基于椭圆形微裂纹变形及扩展的岩石混凝土三维细观损伤模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于微缺陷的变形及演化的细观损伤模型能够较真实地描述材料的损伤行为,受到了人们的普遍关注。作为一类重要的工程材料,岩石和混凝土内部弥散有大量的微裂纹,故研究其变形行为时,应充分考虑微裂纹的变形与扩展。微裂纹受拉张开、受压闭合,应通过对两种不同模式下微裂纹的变形和扩展的分析,建立任意载荷下的损伤模型。一般地,材料内部的微裂纹可采用椭圆形微裂纹进行描述以较真实地反映微裂纹系统的细观特性。本文考虑材料内部椭圆形微裂纹的变形、扩展、摩擦滑移及偏折扩展对材料变形的影响,基于Taylor方法建立了岩石混凝土的三维细观损伤模型。
     将含椭圆形微裂纹的代表性单元(RVE)视为无限大体深埋椭圆形裂纹。本文首先基于无限大弹性基体深埋椭圆形裂纹的变形场,推导了深埋椭圆形裂纹的能量释放率,采用能量平衡方法建立椭圆形裂纹的复合断裂准则;进而考虑椭圆形裂纹的偏折扩展,提出了椭圆形裂纹的初始偏折位置和偏折方向的确定方法。并将椭圆形裂纹退化到深穿透线裂纹和钱币形裂纹的结果与已有的相关结果进行了比较。
     论文考虑三轴拉应力下椭圆形微裂纹的变形、扩展,推导了具有任意空间取向的单个张开椭圆形微裂纹引起的附加柔度张量,采用Taylor方法并引入概率密度函数,建立了三轴拉应力下的细观损伤模型,并采用该模型分析了含随机分布椭圆形微裂纹的弹性基体的有效弹性模量。
     论文考虑三轴压应力下椭圆形微裂纹的摩擦滑移和偏折扩展,推导了具有任意空间取向的单个闭合椭圆形微裂纹引起的附加柔度张量,提出了一种计算闭合椭圆形微裂纹的偏折变形的简化方法,采用Taylor方法建立了三轴压应力下的细观损伤模型,并利用该模型分析了含微裂纹材料的各向异性特性。
     在前面建立的三轴拉应力与三轴压应力下的细观损伤模型的基础上,建立了任意载荷下的细观损伤模型,并将模型与商用有限元软件ABAQUS相结合,编写了用户自定义材料子程序UMAT,利用ABAQUS与该子程序模拟了砂岩的三轴压缩实验与混凝土的单轴拉伸实验。
     考虑椭圆形微裂纹间的弱相互作用,基于所发展细观损伤模型的分析方法,采用自洽理论推导了含随机分布椭圆形微裂纹的弹性基体的有效弹性模量,并与基于能量等效原理的分析方法和自洽理论的结果进行了比较。
The micromechanical damage models based on the deformation and growth of microdefects can realistically describe the development of damage, and received extensive attention in past decades. Rocks and concretes contain numerous microcracks, and the deformation and growth of microcracks play important roles in their constitutive behavior and should be included in the description of the deformation such kinds of materials. Microcracks open under tensile stress, and close under compressive stress, the research of the deformation and growth of microcracks as well as their effect should, therefore, take into account the influence of different states of stress. The microcracks in materials can generally be assumed to be elliptic, which can describe more exactly the properties of a microcracks system. In this dissertation, the influence of the deformation, growth, frictional sliding, and kinked growth of microcracks embedded in an infinite isotropic elastic matrix subjected to different stress states on the compliance on the materials are investigated, and then a unified three dimensional micromechanical damage model for the solids with randomly distributed microcracks is formulated with the Taylor’s scheme.
