activity to CEA-expressing tumor cells with an anti-CEA scFv/IL-2 fusion protein.Anticancer Res 2001, 21(3B): 1673-1680
    19. Matsumoto H, Liao S, Arakawa F, et al. Targeting of interleukin-2 to human MK-1-expressing carcinoma by fusion with a single-chain Fv of anti-MK-1 antibody. Anticancer Res 2002, 22: 2001-2007
    20. Scherf U, Benhar I, Webber KO, et al. Cytotoxic and antitumor activity of a recombinant tumor necrosis factor-B1 (Fv) fusion protein on LeY antigen-expressing human cancer cells. Clin Cancer Res 1996, 2: 1523-3
    21. Hoffmann M, Schmidt M, Wels W. Activation of EGF receptor family members suppresses the cytotoxic effects of tumor necrosis factor-alpha.Cancer Immunol Immunother 1998, 47: 167-175
    22. Wuest T, Gerlach E, Banerjee D, et al. TNF-Selectokine: a novel prodrug??generated for tumor targeting and site-specific activation of tumor necrosis factor. Oncogene 2002, 21: 4257-4265
    23. Gerstmayer B, Hoffmann M, Altenschmidt U, et al. Costimulation of T-cell proliferation by a chimeric B7-antibody fusion protein. Cancer Immunol Immunother 1997, 45:156-158
    24. Marshall KW, Marks JD. Engineering and characterization of a novel fusion protein incorporating B7.2 and an anti-ErbB-2 single-chain antibody fragment for the activation of Jurkat T cells. J Immunother 2001, 24: 27-36
    25. Gerstmayer B, Altenschmidt U, Hoffmann M, et al. Costimulation of T cell proliferation by a chimeric B7-2 antibody fusion protein specifically targeted to cells expressing the erbB2 proto-oncogene. J Immunol 1997, 158:4584-4590
    26. Melkko S, Halin C, Borsi L, et al. An antibody-calmodulin fusion protein reveals a functional dependence between macromolecular isoelectric point and tumor targeting performance. Int J Radiat Oncol Biol Phys 2002, 54: 1485-1490
    27. Halin C, Rondini S, Nilsson F, et al. Enhancement of the antitumor activity of interleukin-12 by targeted delivery to neovasculature. Nat Biotechnol 2002,20:264-269
    28. Hakim I, Levy S, Levy R. A nine-amino acid peptide from IL-1beta augments antitumor immune responses induced by protein and DNA vaccines. J Immunol 1996, 157: 5503-5511
    29. Halin C, Niesner U, Villani ME, Zardi L, Neri D.Tumor-targeting properties of antibody-vascular endothelial growth factor fusion proteins. Int J Cancer 2002, 102:109-116
    30. Rippmann JF, Pfizenmaier K, Mattes R, et al. Fusion of the tissue factor extracellular domain to a tumour stro(?)a specific single-chain fragment variable antibody results in an antigen-specific coagulation-promoting molecule. Biochem J 2000, Pt 3: 805-812
    31. Deonarain MP, Epenetos AA. London, UK. Design, characterization and??anti-tumour cytotoxicity of a panel of recombinant, mammalian ribonuclease-based immunotoxins. Br J Cancer 1998, 77: 537-546
    32. Zewe M, Rybak SM, Dubel S, et al. Cloning and cytotoxicity of a human pancreatic RNase immunofusion. Immunotechnology 1997, 3: 127-136
    33. Wels W, Harwerth IM, Zwickl M, et al. Construction, bacterial expression and charaterization of a bifunctional single-chain antibody-phosphatase fusion protein targeted to the human erbB-2 receptor. Biotechnology (N Y) 1992,10:1128-1132
    34. Michael NP, Chester KA, Melton RG, et al. In vitro and in vivo characterisation of a recombinant carboxypeptidase G2::anti-CEA scFv fusion protein. Immunotechnology 1996, 2: 47-57
    35. He HJ, Yang WD, Chang YN, et al. Fusion and expression of the gene encoding human Mn-SOD to anti-CEA single-chain antibody in Escherichia coli Sheng Wu Gong Cheng Xue Bao 2000, 16: 566-569
