引力波天文学及数据处理相关问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,引力波探测器不断地升级,即将达到一个全新的灵敏度。第一个引力波的直接探测有希望于近几年发生。下一代地面和空间引力波探测器正处于计划中。因此,有必要研究引力波天文学发展引力波数据处理技术,为不久的探测做好准备。本论文立足于此,主要工作共分三个部分。
     第一部分中,我们作为第一个中国的小组参加了模拟LISA数据处理挑战项目(MLDC)。我们设计算法分析了双白矮星的几组数据,并利用遗传算法加速反演波源的物理参数。结果显示,我们的算法可以成功探测出大噪声中的微弱引力波信号,同时准确反演出波源的参数。
     第二部分中,我们考虑了多个LISA探测器的联合角分辨率问题,利用一个化简模型,给出了任意组LISA探测器的联合角分辨率的详细推导和结果。然后,我们把化简模型推广到更一般的情况。我们的结果可以为多个空间引力波探测器的联合角分辨率提供一个快速的估计,并可为多个空间引力波探测器的轨道设计提供参考。
     对一组参数化的引力波信号的探测和参数估计,需要数值上找到一个待估计参数的函数的极值。这个函数是和引力波观测数据相关的。观测数据中的强噪声,会使这个函数呈现高度的多模态并含有大量的极值。这会导致信号检测程序的计算量过大,进而影响了检测结果所能提供的科学信息。随机优化算法可以为减少计算量提供一种途径。在第三部分中,我们报告了粒子群算法在引力波数据处理中的第一次应用。我们将粒子群算法应用到LIGO的致密双星绕转所释放的引力波信号的检测中。结果显示,粒子群算法可以有效地找到多模态函数的极值,为引力波数据处理提供了一种新方法。
Not until recently, gravitational wave(GW) detectors are being upgraded to promis-ing sensitivity level. Hopefully, a first direct GW detection will be made in the near future. In the meanwhile, future ground-based and space-borne GW detectors are be-ing planned. It is good time to investigate GW astronomy and design GW data analysis techniques in preparation. This thesis is devoted to the field, and consists of three major parts.
     In the first part, we participate Mock LISA Data Challenge(MLDC) as a first Chinese group. We design an algorithm to analyze the galactic binary blind data sets and implement genetic algorithm in the parameter search step. It turns out that our algorithms can detect the GW signal buried in large measurement noise and estimate the physical parameters precisely.
     In the second part, we present a detailed derivation of the angular resolution of arbitrary sets of Laser Interferometer Space Antenna(LISA) constellations with a toy model for GW signals, and further generalized to more complicated cases with slowly varying GW signals of well-defined frequency at any time instant. For future space-borne LISA-like GW detectors, our results may serve as a conservative quick estimate of the detector's angular resolution and hopefully moreover a reference for the config-uration designs.
     The detection and estimation of gravitational wave signals belonging to a parame-terized family of waveforms requires, in general, the numerical maximization of a data-dependent function of the signal parameters. Due to noise in the data, the function to be maximized is often highly multi-modal with numerous local maxima. Searching for the global maximum then becomes computationally expensive, which in turn can limit the scientific scope of the search. Stochastic optimization is one possible approach to reducing computational costs in such applications. In the third part, we report result-s from a first investigation of the Particle Swarm Optimization (PSO) method in this context. The method is applied to a testbed motivated by the problem of detection and estimation of a binary inspiral signal. Our results show that PSO works well in the presence of high multi-modality, making it a viable candidate method for further applications in GW data analysis.
引文
[1]C.W. Misner, K.S. Thorne, and J.A. Wheeler, Gravitation, (W.H. Free-man, San Francisco,1973).
    [2]A. Abramovici et. al. LIGO:The Laser Interferometer Gravitational-Wave Observatory. Science,256(5055):325-333,1992.
    [3]B. Caron et. al. The Virgo interferometer. Classical and Quantum Grav-ity,14(6):1461,1997.
    [4]P. Bender et. al. LISA Pre-Phase A Report.1998.
