生活污水和造纸厂污水对水泥土强度影响的试验和理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在工程中污染可以引起地基土物理性质的改变,进而影响到水泥土地基强度的变化,导致建筑物失稳或破坏,因此研究污染对水泥土的影响非常重要,这已经成为环境岩土工程领域中的一个崭新课题,但是目前国内外的研究只是把实验室内配制的单一化学成份作为污染介质,这就与实际工程情况相距较远。鉴于此,本项目依托高等学校博士学科点项目、山西省回国留学人员科研项目、山西省青年科技研究项目支持,以从实际环境提取的生活污水和造纸厂污水为介质,采用普通硅酸盐水泥和矿渣硅酸盐水泥,制作了两种污染类型的水泥土试块:(1)把不同浓度的生活污水和造纸厂污水与粉质粘土拌合配制成污染土,然后与水泥搅拌形成水泥土,来模拟土体受地下水污染后搅拌形成的污染水泥土;(2)把水泥与未污染的粉质粘土搅拌形成的水泥土试块分别浸泡在生活污水和造纸厂污水中模拟水泥土桩搅拌形成后受到地下水的污染。同时考虑到传统方法对污染土研究的困难,在实验方法上引入了电阻率法,系统定量研究了各种污染类型和条件下水泥土无侧限抗压强度、电阻率、龄期、浓度、液塑性指标、污染物迁移、损伤等的变化规律,主要研究成果归纳如下:
     第一,研究了土体受不同浓度生活污水和造纸厂污水污染后液塑性指标的变化规律,基于污水的化学成份探讨了其发生变化的机理。
     第二,污染水泥土是一种特殊的电化学体系,在测试过程中必须考虑直流电的极化等电化学效应问题,通过试验并借鉴前人经验,提出了适合于水泥土单轴压缩试验同步测试电阻率的方法和简单装置。
     第三,系统研究了土体污染下水泥土的强度和电阻率特性。无论普通硅酸盐水泥土试块还是矿渣硅酸盐水泥土试块,在相同的污染液浓度下,其无侧限抗压强度和电阻率均随着龄期对数的增加而呈线性函数增大;在相同的龄期下,均随着污染液浓度的增加而呈指数函数减小。
     第四,系统研究了浸泡环境中水泥土的强度和电阻率特性。无论普通硅酸盐水泥土试块还是矿渣硅酸盐水泥土试块,在相同的污染液浓度下,其无侧限抗压强度和电阻率均随着龄期对数的增加而呈线性函数增大;在相同的龄期下,均随着污染液浓度的增加而呈指数函数减小。
     第五,在以上两种污染类型中,水泥土无侧限抗压强度都与其电阻率呈线性关系,可以据此推测和检测水泥土强度。
     第六,提出了基于污染液浓度和龄期的水泥土强度预测公式。
     第七,在分析污染介质在水泥土中迁移的三种形式基础上,建立了相应的离子迁移模型;通过研究水泥土微观结构图片,揭示了污染对水泥土的侵蚀机理,并建立了污染对水泥土的结构的影响模型图;提出腐蚀深度的概念,建立了污染物腐蚀水泥土的腐蚀深度数学模型。
     第八,根据硫酸根腐蚀水泥土的化学反应方程式,推导了单位体积水泥土中消耗硫酸根量的公式。
     第九,根据本次水泥土强度,提出了水泥土强度折减系数,并得出了本次试验的不同环境条件下水泥土抗压强度折减系数的统计值。
     第十,通过无侧限抗压强度实验过程中同步测试电阻率,以变形过程中有效电流与初始电流的比值描述损伤,建立了基于电流变化的水泥土损伤模型,此模型形式简单,特点是没有对应变分段,而是将全应变范围都统一成一个四次多项式方程,且与水泥类型、污染类型无关。并且对归一化后应力-应变曲线进行了拟合。
     该课题的研究对正确认识生活污水和造纸厂污水对水泥土复合地基的腐蚀性具有指导意义,为进一步研究这两种污水对水泥土复合地基的耐久性提供了试验资料,电阻率法的使用也改变传统方法对于污染地基土腐蚀性研究的困难,极大地扩展了电学方法在污染土中的应用,对于将电阻率法推广于环境岩土工程领域中具有重要的现实意义和广泛的应用前景。
Pollution can change the physical properties of soil, further may affect the strength of soil-cement foundation, in turn, induce instability or disruption of buildings. Therefore, studying the effect of pollution on soil-cement has become more and more important which made it a new topic in the area of environmental geotechnical engineering. In recent years, most researchers just considered one single chemical component made in the lab as the polluted medium, which is far from the real engineering condition. Based on this, the sewage and industrial wastewater taken from the real environment were considered as the medium in this study. Two types of soil-cement samples were made of either normal Portland cement or slag Portland cement:(1) use different concentration’s sewage and industrial wastewater mixed with silty clay soil to form the contaminated soil, and then mixed with cement to form the soil-cement block to model the pollution of soil-cement with the soil polluted by groundwater; (2)After mixing the cement with the non-contaminated silty clay soil to form the soil-cement block, put the soil-cement blocks into the liquids with various concentraties of sewage or industrial wastewater to model the soil-cement column under the pollution of groundwater. Considering the difficulty of application of traditional method for the contaminated soil, the electrical resistivity method was introduced to investigate the soil-cement under different pollution types and conditions. The parameters studied in this study were included the unconfined compression strength, electrical resistivity, age, concentration, liquid and plastic limit indexes, transfer of contaminant, and damage and so on. The main achievements are as followed:
     Firstly, the law of liquid and plastic limit indexes of contaminated soil polluted by sewage and industrial wastewater with different concentration was studied. Also the change mechanism of contaminated soil based on the chemical compositions of polluted liquids was discussed.
     Secondly, as a special electrochemical system, electrochemical effect problems such as polarization of direct current should be considered during electrical resistivity measuring test. On a basis of test and previous experience, the method suitable for the synchronous testing electrical resistivity of soil-cement in uniaxial compression test was presented and a simplified device for electrical resistivity measuring was developed.
     Thirdly, the characteristic of strength and electrical resistivity of soil-cement under soil pollution was studied systematically. Under the same contamination concentration, no matter it was normal Portland cement sample or slag Portland cement sample, the unconfined compression strength and electrical resistivity were increased linearly with the increase of the logarithm of age; while under the same age, they were decreased exponentially with the increase of the contamination concentration.
     Fourthly, the characteristic of strength and electrical resistivity of soil-cement under soaking environment was studied systematically. Under the same contamination concentration, no matter it was normal Portland cement sample or slag Portland cement sample, the unconfined compression strength and electrical resistivity were increased linearly with the increase of the logarithm of age; while under the same age, they were decreased exponentially with the increase of the contamination concentration.
     Fifthly, in the above two pollution types, the unconfined compression strength of soil-cement had a linear correlation with electrical resistivity. This correlation may be used to predict and check the strength of soil-cement.
     Sixthly, a strength equation of soil-cement was proposed on the basis of the pollution concentration and age.
     Seventhly, under the analysis of three transferring types of contamination medium in soil-cement, the corresponding iron transferring model was built. By observing the microstructure images of soil-cement, the principle of pollution for soil-cement was revealed and the affection model diagram of pollution for soil-cement structure was found. Also the concept of erosive degree was presented and the erosive mathematical model of the contamination polluted soil-cement was built.
     Eighthly, the quantity equation of consumption of SO42- per volume was derived from the equation of SO42- erosive soil-cement.
     Nighthly, the modified coefficient of strength was proposed based on the strength testing date. And the statistic value of modified coefficient under different environmental conditions was obtained.
     Tenthly, according to the synchronous tested electrical resistivity in the unconfined compression strength test, using the ratio of effective current to the initial current during deformation to describe damage, the soil-cement damage model based on the current variation was built. This model with a simply form was no staged strain and unified all the strain range to a quartic polynomial equation independently with the types of cement and pollution.