     Based on the analysis of the deformation in an infinite isotropic elastic matrix containing an embedded elliptic crack, the energy release rate of the elliptic crack and a mixed fracture criterion are obtained by making use of an energy balance approach. Considering the kinked growth of the crack, an analytical approach for the determination of the initial kink location and kink direction of the elliptic crack are suggested. The results corresponding to penny shaped crack and penetrated line crack can be obtained from the proposed model as the special cases of its two limits. The comparison with the results from finite element analysis also verifies the proposed approach.
     The deformation and growth of an elliptic microcrack under far-field tensile-shear stress are considered, and the corresponding additional compliance tensor is derived. The description for the response of the material with randomly oriented elliptic microcracks under triaxial tensile stress is obtained by making use of the Taylor’s scheme and an appropriate probability density function, and the effective moduli are deduced.
     The frictional sliding and kinked growth of an elliptic microcrack embedded in a representative volume element under triaxial compressive stress are investigated. The additional compliance tensor induced by a single closed elliptic microcrack is derived. A simplified method to calculate the kinked deformation of the closed elliptic microcrack is suggested. The description for the response of a microcracks solid under triaxial compressive stress is obtained with the Taylor’s scheme, and the anisotropic property of the microcracks material is analyzed.
     A unified micromechanical damage model is constructed with the combination of the obtained triaxially tensile stress model and triaxially compressive stress model. Associated with commercially available finite element code ABAQUS, a user subroutine UMAT for the materials with randomly orientedly elliptic microcracks is developed and embedded in ABAQUS. The triaxial compression of sandstone and the uniaxial tension of a concrete is simulated and compared with the experimental results.
     The effect of the interaction between the elliptic microcracks on the elastic properties of the microcracked materials is considered. The effective elastic moduli of the material with random orientation of elliptic microcracks are obtained, and the comparison with those obtained with energy equivalent principle based on self-consistent scheme shows completely identical.
引文
[1] D. Krajcinovic. Continuous damage mechanics [J]. Applied Mechanics Reviews, 1984, 37(1): 1-6.
    [2] L M. Kachanov. Introduction to continuum damage mechanics [M]. Boston: Martinus Nijhoff Publishers, 1986.
    [3]谢和平.岩石混凝土损伤力学[M].徐州:中国矿业大学出版社,1990.
    [4]吴鸿遥.损伤力学[M].北京:国防工业出版社,1990.
    [5]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社, 1997.
    [6] D. Krajcinovic. Damage mechanics [J]. Mechanics of Materials, 1989, 8: 117-197.
    [7] L M. Kachanov. On the time to failure under creep condition [J]. Izv. Akad. Nauk. USSR. Otd. Tekhn. Nauk., 1958, 8:23-31.
    [8] Y. N. Rabotnov. On the equations of state for creep [A]. In: Progress in applied mechanics [M]. New York, 1963, 307-315.
    [9] Y. N. Rabotnov. Creep ruptures [A]. In: M. Hetenyi, W. G. Vincenti. Proceedings of the twelfth International Congress of Applied Mechanics [C]. Berlin: Springer-Verlage, 1969, 342-349.
    [10] H. Broberg. Creep damage and rupture [D]. Dissertation of Chalmers University of Technology, 1975.
    [11] J. Lemaitre. A continuous damage mechanics model for ductile fracture [J]. Journal of Engineering Materials and Technology, 1985, 107:83-89.
    [12] J. Lemaitre. Formulation and identification of damage, kinetic constitutive equations [A]. In: D. Krajcinovic, J. Lemaitre. Continuum damage mechanics: theory and applications [M]. New York: Springer-Verlage, 1987, 37-89.
    [13] G. Rousselier. Finite deformation constitutive relations including ductile fracture damage [A]. In: S. Nemat Nasser. Proceedings of the IUTAM symposium on three dimensional constitutive relations and ductile fracture [C]. Holland: North Holland Publishing Company, 1980, 331-355.
    [14] A. L. Gurson. Plastic flow and fracture behavior of ductile materials incorporation void nucleation, growth and interaction [D]. PhD Thesis of Brown University, 1975.