    [5]N. J. Cornish, Gravitational wave astronomy:needle in a haystack (2012), arXiv:1204.2000v1
    [6]B.S. Sathyaprakash and B. F. Schutz, Physics, Astrophysics and Cos-mology with Gravitational Waves, Living Rev. Relativity,12, (2009), 2
    [7]M. Maggiore, Gravitational waves:Volume 1, Theory and experiments, Oxford university press (2008)
    [8]L. S. Finn, Detection, measurement, and gravitational radiation, Phys. Rev. D 46,12 (1992)
    [9]P. C. Peters and J. Mathews, Gravitational Radiation from Point Masses in a Keplerian Orbit, Phys. Rev.131,435-440 (1963)
    [10]Mark Zimmermann and Eugene Szedenits, Jr., Gravitational waves from rotating and precessing rigid bodies:Simple models and applications to pulsars, Phys. Rev. D 20,351C355 (1979)
    [11]R. Epstein, R.V. Wagoner, Post-Newtonian generation of gravitational waves, Astrophysical Journal, vol.197, May 1,1975, pt.1, p.717-723.
    [12]R.V. Wagoner, C.M. Will, Post-Newtonian gravitational radiation from orbiting point masses, Astrophysical Journal, vol.210, Dec.15,1976, pt.1, p.764-775.
    [13]Kip S. Thorne, Multipole expansions of gravitational radiation, Rev. Mod. Phys.52,299C339 (1980).
    [14]Alan G. Wiseman and Clifford M. Will, Christodoulou's nonlinear gravitational-wave memory:Evaluation in the quadrupole approxima-tion, Phys. Rev. D 44, R2945CR2949 (1991).
    [15]Alan G. Wiseman. Coalescing binary systems of compact objects to (post)5/2-Newtonian order. Ⅱ. Higher-order wave forms and radiation recoil, Phys. Rev. D 46,1517C1539 (1992).
    [16]Lawrence E. Kidder, Clifford M. Will and Alan G. Wiseman, Coalescing binary systems of compact objects to (post)5/2-Newtonian order. Ⅲ. Transition from inspiral to plunge, Phys. Rev. D 47,3281C3291 (1993).
    [17]Alan G. Wiseman, Coalescing binary systems of compact objects to (post)5/2-Newtonian order. IV. The gravitational wave tail, Phys. Rev. D 48,4757C4770 (1993).
    [18]Clifford M. Will and Alan G. Wiseman, Gravitational radiation from compact binary systems:Gravitational waveforms and energy loss to second post-Newtonian order, Phys. Rev. D 54,4813C4848 (1996).
    [19]T. Damour, The problem of motion in Newtonian and Einsteinian grav-ity, Three Hundred Years of Gravitation,1987.
    [20]T. Damour and B. R. Iyer, Multipole analysis for electromagnetism and linearized gravity with irreducible Cartesian tensors, Phys. Rev. D 43, 3259C3272 (1991).
    [21]L. Blanchet, T. Damour, Post-Newtonian generation of gravitational waves, Annales de 1'IHP Physique theorique,1989.
    [22]Luc Blanchet, Thibault Damour, Bala R. Iyer, Clifford M. Will and Alan G. Wiseman, Gravitational-Radiation Damping of Compact Bi-nary Systems to Second Post-Newtonian Order, Phys. Rev. Lett.74, 3515C3518 (1995).
    [23]L. Blanchet, T. Damour, B.R. Iyer, Gravitational waves from inspiralling compact binaries:Energy loss and waveform to second-post-Newtonian order, Phys. Rev. D 51,5360C5386 (1995).
    [24]L. Blanchet, Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries, Living Rev. Relativity 9 (2006),4.
    [25]P Jaranowski, G Schafer, Third post-Newtonian higher order ADM Hamilton dynamics for two-body point-mass systems, Phys. Rev. D 57, 7274C7291 (1998).
    [26]P Jaranowski, G Schafer, Binary black-hole problem at the third post-Newtonian approximation in the orbital motion:Static part, Phys. Rev. D 60,124003 (1999).
    [27]P Jaranowski, G Schafer, The binary black-hole dynamics at the third post-Newtonian order in the orbital motion, Annalen der Physik, Vol. 512 (Series 8, Vol.9), Issue 3, pp.378-383 (2000).
    [28]T. Damour, P. Jaranowski, and G. Schafer, Dimensional regularization of the gravitational interaction of point masses, Phys. Lett. B 513,147 (2001).
    [29]L. Blanchet, T. Damour, and G. Esposito-Farese, Dimensional regu-larization of the third post-Newtonian dynamics of point particles in harmonic coordinates, Phys. Rev. D 69,124007 (2004).
    [30]Luc Blanchet, Thibault Damour, Gilles Esposito-Farse, and Bala R. Iyer, Gravitational Radiation from Inspiralling Compact Binaries Completed at the Third Post-Newtonian Order, Phys. Rev. Lett.93,091101 (2004).