     This study has a pronounced significance for understanding the erosive of sewage and industrial wastewater for the soil-cement composite foundation correctly, also gives a basis experiment date for the further research on the durability of soil-cement composite foundation. The application of the electrical resistivity method solvs the problem for the traditional method using in investigating erosive of contaminated soil and enlarges the application of electricity method using in the contaminated soil. This study also has a great practical significance and widely application prospects for the application of electrical resistivity method in the environment geotechnical engineering.
引文
[1]刘传正.环境工程地质学导论[M].北京地质出版社,1994.
    [2]罗国煜,储同庆.关于两类环境问题的研究[J].工程地质学报,1995(4):19~24.
    [3]覃祖森,曲永新.城市深基坑开挖的环境效应及其控制的初步研究[M].第三届全国环境工程地质学术研讨会论文集.兰州:甘肃民族出版社, 1995.
    [4]方晓阳.21世纪环境岩土工程展望[J].岩土工程学报,2000,22(1):1-11.
    [5]李相然,姚志祥.城市岩土地基工程地质[M].北京:中国建材工业出版社,106~107.
    [6] Fang H Y. Introduction to Environmental Geotechnology[J].CRC Press, Boca Raton, 1997, 668.
    [7]周健,刘文白,贾敏才.环境岩土工程[M].北京:人民交通出版社,2004 .
    [8]林宗元.环境岩土工程的兴起与展望[J].中国工程勘察,1993(4).
    [9]李相然,姚志祥.城市岩土地基工程地质[M].北京:中国建材工业出版社, 2002.
    [10]张在明.对于发展环境岩土工程的初步探讨[J].土木工程学报,2001,34(2):1-7.
    [11]王思敬.环境地质学的现状与发展方向展望[J].工程地质学报,1995,3(4):12~18.
    [12]陈云敏,施建勇.中国环境岩土工程的进展[M].重庆:重庆大学出版社,上册,2007: 114~129.
    [13]孙秀丽,孔宪京.垃圾土应力—应变关系的室内试验研究[M].重庆:重庆大学出版社,下册, 2007,709-713.
    [14]陈仁鹏,张延红.TDR技术在检测土体污染中的应用[M].重庆:重庆大学出版社,下册,2007:725-729.
    [15]王志萍,胡敏云,城市固体废弃物压缩特性的室内试验[M].重庆:重庆大学出版社,下册,2007: 745-750.
    [16]霍润科,姚志飞等.化学环境对岩石性质影响的研究与思考[M].重庆:重庆大学出版社,下册, 2007:759-763.
    [17]李国成,杨武超,但堂辉等垃圾填埋场及垫层孔隙水压力变化对其稳定性的影响[M].重庆:重庆大学出版社,下册,2007:782~785.
    [18]韩鹏举,白晓红,赵永强.硫酸对水泥土早期腐蚀的试验研究[M].重庆:重庆大学出版社,下册,2007:786~789.
    [19]戴树桂.环境化学进展[M].北京:化学工业出版社,2005.
    [20]罗国煜,陈新民,李晓昭.城市环境岩土工程[M].南京:南京大学出版社,2000.
    [21] GB 50046-2008工业建筑防腐蚀设计规范[S].北京:中国计划出版社,2008.
    [22]韩鹏举,白晓红.污染土的腐蚀作用机理[J].太原理工大学学报,2006增刊:253-255.
    [23]饶为国.污染土的机理、检测及整治[J].建筑技术开发,1999,26(1):20-21.
    [24]韩立华.电阻率法在评价和预测污染土中的应用研究[D].南京:东南大学,2006.
    [25]薛翊国,王清,李伟涛等.污染土的研究现状及其评价与处理方法[J].煤田地质与勘探,2005,33(1):49-51.
    [26] Ho Y. A., Pufahl D. E., Barbour S. L. Effects of brine contamination on volume change behavior of fine-grained soils, In, Materials from Theory to Practice,1989 Proceedings of the 42nd Canadian Geotechnical Conference, Winnipeg, Manit, Can,1989: 272~279.
    [27] Rajput V. S., Higgins A. J., Single M E, Cleaning of excavated soil contaminated with hazardous organic compounds by washing, In, Water Environ Res.Sept-Oct 1994 Water Environment Federation, Alexandria, VA, USA, 1994:819~827.