    [15] A. L. Gurson. Continuum theory of ductile rupture by void nucleation and growth, part I: yield criteria and flow rules for porous ductile media [J]. Journal of Engineering Materials and Technology, 1977, 99: 2-15.
    [16] J. L. Chaboche. Continuous damage mechanics - a tool to describe phenomena before crack initiation [J]. Nuclear Engineering and Design, 1981, 64(2): 233-247.
    [17] J. Lemaitre, J. L. Chaboche. Mechanics of solids materials [M]. Cambridge: Cambridge University Press, 1990.
    [18] D. Krojcinovic, G. U. Fonseka. The continuous damage theory of brittle materials, part I: general theory [J]. Journal of Applied Mechanics, 1981, 48: 809-815.
    [19] G. U. Fonseka, D. Krojcinovic. The continuous damage theory of brittle materials, part II: uniaxial and plane response models [J]. Journal of Applied Mechanics, 1981, 48: 816-824.
    [20] D. Krojcinovic. Constitutive equations for damaging materials [J]. Journal of Applied Mechanics, 1983, 50: 355-360.
    [21] A. A. Vakulenko, M. L. Kachanov. Continuum theory of cracked media [J]. Mekhaniha Tverdogo Tela, 1971, 4: 159-166.
    [22] S. Murakami and N. Ohno. A constitutive equation of creep damage in polycrystalline metals [A]. In: Euromech colloquium III on constitutive modeling in inelasticity [C], 1978.
    [23] S. Murakami and N. Ohno. A continuum theory of creep and creep damage [A]. In: A. R. Ponter, D. R. Hayhurst. Proceeding of the third IUTAM symposium on creep in structures [C]. Berlin: Springer Verlage, 1981, 422-443.
    [24] S. Murakami. Notion of continuum damage mechanics and its application to anisotropic creep damage theory [J]. Journal of Engineering Materials and Technology, 1983, 105:99-105.
    [25] J. L. Chaboche. The concept of effective stress applied to elasticity and viscoplasticity in the presence of anisotropic damage [A]. In: J. P. Boehler. Mechanical behavior of anisotropic solids [M]. The Hague: Martinus Nijhoff, 1982, 737-760.
    [26] J. L. Chaboche. Continuum damage mechanics, I: general concepts, and II: damage growth, crack initiation, and crack growth [J]. Journal of Applied Mechanics, 1988, 55:59-72.
    [27] J. L. Chaboche. Phenomenological aspects of continuum damage mechanics [A]. In: R. Germain. Theoretical and applied mechanics [M]. North Holland: Elsevier Applied Science Publishers, 1989, 41-56.
    [28] J. D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion, and related problems [A]. In: Proceedings of the Royal Society A [C], London, 1957, 241: 376-396.
    [29] J. D. Eshelby. Elastic inclusions and homogeneities [A]. In: I. N. Sneddon, R. Hill. Progress in solid mechanics [M], North Holland Amsterdam, 1961, 88-140.
    [30] R. Hill. Continuum micro-mechanics of elastoplastic polycrystals [J]. Journal of the Mechanics and Physics of Solids, 1965, 13(2): 89-101.
    [31] R. Hill. The essential structure of constitutive laws for metal composites and polycrystals [J]. Journal of the Mechanics and Physics of Solids, 1967, 15(2): 79-95.
    [32] R. M. Christensen, K. H. Lo. Solutions for effective shear properties in three phase sphere andcylinder models [J]. Journal of the Mechanics and Physics of Solids, 1979, 27(4): 315-330.
    [33] T. Mori, K. Tanaka. Average stress in matrix and average elastic energy of materials with misfitting inclusions [J]. Acta Metallurgica, 1973, 21: 571-574.
    [34] R. Roscoe. The viscosity of suspensions of rigid spheres [J]. British Journal of Applied Physics, 1952, 3: 267-269.