    [31]T. Damour, P. Jaranowski, and G. Schafer, Equivalence between the ADM-Hamiltonian and the harmonic-coordinates approaches to the third post-Newtonian dynamics of compact binaries, Phys. Rev. D 63, 044021 (2001).
    [32]V. C. de Andrade, L. Blanchet, and G. Faye, Third post-Newtonian dynamics of compact binaries:Noetherian conserved quantities and e-quivalence between the harmonic-coordinate and ADM-Hamiltonian for-malisms, Classical Quantum Gravity 18,753 (2001).
    [33]Y. Itoh and T. Futamase, New derivation of a third post-Newtonian equation of motion for relativistic compact binaries without ambiguity, Phys. Rev. D 68,121501 (2003).
    [34]L. Blanchet, T. Damour, G. Esposito-Farese, and B. Iyer, Dimensional regularization of the third post-Newtonian gravitational wave generation from two point masses, Phys. Rev. D 71,124004 (2005).
    [35]L. Blanchet, G. Faye, B. R. Iyer, and B. Joguet, Gravitational-wave inspiral of compact binary systems to 7/2 post-Newtonian order, Phys. Rev. D 65,061501 (2002).
    [36]L. Blanchet and B. R. Iyer, Hadamard regularization of the third post-Newtonian gravitational wave generation of two point masses, Phys. Rev. D 71,024004 (2005).
    [37]T. Damour, B. Iyer, and B. Sathyaprakash, Comparison of search tem-plates for gravitational waves from binary inspiral, Phys. Rev. D 63, 044023 (2001).
    [38]Alessandra Buonanno et al, Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors, Phys. Rev. D 80,084043 (2009)
    [39]A. Buonanno and T. Damour, Effective one-body approach to general relativistic two-body dynamics, Phys. Rev. D 59,084006 (1999).
    [40]A. Buonanno and T. Damour, Transition from inspiral to plunge in binary black hole coalescences, Phys. Rev. D 62,064015 (2000).
    [41]T. Damour, P. Jaranowski, and G. Schafer, Determination of the last stable orbit for circular general relativistic binaries at the third post-Newtonian approximation, Phys. Rev. D 62,084011 (2000).
    [42]Frans Pretorius, Evolution of Binary Black-Hole Spacetimes, Phys. Rev. Lett.95,121101 (2005).
    [43]M. P. Mchugh et al, THE ALLEGRO GRAVITATIONAL WAVE DE-TECTOR, Int. J. Mod. Phys. D 09,229 (2000).
    [44]E. Mauceli et al, The Allegro gravitational wave detector:Data acqui-sition and analysis, Phys. Rev. D 54,1264C1275 (1996).
    [45]I S Heng et al,Allegro:noise performance and the ongoing search for gravitational waves, Class. Quantum Grav.19 1889 (2002).
    [46]A de Waard et al, MiniGRAIL progress report 2004, Class. Quantum Grav.22 S215 (2005).
    [47]A de Waard et al, MiniGRAIL progress report 2001:the first cooldown, Class. Quantum Grav.19 1935 (2002).
    [48]A de Waard et al, MiniGRAIL, the first spherical detector, Class. Quan-tum Grav.20 S143 (2003).
    [49]http://en.wikipedia.org/wiki/LIGO
    [50]B. Willke et al, The GEO 600 gravitational wave detector, Class. Quan-tum Grav.19 1377 (2002).
    [51]B. Willke et al, The GEO-HF project, Class. Quantum Grav.23 S207 (2006).
    [52]Seiji Kawamura et al, The Japanese space gravitational wave anten-naDECIGO, Class. Quantum Grav.23 S125 (2006).
    [53]Wei-tou Ni, ASTROD-GW:OVERVIEW AND PROGRESS, Int. J. Mod. Phys. D,22,1341004 (2013).
    [54]Yan Wang et al, Octahedron configuration for a displacement noise-cancelling gravitational wave detector in space, arXiv:1306.3865 (2013).
    [55]G. Hobbs et al, The International Pulsar Timing Array project:us-ing pulsars as a gravitational wave detector, Class. Quantum Grav.27 084013 (2010).
    [56]John W. Armstrong, Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking, Living Rev. Relativity 9 (2006),1.
    [57]Piotr Jaranowski and Andrzej Krolak, Gravitational-Wave Data Anal-ysis. Formalism and Sample Applications:The Gaussian Case, Living Rev. Relativity 8 (2005),3.