    [28]Piccoll, Stefano, Benoit. Geo-environmental testing using the Envirocone, In, Geotech Spec Publ n 46/1 1995 Proceeding of the Specialty Conference on Geotechnical Practice in Waste disposal. Part 1, New Orleans, LA, USA, 1995: 93~104.
    [29]邓承宗.硫酸对地基的腐蚀[J].勘察科学技术,1985,(6):38~41.
    [30]赵以忠,某厂强酸性废水对红粘土地基侵蚀性的模拟试验[J].勘察科学技术, 1988,(2):35~38.
    [31]傅世法,林颂恩.污染土的岩土工程问题[J].工程勘察,1989, (3): 14-16.
    [32]陈先华.柳州市红粘土变形与强度特征[J].桂林冶金地质学院学报,1993, 6(2) : 244~249.
    [33]蓝俊康.柳州市红粘土对Zn的吸附平衡实验[J].桂林工学院学报,1995,15(3) :265~ 267.
    [34]李琦,施斌,王有诚.造纸厂废碱液污染土的环境岩土工程研究[J].环境污染与防治,1997,19(5) :16~18.
    [35]刘全义.软土地区化学侵蚀地基沉降机理初步研究[J].工程勘察,1998, (5) : 8~10.
    [36]范青娟,马光锁.浸碱膨胀对地基土的影响与处理[J].轻金属,1999,(9) :58~62.
    [37]汤连生.水—土化学作用的力学效应及机理分析[J].中山大学学报(自然科学版),2000,39(4) :104~109.
    [38]汤连生.水—岩土化学作用的环境效应[J].中山大学学报(自然科学版),2001,40(5),:103~107.
    [39]路世豹,张建新.某硫酸库地基污染机理的探讨[J].岩土工程界,2003,6(5) :37~39.
    [40]李相然,姚志祥.济南典型地区地基土污染腐蚀性质变异研究[J].岩土力学,2004, 25(8) : 1229~1233.
    [41]朱春鹏,刘汉龙,沈扬.酸碱污染软黏土变形性质的三轴试验研究[J].岩土工程学报,2009,31(10):1559~1563
    [42] ACI Committee 230, State-of-Art Report on Soil Cement, ACI Materials Journal, 1990, 87(4), 395~408.
    [43] Casais T. J., Howard A.K., Performance of Soil-Cement Dam Facing: 20-Year Report, Report No. REC-ERC-84-25, U. S. Bureau of Reclamation, Denver, 1984.
    [44] Hansen K.D., Soil-Cement for Embankment Dams, In, Bulletin No.54, U.S. Committee on Large Dams, Denver, 1986.
    [45] Ness, Theodore R, Addition of Calcium Chloride Increases Strength of Soil- Cementbase, Public Works,1966,97(3):106~108.
    [46]曹名葆,徐至钧.水泥土搅拌法处理地基[M] .北京:机械工业出版社,2004,2:4~46.
    [47]李生林.中国膨胀土工程地质研究[M] .南京:江苏科技出版社,1992.
    [48] JGJ79-2002,建筑地基处理技术规范[S] .中国建筑工业出版社,2002.
    [49]童小东.水泥土添加剂及其损伤模型试验研究[D] .浙江:浙江大学, 1998.
    [50]崔江余.深层搅拌桩桩体材料力学性能分析[J].地基基础工程2001,11(4) :5~8.
    [51]高亚成.郑建青.水泥土的室内试验研究[J].河海大学学报,1999,27(5) :103~106.
    [52]李建,张松洪,刘宝举.水泥土力学性能试验研究[J].铁道建筑,2001(8) :31~33.
    [53]李帆,严国仙,丛林.水泥土工程特性的室内试验与分析[J].上海地质,2001(3) :24~27.
    [54]项翥行.建筑工程常用材料试验手册[M].北京,建筑工业出版社,1998.
    [55]李剑.若干水泥土外掺剂作用的试验研究[J].岩土工程师,2000,12 (1) :15~18.
    [56]肖林,王春义,郭汉生.建筑材料水泥土[M] .北京:水利电力出版社,1987,5.