    [35] R. Mclaughlin. A study of the differential scheme for composite materials [J]. International Journal of Engineering Science, 1977, 15: 237-244.
    [36] D. Gross. Stress intensity factors of systems of cracks [J]. Ing. Arch., 1982, 51: 301-310.
    [37] M. Kachanov, J. P. Laures. Three dimensional problems of strongly interacting arbitrarily located penny-shaped cracks [J]. International Journal of Fracture, 1989, 41: 289-313.
    [38] M. Kachanov. Effective elastic properties of cracked solids, critical review of some basic concepts [J]. Applied Mechanics Review, 1992, 45: 304-335.
    [39] S. Nemat Nasser, M. Hori. Micromechanics: Overall Properties of Heterogeneous Materials [M]. North Holland: Elsevier, 1993.
    [40] D. Krajcinovic, D. Fenella. A micromechanical damage model for concrete [J]. Engineering Fracture Mechanics, 1986, 25(5): 585-596.
    [41] J. W. Ju. A micromechanical damage model for uniaxially reinforced composites weakened by interfacial arc microcracks [J]. Journal of applied mechanics, 1991, 58: 923-930.
    [42] B. Budiansky, R. J. O’Connell. Elastic moduli of a cracked solid [J]. International Journal of Solids and Structures, 1976, 12(1): 81-95.
    [43] D. Sumarac, D. Krajcinovic. A self-consistent model for microcrack weakened solids [J]. Mechanics of Materials, 1987, 6: 39-52.
    [44] J. Aboudi, Y. Benvensite. The effective moduli of cracked bodies in phase deformations [J]. Engineering Fracture Mechanics, 1987, 26: 171-184.
    [45] Y. Huang, K. Hu, A. Chandra. A generalized self-consistent mechanics method for microcracked solids [J]. Journal of the Mechanics and Physics of Solids, 1994, 42: 1273-1291.
    [46] Y. Benvensite. On the Mori-Tanaka’s method in cracked bodies [J]. Mechanics Research Communications, 1986, 13(4): 193-201.
    [47] Z. Hashin. The differential scheme and its application to cracked materials [J]. Journal of the Mechanics and Physics of Solids, 1988, 36(6): 719-734.
    [48] D. Fanella, D. Krajcinovic. A micromechanical model for concrete in compression [J]. Engineering Fracture Mechanics, 1988, 29: 49-66.
    [49] J. Lemaitre. Evaluation of dissipation and damage in metals submitted to dynamic loading [A]. In: Proceedings of ICM1 [C], Kyoto, 1971.
    [50] J. Janson, J. Hult. Fracture mechanics and damage mechanics, a combined approach [J]. Journal de Mechanique Appliquee, 1977, 1(1): 69-84.
    [51] J. Hult. Introduction and general overview [A]. In: D. Krajcinovic, J. Lemaitre. Continuum damage mechanics: theory and applications [M]. New York: Springer-Verlage, 1987, 1-36.
    [52] J. Mazars. Application de la mechanique de l’endommagement au comportement non lineaire etàla rupture du beton de structure [D]. Paris: These de Doctorat d’Etat Universite Paris 6, 1984.
    [53] K E. Loland. Continuum damage model for load response estimation of concrete [J]. Cement and Concrete Research, 1980, 10(3): 395-402.
    [54] D. Krajcinovic, M. A. Silva. Statistical aspects of the continuous damage theory [J]. International Journal of Solids and Structures, 1982, 18(7): 551-562.
    [55] D. Krajcinovic, J. Lemaitre. Continuum damage mechanics: theory and applications [M]. New York: Springer-Verlag, 1988.
    [56] J. Lemaitre. How to use damage mechanics [J]. Nuclear Engineering and Design, 1984, 80: 233-245.