    36. Bhatia J, Sharma SK, Chester KA, et al. Catalytic activity of an in vivo tumor targeted anti-CEA scFv::carboxypeptidase G2 fusion protein.Int J Cancer 2000, 85:571-577
    37. de Graaf M, Boven E, Oosterhoff D, et al. A fully human anti-Ep-CAM scFv-beta-glucuronidase fusion protein for selective chemotherapy with a glucuronide prodrug. Br J Cancer 2002, 86(5): 811-818
    38. Kousparou CA, Epenetos AA, Deonarain MP. Antibody-guided enzyme therapy of cancer producing cyanide results in necrosis of targeted cells. Int J Cancer 2002, 99(1): 138-148
    39. Oosterhoff D, Pinedo HM, van der Meulen IH, et al. Secreted and tumour targeted human carboxylesterase for activation of irinotecan. Br J Cancer 2002, 87:659-664
    40. Bucheit AD, Kumar S, Grote DM, et al. An oncolytic measles virus engineered to enter cells through the CD20 antigen. Mol Ther 2003, 7: 62-72
    41. McCall AM, Adams GP, Amoroso AR, et al. Isolation and characterization??of an anti-CD16 single-chain Fv fragment and construction of an anti-HER2/neu/anti-CD16 bispecific scFv that triggers CD16-dependent tumor cytolysis. Mol Immunol 1999, 36:433-445
    42. Thielemans KM. Immunotherapy with bispecific antibodies. Verh K Acad Geneeskd Belg 1995, 57:229-247
    43. Wu AM, Tan G J, Sherman MA, et al. Multimefization of a chimeric anti-CD20 single-chain Fv-Fc fusion protein is mediated through variable domain exchange. Protein Eng 2001, 14(12): 1025-1033
    44. Wick B, Groner B. Evaluation of cell surface antigens as potential targets for recombinant tumor toxins. Cancer Lett 1997, 118:161-172
    45.李顺强,江敏,甄永苏。抗癌抗生素力达霉素与抗Ⅳ型胶原酶单链抗体的基因工程组装融合蛋白。药学学报2000,35:488-494
    46. Shaw DM, Embleton MJ, Westwater C, et al. Isolation of a high affinity scFv from a monoclonal antibody recognising the oncofoetal antigen 5T4. Biochim Biophys Acta 2000, 1524:238-246
    47. Wu AM, Yazaki PJ. Designer genes: recombinant antibody fragments for biological imaging. Q J Nucl Med 2000, 44:268-283
    48. Mackenzie CR, Clark ID, Evans SV, et al. Bifunctional fusion proteins consisting of a single-chain antibody and an engineered lanthanide-binding protein. Immunotechnology 1995, 1:139-150
    49. Melkko S, Halin C, Borsi L, et al. An antibody-calmodulin fusion protein reveals a functional dependence between macromolecular isoelectric point and tumor targeting performance. Int J Radiat Oncol Biol Phys 2002, 54: 1485-1490
    50. Powers DB, Amersdorfer P, Poul M, et al. Expression of single-chain Fv-Fc fusions in Pichia pastoris. J Immunol Methods 2001, 251:123-135
    51. Helfrich W, Haisma HJ, Magdolen V, et al. A rapid and versatile method for hamessing scFv antibody fragments with various biological effector functions. J Immunol Methods 2000, 237:131-145
    52. Brocks B, Rode HJ, Klein M, et al. Germany. A TNF receptor antagonistic??scFv, which is not secreted in mammalian cells, is expressed as a soluble mono- and bivalent scFv derivative in insect cells. Immunotechnology 1997, 3:173-184
    53. Coloma MJ, Morrison SL. Design and production of novel tetravalent bispecific antibodies. Nat Biotechnol 1997, 15:159-163
    54. Bhatia J, Sharma SK, Chester KA, et al. Catalytic activity of an in vivo tumor targeted anti-CEA scFv::carboxypeptidase G2 fusion protein.Int J Cancer 2000, 85:571-576
    55. Hekele A, Dall P, Moritz D, et al. Growth retardation of tumors by adoptive transfer of cytotoxic T lymphocytes reprogrammed by CD44v6-specific scFv:zeta-chimera. Int J Cancer 1996 Oct 9;68(2):232-238
    56.甄永苏。抗肿瘤抗生素和单克隆抗体药物的的研究进展。中国抗生素杂志2002,27:1-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700