    [57]张家柱,程钊.水泥土性能的试验研究[J].岩土工程技术,1999(3) :38~40.
    [58] Heathcote, K., Jankulovski E., Relationship between Moisture Content and Strength of Soilcrete Blocks, Building Research and Information, 1993, 21(2), 103~108.
    [59]陈家瑾.水泥土抗压试件尺寸表面约束对强度的影响[J].岩土力学,2004,25(1):132~136.
    [60]陈甦,彭建忠,韩静云等.水泥土强度的试件形状和尺寸效应试验研究[J].岩土工程学报, 2002,24(5) :580~583.
    [61]贾坚.室内水泥土抗拉强度的测试方法及若干讨论[J].上海地质,1999(2) :48~59.
    [62] Lotfi Hani, Witczak Matthew W, Dynamic Characterization of Cement-treated Base and Subbase Materials, Transportation Research Record, 1985: 41~48.
    [63]梁仁旺,张明,白晓红.水泥土的力学性能试验研究[J].岩土力学,2001,22(2) :211~213.
    [64]张军丽,刘保健.水泥黄土的力学特性试验研究.西安公路交通大学学报[J].1999,19(2): 6~9
    [65]刘松玉,钱国超,章定文.粉喷桩复合地基理论与工程应用[M].北京:中国建筑工业出版社,2006.
    [66] Niina A, Sato S, Baba R, MIyata K.Study on soil improved by DCM[R]. Technical Report of Takenaka Research Institute,1981,(26) :45~55.
    [67] Terashi M, Kitazume M. An investigation of long term strength of lime and cement treated marine caly[R]. Technical Note of Port and Harbour Research Institute, 1992,1~15 .
    [68] Kitazume M, Nakamura T, Terashi M, Ohishi K. Laboratory tests on long term strength of cement treated soil[C]. Proceeding of Grouting and Ground Treatment, 2003. [69 ]黄新,杨晓刚,胡同安.硫酸盐介质对水泥加固土强度的影响[J].工业建筑,1999, 19(4):19~23.
    [70]黄汉盛,鄢泰宁.软土深层搅拌桩的水泥土抗腐蚀性室内试验[J].地质科技情报2005,第26卷,增刊,85~88.
    [71]陈四利,冯夏庭,周辉.化学腐蚀下砂岩三轴压缩力学效应的试验[J].东北大学学报(自然科学版),2003,23(3):292~295.
    [72]陈四利,冯夏庭,李邵军.化学腐蚀对黄河小浪底砂岩力学特性的影响[J],岩土力学,2002, 23(3):284~287.
    [73]陈四利,宁宝宽.化学侵蚀下水泥土的无侧限抗压强度试验[J].新型建筑材料, 2006(6): 40~42.
    [74]宁宝宽,陈四利.环境侵蚀下水泥土的力学效应试验研究[J].岩土力学,2005,26(4):600~603.
    [75]宁宝宽,陈四利.环境侵蚀下水泥土力学特性的时间效应分析[J].水文地质工程地质, 2005,32(2):82~86.
    [76]宁宝宽,陈四利.水泥土的环境侵蚀效应与破裂过程分析[J].岩石力学与工程学报, 2005, 24(10):1778~1782.
    [77]宁宝宽.环境侵蚀下水泥土的损伤破裂试验及其本构模型[D].东北大学博士学位论文, 2005.
    [78]宁宝宽,陈四利.冻融和酸碱腐蚀对水泥土的效应研究[J].低温建筑技术,2005 (4): 17~19.
    [79]宁宝宽,刘斌。环境侵蚀对水泥土桩承载力影响的试验及分析[J].东北大学学报(自然科学版),2005,26(1),95~98.
    [80]焦志斌,刘汉龙.淤泥质酸性土水泥土强度试验研究[J].岩土力学,2005,第26卷,增刊:57~60.
    [81]储诚富,邵俐.有机质含量对水泥土强度影响的室内定量研究[J].岩土力学, 2006,27(9): 1613~1616.
    [82]储诚富,邵俐.含盐量对水泥土强度影响的室内试验研究[J].工程地质学报,2007, 15(1): 139~143.