    [57] F. Sidoroff. Description of anisotropic damage application to elasticity [A]. In: J. Hult, J. Lemaitre. Proceeding of IUTAM colloquium on physical nonlinearities in structural analysis [C]. Berlin: Springer-Verlag, 1981, 237-244.
    [58] J. P. Cordebois, F. Sidoroff. Damage induced elastic anisotropy [A]. In: J. P. Boehler. Euromech colloque 115: mechanical behavior of anisotropic solids [C]. Boston: Martinus Nijhoff Publishers, 1982, 761-774.
    [59] F. Supartono, F. Sidoroff. Anisotropic damage modeling for brittle elastic materials [A]. In: Symposium of France-Poland [C]. 1984.
    [60] S. Murakami. Mechanical modeling of material damage [J]. Journal of Applied Mechanics, 1988, 55(2): 280-286.
    [61] S. Murakami, M. Kawai, H. Rong. Finite element analysis of creep crack growth by a local approach [J]. International Journal of Mechanical Sciences, 1988, 30(7): 491-502.
    [62] J. L. Chaboche. Continuous damage mechanics - present state and future trends [J]. Nuclear Engineering and Design, 1987, 105: 19-33.
    [63] M. Ortiz. A constitutive theory for the inelastic behavior of concrete [J]. Mechanics and Materials, 1985, 4(1): 67-93.
    [64] M. Ortiz. A continuum theory of crack shielding in ceramics [J]. Journal of Applied Mechanics, 1987, 54: 54-58.
    [65] X. Peng, J. Fan, X. Zeng. A physically based description for coupled plasticity and creepdeformation [J]. International Journal of Solids and Structures, 1997, 35(21): 2733-2747.
    [66]彭向和,杨春和.复杂加载史下混凝土的损伤及其描述[J].岩石力学与工程学报, 2000, 19(2): 157-164.
    [67] J. C. Simo, J. W. Ju. Strain- and stress- based continuum damage models, part I: formulation [J]. International Journal of Solids and Structures, 1987, 23(7): 821-840.
    [68] J. C. Simo, J. W. Ju. Strain- and stress- based continuum damage models, part II: computational aspects [J]. International Journal of Solids and Structures, 1987, 23(7): 841-869.
    [69] Y. Budiansky. On the elastic moduli of some heterogeneous materials [J]. Journal of the Mechanics and Physics of Solids, 1965, 13: 223-227.
    [70] A. Hoenig. The behavior of a flat elliptical crack in an anisotropic elastic body [J]. International Journal of Solids and Structures, 1978, 14(11): 925-934.
    [71] A. Hoenig. Elastic moduli of a non-randomly cracked body [J]. International Journal of Solids and Structures, 1979, 15(2): 137-154.
    [72] Y. Huang, K. C. Hwang. A unified energy approach to a class of micromechanics models for microcracked solids [J]. Acta Mechanica Solida Sinica, 1995, 8(2): 110-120.
    [73] Y. Benveniste. A new approach to the application of Mori-Tanaka’s theory in composite materials [J]. Mechanics of Materials, 1987, 6(2): 147-157.
    [74] J. W. Ju, T. M. Chen. Effective elastic moduli of two-dimensional brittle solids with interacting microcracks, part I: basic formulations [J]. Journal of Applied Mechanics, 1994, 61: 349-357.
    [75] J. W. Ju, T. M. Chen. Effective elastic moduli of two-dimensional brittle solids with interacting microcracks, part II: evolutionary damage models [J]. Journal of Applied Mechanics, 1994, 61: 358-366.
    [76] H. Horii, S. Nemat-Nasser. Elastic fields of interacting inhomogeneities [J]. International Journal of Solids and Structures, 1985, 21: 731-745.
    [77] M. Kachanov. Elastic solids with many cracks: a simple method of analysis [J]. International Journal of Solids and Structures, 1987, 23: 23-43.
    [78] M. Kachanov. A microcrack model of rock inelasticity, part I: fractional sliding on microcracks [J]. Mechanics of Materials, 1982, 1: 19-27.