    [58]A. J. Farmer and E. S. Phinney, The Gravitational Wave Background from Cosmological Compact Binaries, Mon. Not. Roy. Astron. Soc.346, 1197 (2003) [arXiv:astro-ph/0304393].
    [59]S. M. Kay, Fundamentals of statistical signal processing, Volume I:Es-timation theory
    [60]S. M. Kay, Fundamentals of statistical signal processing, Volume II: Detection theory
    [61]P. R. Saulson, Fundamentalsa of Interferometric Gravitational Wave Detectors, World Scientific (1994).
    [62]Mock LISA data challenge website, http://astrogravs.nasa.gov/docs/mldc/
    [63]S. A. Hughes, K. S. Thorne, Seismic gravity-gradient noise in interfero-metric gravitational-wave detectors, Phys. Rev. D 58,122002 (1998)
    [64]B. Allen and J. D. Romano, Detecting a stochastic background of grav-itational radiation:Signal processing strategies and sensitivities, Phys. Rev. D 59,102001 (1999)
    [65]M. Maggiore, Gravitational wave experiments and early universe cos-mology, Phys. Rep.331,283-367 (2000)
    [66]R. Brustein, M. Gasperinib, M. Giovanninib, G. Veneziano, Relic grav-itational waves from string cosmology, Phys. Lett. B 361,45-51 (1995)
    [67]M. S. Turner, Detectability of inflation-produced gravitational waves, Phys. Rev. D 55,435 (1997)
    [68]K. N. Ananda, C. Clarkson, and D. Wands, Cosmological gravitational wave background from primordial density perturbations, Phys. Rev. D 75,123518 (2007)
    [69]S. Babak et al, The Mock LISA Data Challenges:from Challenge 1B to Challenge 3, Class. Quantum Grav.25 184026 (2008)
    [70]D. O. North, "An analysis of the factors which determine signal/noise discrimination in pulsed carrier systems". RCA Labs., Princeton, NJ, Rep. PTR-6C. (1943)
    [71]K. A. Arnaud et al (the MLDC Task Force), A How-To for the Mock LISA Data Challenges, AIP Conf. Proc 873,625 (2006).
    [72]J. W. Armstrong, F. B. Estabrook and M. Tinto, Time-Delay Inter-ferometry for Space-based Gravitational Wave Searches, ApJ 527 814 doi:10.1086/308110 (1999)
    [73]M. Tinto, F. B. Estabrook, and J. W. Armstrong, Time-delay interfer-ometry for LISA, Phys. Rev. D 65,082003 (2002)
    [74]M. Tinto and S. V. Dhurandhar, Time-Delay Interferometry, Living Rev. Relativity 8 (2005),4
    [75]M. Tinto, F. B. Estabrook, and J. W. Armstrong, Time delay interfer-ometry with moving spacecraft arrays, Phys. Rev. D 69,082001 (2004)
    [76]Neil J Cornish and Ronald W Hellings, The effects of orbital motion on LISA time delay interferometry, Class. Quantum Grav.204851 (2003)
    [77]D. A. Shaddock, B. Ware, R. E. Spero, and M. Vallisneri, Postprocessed time-delay interferometry for LISA, Phys. Rev. D 70,081101(R) (2004)
    [78]Gang Wang, Wei-Tou Ni, Numerical simulation of time delay interfer-ometry for NGO/eLISA, arXiv:1204.2125v1 [gr-qc]
    [79]R. Prix and J. T. Whelan, F-statistic search for white-dwarf binaries in the first Mock LISA Data Challenge, Class. Quantum Grav.24 (2007) S565-S574.