    [83]白晓红,赵永强,韩鹏举等.污染环境对水泥土力学特性影响的试验研究[J].岩土工程学报,2007,29(8):1260-1263.
    [84]赵永强.污染对水泥土影响的力学试验及其损伤本构模型研究[D].太原理工大学博士学位论文,2008.
    [85] Sundberg, K. Effect of impregnation waters on electrical conductivity of soils and rocks. Tyans. AIME, 1932, 97: 367-391.
    [86] Archie, G.E.The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics[J]. Transactions of American Institute of Mining Engineers, 1942, 146: 54-62.
    [87] Mousseau, R, J., and Trump, R.P. Measurements of electrical anisotropy of clay-like materials[J]. Journal of Applied Physics, 1967, 38(11):4375-4379.
    [88] Arulanandan.K,and Kutter.B.A directional structure index related to sand liquefaction, Proc[J]. Specialty Conf.on Earthquake Engineering and Soil Dynamic,ASCE,Pasadena, California,1978: 213-230.
    [89] David Huntley. relations between permeability and electrical resistivity in granular aquifers, Ground Water, 1987, 24(4): 466-474.
    [90] Worthington, P.F., The uses and abuses of the Archie equations: 1.The formation factor–porosity relationship. Journal of Applied Geophysics, 1993, 30:215-228.
    [91] Waxman, M.H.and Smits, L.J.M., Electrical conductivity in oil-bearing shaly sands, Soc.Pet. Eng.J, 1968, 8:107-122.
    [92] Tumidajski and A.S.Schmnacher.et al., On the relationship between porosity and electrica resistive.ity in cementitions systems, Cement and concrete research, 1996, 26, (4): 539-544.
    [93] Pabitra N.Sen.et al., 1997, Formation factor of carbonate rocks with microporosity model calcula -tions, Journal of Petroleum Science and Engineering, 1997, 17:345-352.
    [94] M.Fukue, T.Minati, H.Horibe, N.Taya, The micro-structures of clay given by resistivity measurements, Engineering Geology, 1999, 54:43-53.
    [95]刘国华,王振宇,黄建平.土的电阻率特性及其工程应用研究[J].岩土工程学报,2004,26(1):83-87.
    [96]于小军,刘松玉.电阻率指标在膨胀土结构研究中的应用探讨[J].岩土工程学报,2004,26(3): 393-396.
    [97]董晓强,白晓红,赵永强等.硫酸侵蚀下水泥土的电阻率特性研究[J].岩土力学,2007,28(7):1453-1459
    [98] R.G.Campanella and I.Weemees, Development and use of an electrical resistivity cone for groun -dwater contamination studies, Can. Geology, J.VOL.27, 1990:557-567.
    [99] Salish Saner, M.namik Cagatayand Mahamadu Sumani, Electrical resistivity behavior of high salinity brine suspensions, Power technology, 1997, 93:275-282.
    [100] M.Fukue, T.Minati, M.Matsumoto, H.Horibe, N.Taya, Use of a resistivity cone for detecting contaminated soil layers, Engineering Geology ,60(2001):361-369.
    [101] A.J.Delaney, P.R.Peapples and Arcone, Electrical resistivity of frozen and petroleum contaminated fine-grained soil, Cold regiuon science technology, vol.32, 2001: 107-119.
    [102] G.L.Yoon and Jun BoumPark, Laboratory study of landfill leachate effect on resisvity in unsaturated soil using cone penetrometer, Engineering Geology ,43(2002):18-28.
    [103] R.K.Rowe, J.Q.Shang and Y.Xie, Effect of permeating solution on complex permittivity of compact clay, Can.Geotech, J.in press.
    [104] J.Q.Shang and R.K.Rowe, Detecting Leachate Contamination Using Soil Electrical Propertie Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2003, 1.7(1):3-11.
    [105]缪林昌,刘松玉,严明良等.水泥土的电阻率特性研究[J].工程勘查,2000 (5):32-34.
    [106]缪林昌,刘松玉,严明良.水泥土的电阻率特性及其工程特性研究[J].岩石力学与工程学报,2001,20(1):126-130.