    [79] M. Kachanov. A microcrack model of rock inelasticity, part II: propagation of microcracks [J]. Mechanics of Materials, 1982, 1: 29-41.
    [80] H. Horii, S. Nemat-Nasser. Overall moduli of solids with microcracks: load-induced anisotropy [J]. Journal of the Mechanics and Physics of Solids, 1983, 31(2): 155-171.
    [81] H. Horii, S. Nemat-Nasser. Compression-induced microcrack growth in brittle solids: axial splitting and shear failure [J]. Journal of Geophysical Research, 1985, 90: 3105–3125.
    [82] H. Horii, S. Nemat-Nasser. Brittle failure in compression: splitting, faulting, and brittle-ductile transition [J]. Philosophical Transactions of the Royal Society of London [M], 1986, 319: 337-374.
    [83] H. B. Li, J. Zhao, T. J. Li. Micromechanical modelling of the mechanical properties of a granite under dynamic uniaxial compressive loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37: 923-935.
    [84] L. Gambarotta, I. Monetto. Uniaxial compressive failure of brittle materials as instability of damaging microcracked solids [J]. European Journal of Mechanics A/Solids, 2002, 21: 121-132.
    [85] D. Krajcinovic. Micromechanical basis of phenomenological models [A]. In: D. Krajcinovic, J. Lemaitre. Continuum damage mechanics: theory and applications [M]. New York: Springer-Verlage, 1987, 195-211.
    [86] J. W. Ju. On two-dimensional self-consistent micromechanical damage models for brittle solids [J]. International Journal of Solids and Structures, 1991, 27(2): 227-258.
    [87] X. Lee, J. W. Ju. On three-dimensional self-consistent micromechanical damage models for brittle solids, part II: compressive loadings [J]. Journal of Engineering Mechanics, 1991, 117(7): 1515-1536.
    [88] C. L. Li, E. Nordlund. Deformation of brittle rocks under compression-with particular reference to microcracks [J]. Mechanics of Materials, 1993, 15: 223-239.
    [89] X. Q. Feng, S. W. Yu. A new damage model for microcrack-weakened brittle solids [J]. Acta Mechanica Sinica, 1993, 9: 251-260.
    [90] S. W. Yu, X. Q. Feng. A micromechanical-based damage model for microcrack-weakened brittle solids [J]. Mechanics of Materials, 1995. 20: 59-76.
    [91] X. Q. Feng, S. W. Yu. Micromechanical modeling of tensile response of elastic-brittle materials [J]. International Journal of Solids and Structures, 1995, 32(22): 3359-3374.
    [92] X. Q. Feng, S. W. Yu. Quasi- micromechanical constitutive theory for brittle damage materials under tension [J]. Acta Mechanica Solida Sinica, 2001, 14(3): 200-207.
    [93] A. E. Green, I. N. Sneddon. The distribution of stress in the neighborhood of a flat elliptic crack in an elastic solid [J]. Proceedings of the Cambridge Philosophical Society, 1950, 46(2): 159-164.
    [94] G. R. Irwin. Crack extension force for part- through crack in a plate [J]. Journal of Applied Mechanics, 1962, 29: 651-654.
    [95] M. K. Kassir, G. C. Sih. Three dimensional stress distribution around an elliptical crack under arbitrary loading [J]. Journal of Applied Mechanics, 1966, 33: 601-611.
    [96] M. K. Kassir, G. C. Sih. Three dimensional crack problems [A]. In: G. C. Sih. Mechanics of fracture [M]. Leyden: Noordhoff International Publishing, 1975, 382-409.
    [97] R. C. Shah, A. S. Kobayashi. Stress intensity factor for an elliptical crack under arbitrary normal loading [J]. Engineering Fracture Mechanics, 1971, 3(1): 71-96.