    [80]P. Jaranowski, A. Krolak and B. F. Schutz, Data analysis of gravitational-wave signals from spinning neutron stars:The signal and its detection, Phys. Rev. D 58,063001 (1998)
    [81]J. Holland, Adaptation in Natural and Artificial Systems, (Ann Arbor, Michigan, University of Michigan Press,1975)
    [82]Neil J. Cornish and Jeff Crowder, LISA data analysis using Markov chain Monte Carlo methods, Phys. Rev. D 72,043005 (2005)
    [83]Nelson Christensen, Renate Meyer, Using Markov chain Monte Carlo methods for estimating parameters with gravitational radiation data, Phys. Rev. D 64,022001 (2001)
    [84]Marc van der Sluys et al, Parameter estimation of spinning binary inspi-rals using Markov chain Monte Carlo, Class. Quantum Grav.25 184011 (2008)
    [85]Nelson Christensen, Renate Meyer, Markov chain Monte Carlo methods for Bayesian gravitational radiation data analysis, Phys. Rev. D 58, 082001 (1998)
    [86]Yan Wang, Soumya Mohanty, Particle swarm optimization and gravi-tational wave data analysis:Performance on a binary inspiral testbed, Phys. Rev. D 81,063002 (2010)
    [87]J. Crowder, N. J. Cornish, and L. Reddinger, Darwin Meets Einstein: LISA Data Analysis Using Genetic Algorithms, Phys. Rev. D,73, 063011 (2006), arXiv:gr-qc/0601036
    [88]A. Petiteau, Y. Shang, S. Babak, and F. Feroz, The search for spinning black hole binaries in mock LISA data using a genetic algorithm, Phys. Rev. D,81,104016 (2010), arXiv:gr-qc/1001.5380
    [89]C. Darwin, The Origin of Species, (J. Murray, London,1859).
    [90]Gijs Nelemans LISA wiki, www.astro.kun.nl/nelemans/dokuwiki
    [91]Michele Vallisneri, Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects, Phys. Rev. D 77,042001 (2008)
    [92]Karsten Danzmann and Albrecht Rdiger, LISA technologyconcept, sta-tus, prospects, Class. Quantum Grav.20 S1 (2003)
    [93]W. M. Folkner et al, LISA orbit selection and stability, Class. Quantum Grav.14 1405 (1997)
    [94]K Rajesh Nayak, S Koshti, S V Dhurandhar and J-Y Vinet, On the minimum flexing of LISA's arms, Class. Quantum Grav.23 1763 (2006)
    [95]Guangyu Li et al, Methods for orbit optimization for the LISA gravi-titational wave observatory, International Journal of Modern Physics D Vol.17, No.7 (2008) 1021C1042
    [96]Zhaohua Yi et al, Coorbital restricted problem and its application in the design of the orbits of the LISA spacecraft, International Journal of Modern Physics D Vol.17, No.7 (2008) 1005C1019
    [97]Ronald W. Hellings, Spacecraft-Doppler gravity-wave detection. I. The-ory, Phys. Rev. D 23,832C843 (1981)
    [98]Frank B. Estabrook and Hugo D. Wahlquist, Response of Doppler space-craft tracking to gravitational radiation, General Relativity and Gravi-tation Volume 6, Number 5 (1975),439-447.
    [99]John G. Baker, Joan Centrella, Dae-Il Choi, Michael Koppitz, and James van Meter, Gravitational-Wave Extraction from an Inspiraling Configu-ration of Merging Black Holes, Phys. Rev. Lett.96,111102 (2006).
    [100]M. Campanelli, C. O. Lousto, P. Marronetti, and Y. Zlochower, Accu-rate Evolutions of Orbiting Black-Hole Binaries without Excision, Phys. Rev. Lett.96,111101 (2006).
    [101]John G. Baker et al, Getting a Kick Out of Numerical Relativity,2006 ApJ 653 L93.
    [102]Kip S. Thorne, Gravitational radiation, in 300 years of gravitation, ed. S. Hawking and W. Israel(Cambridge Univ. Press),1987
    [103]B. F. Schutz, Determining the Hubble constant from gravitational wave observations, Nature (London) 323,675 (1986); B. F. Schutz, Gravita-tional wave sources and their detectability, Class. Quantum Grav.6, 1761 (1989).
    [104]P. Bender, Additional astrophysical objectives for LISA follow-on mis-sions, Class. Quantum Grav.21, S1203 (2004).
    [105]N. J. Cornish and L. J. Rubbo, LISA response function, Phys. Rev. D 67,022001 (2003).
    [106]L. J. Rubbo, N. J. Cornish, and O. Poujade, Forward modeling of space-borne gravitational wave detectors, Phys. Rev.. D 69,082003 (2004).
    [107]C. Cutler, Angular resolution of the LISA gravitational wave detector, Phys. Rev. D 57,7089C7102 (1998).
    [108]M. Peterseim, O. Jennrich, and K. Danzmann, Angular resolution of LISA, Class. Quantum Grav.13,279 (1996).
    [109]T. A. Moore and R. W. Hellings, Angular resolution of space-based gravitational wave detectors, Phys. Rev. D 65,062001 (2002).
    [110]E. K. Porter and N. J. Cornish, Effect of higher harmonic corrections on the detection of massive black hole binaries with LISA, Phys. Rev. D 78,064005 (2008).