    [98]崔振源.表面裂纹双参数弹塑性断裂判据的探讨[J].固体力学学报, 1985, 3:395-400.
    [99]李英治,李敏华,柳春图等.含表面裂纹三维体裂纹尖端应力应变场及应力强度因子计算[J].中国科学A辑, 1988, 8:828-842.
    [100] W. Q. Chen, H. J. Ding. A penny-shaped crack in a transversely isotropic piezoelectric solid: modes II and III problems [J]. Acta Mechanica Sinica, 1999, 15(1): 52-58.
    [101] G. Z. Chai, K. D. Zhang. Interactions of two coplanar elliptical cracks embedded in finite thickness plates under uniform tension [J]. Engineering Fracture Mechanics, 1996, 53(2): 179-191.
    [102] H. Y. Yeh, C. H. Kim. Fracture mechanics of the angled elliptic crack under uniaxial tension [J]. Engineering Fracture Mechanics, 1995, 50(1): 103-110.
    [103] X. K. Zhu, G. T. Liu, Y. J. Chao. Three-dimensional stress and displacement fields near an elliptical crack front [J]. International Journal of Fracture, 2001, 109: 383-401.
    [104] F. Erdogan, G. C. Sih. On crack extension in plates under plane loading and transverse shear [J]. Transactions ASME Journal of Basic Engineering, 1963, 85: 519-527.
    [105] G. C. Sih. Mechanics of fracture 2 [M]. Leyden: Noordhoff International Publishing, 1975.
    [106] G. C. Sih. Strain energy density factor applied to mixed mode crack problems [J]. International Journal of Fracture, 1974, 10(3): 305-321.
    [107]丁遂栋,孙利民.断裂力学[M].北京:机械工业出版社, 1997.
    [108] B. R. Lawn, T. R. Wilshaw. Fracture of brittle solids [M]. Cambridge: Cambridge University Press, 1974.
    [109]匡震邦,马法尚.裂纹端部场[M].西安:西安交通大学出版社, 2001.
    [110] V. S. Gopalaratnam, S. P. Shah. Softening response of plain concrete in direct tension [J]. Journal of American Concrete Institute, 1985, 82(5): 310-323.
    [111] J. W. Ju, X. Lee. On three-dimensional self-consistent micromechanical damage models for brittle solids, part I: tensile loadings [J]. Journal of Engineering Mechanics, 1991, 117(7): 1495-1514.
    [112] G. R. Irwin. Analysis of stresses and strains near the end of a crack traversing a plate [J]. Journal Applied Mechanics, 1957, 24: 361-364.
    [113] H. L. Ewalds, R. J. H. Wanhill. Fracture mechanics [M]. London: Edward Arnold Publication, 1984.
    [114] B. Cotterell, J. R. Rice. Slightly curved or kinked cracks [J]. International Journal of Fracture, 1980, 16(2): 155-169.
    [115] M. F. Ashby, S. D. Hallam. The failure of brittle solids containing small cracks under compressive stress state [J]. Acta Metallurgica, 1986, 34(3): 497-510.
    [116] P. S. Steif. Crack extension under compressive loading [J]. Engineering Fracture Mechanics, 1984, 20(3): 463–473.
    [117] S. Nemat-Nasser, H. Horii. Rock failure in compression [J]. International Journal of Engineering Science, 1984, 22: 999-1011.
    [118] S. Nemat-Nasser, H. Horii. Compression-induced non-planar crack extension with application to splitting, exfoliation and rockburst [J]. Journal of Geophysical Research, 1982, 87: 6805-6821.
    [119] J. J. Zhou, J. F. Shao, W. Y. Xu. Coupled modeling of damage growth and permeability variation in brittle rocks mechanics [J]. Mechanical Research Communications, 2006, 33: 450-459.
    [120] D. Yan, G. Lin. Dynamic properties of concrete in direct tension [J]. Cement and Concrete Research, 2006, 36: 1371-1378.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700