    [111]J. Crowder and N. J. Cornish, Beyond LISA:Exploring future gravi-tational wave missions, Phys. Rev. D 72,083005 (2005).
    [112]A. Wainstein and V.D. Zubakov, Extraction of Signals from Noise (Prentice-Hall, Englewood Cliffs,1962).
    [113]L. Wen, X. Fan and Y. Chen, Geometrical expression of the angular resolution of a network of gravitational-wave detectors and improved localization methods, J. Phys.:Conf. Ser.122 012038 (2008).
    [114]C.W. Helstrom, Statistical Theory of Signal Detection,2nd ed. (Perg-amon Press, London,1968)
    [115]B. J. Owen, Search templates for gravitational waves from inspiraling binaries:Choice of template spacing, Phys. Rev. D 53,6749 (1996)
    [116]S. D. Mohanty and S. V. Dhurandhar, Hierarchical search strategy for the detection of gravitational waves from coalescing binaries, Phys. Rev. D 54,7108 (1996).
    [117]B. J. Owen and B. S. Sathyaprakash, Matched filtering of gravitational waves from inspiraling compact binaries:Computational cost and tem-plate placement, Phys. Rev. D 60,022002 (1999)
    [118]S. D. Mohanty, Hierarchical search strategy for the detection of grav-itational waves from coalescing binaries:extension to post-newtonian waveforms, Phys. Rev. D 57,630 (1998)
    [119]A. S. Sengupta, S. V. Dhurandhar, A. Lazzarini, Faster implementation of the hierarchical search algorithm for detection of gravitational waves from inspiraling compact binaries, Phys. Rev. D 67,082004 (2003)
    [120]N. Christensen, R. Meyer and A. Libson, A MetropolisCHastings rou-tine for estimating parameters from compact binary inspiral events with laser interferometric gravitational radiation data, Class. Quantum Grav. 21317 (2004).
    [121]N. Cornish and J. Crowder, LISA data analysis using Markov chain Monte Carlo methods, Phys. Rev. D 72,043005 (2005).
    [122]E. Wickham, A. Stroeer, A. Vecchio, A Markov chain Monte Carlo approach to the study of massive black hole binary systems with LISA, Class. Quantum Grav.23, S819 (2006).
    [123]J. Kennedy and R. C. Eberhart, Particle swarm optimization, in Proc. IEEE Int. Conf. Neural Networks, Piscataway, NJ, vol.4, pp.1942-1948 (Nov.1995). Online at IEEE Xplore, URL:http://ieeexplore.ieee.org
    [124]Articles in Proc. IEEE Swarm Intelligence Symposium, Nashville, T-N, USA (March 30-April 2,2009). Online at IEEE Xplore, URL: http://ieeexplore.ieee.org
    [125]B P Abbott et al, LIGO:the laser interferometer gravitational-wave observatory, Rep. Prog. Phys.72,076901 (2009).
    [126]The design sensitivity curve is available as a text file from the URL http://www.ligo.caltech.edu/jzweizig/distribution/LSC_Data/.
    [127]L. Blanchet, T. Damour, B. R. Iyer, C. M. Will, and A. G. Wiseman, Gravitational-Radiation Damping of Compact Binary Systems to Sec-ond Post-Newtonian Order, Phys. Rev. Lett.74,3515 (1995).
    [128]B. S. Sathyaprakash, Filtering post-Newtonian gravitational waves from coalescing binaries, Phys. Rev. D 50, R7111 (1994).
    [129]S. Droz, D. J. Knapp, E. Poisson, B. J. Owen, Gravitational waves from inspiraling compact binaries:Validity of the stationary-phase ap-proximation to the Fourier transform, Phys. Rev. D 59,124016 (1999).
    [130]J. Robinson and Y. Rahmat-Samii, Particle swarm optimization in elec-tromagnetics, IEEE Trans. Antennas and Propagation,52, no.2 (2004)
    [131]R. R. Wilcox, Introduction to Robust Estimation and Hypothesis Test-ing,2nd Edition (Academic Press,2005).
    [132]R. Balasubramanian, B. S. Sathyaprakash and S. V. Dhurandhar, Grav-itational waves from coalescing binaries:Detection strategies and Monte Carlo estimation of parameters, Phys. Rev. D 53,3033 (1996)
    [133]S. Babak et al, The Mock LISA data challenges:from challenge 1B to challenge 3, Class. Quantum Grav.25,114037 (2008).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700