    [107]缪林昌,刘松玉,严长虹.电阻率法在粉喷桩质量检测中的应用[J].建筑结构,2001,31(5): 63-65.
    [108]于小军,刘松玉.电阻率测试技术在水泥土深层搅拌法工程中的应用[J].岩土力学,2003,24(4):592~597.
    [109]于小军.电阻率结构模型理论的土力学应用研究[J].南京:东南大学,2004:20-24.
    [110]顾明芬,基于电阻率特性的水泥土损伤模型初步研究[D].南京,东南大学,2005.
    [111]魏小胜,肖莲珍,李宗津.采用电阻率法研究水泥水化过程[J].硅酸盐学报,2004,32(1):34-38.
    [112]魏小胜,肖莲珍,李宗津等,钢纤维水泥基材料的导电机理和水化特性[J].混凝土,2006,4:11~14.
    [113] X. Wei , and Z. Li ,Study on hydration of Portland cement with fly ash using electrical measurement, Materials and Structures 38 (April 2005) : 411-417.
    [114]郭秀军、武瑞锁、贾永刚.不同土壤中含油污水污染区的电性变化研究及污染区探测. [J].地球物理学进展,2005,20 (2).
    [115]韩立华,刘松玉,杜延军.一种检测污染土的新方法——电阻率法[J].岩土工程学报,2006,28(8): 1028-1032.
    [116]白兰,周仲华,张虎元,杨要许,郑龙等.污染土的电阻率特征分析[J].环境工程,2008,26(2): 66-69.
    [117]董晓强,白晓红,赵永强等.基于电阻率的硫酸污染水泥土检测方法的探讨[J].环境工程学报,2007,1(11):124-127.
    [118] Cai Guojun, Liu Songyu, Tong Liyuan, Du Guangyin,Assessment of direct CPT and CPTU methods for predicting the ultimate bearing capacity of single piles,Engineering Geology. 2009, 104(1): 211-222.
    [119]查甫生,刘松玉,杜延军等.基于电阻率的非饱和土基质吸力预测[J].岩土力学,2010,31(3):1003-1008.
    [1] JTG E40-2007,公路土工试验规程[S].北京:人民交通出版社,2007.
    [2] GB/T50123-1999,土工试验方法标准[S].北京:中国计划出版社,1999.
    [3]张晓璐.酸碱污染土的试验研究[D].南京:河海大学,2007.
    [4]汤连生.水—土化学作用的力学效应及机理分析[J].中山大学学报(自然科学版),2000,39(4): 104-109.
    [1]牛荻涛.混凝土结构耐久性评定标准编制.土建结构工程的安全性与耐久性[M] .北京,2001
    [2]张誉.结构耐久性研究的展望.现代土木工程的新发展[M].东面大学出版社,1998,88-96
    [3]马孝轩等.钢筋混凝土桩在沿海地区腐蚀规律试验研究[J].混凝土与水泥制品,2002
    [4]张春文.预应力混凝土管桩在腐蚀性地质中应用的探讨[J].建筑结构,2002,36(6)
    [5]牛全林,冯乃谦,张明辉.盐碱环境中混凝土路桥材料的耐久性问题[J].中国水泥,2004(1)
    [6]马保国,贺行洋,苏英等.内盐湖环境中混凝土硫酸盐侵蚀破坏研究[J].混凝土,2001(4)
    [7]宁宝宽,陈四利.水泥土的环境侵蚀效应与破裂过程分析[J].岩石力学与工程学报, 2005, 24(10):1778~1782
    [8]黄新,杨晓刚,胡同安.硫酸盐介质对水泥加固土强度的影响[J].工业建筑,1999, 19(4):19~23
    [9]焦志斌,刘汉龙.淤泥质酸性土水泥土强度试验研究[J].岩土力学,2005,第26卷,增刊,57~60
    [10]储诚富,邵俐.有机质含量对水泥土强度影响的室内定量研究[J].岩土力学,2006,27(9):1613~1616
    [11]李相然,姚志祥.城市岩土地基工程地质[M].北京:中国建材工业出版社, 2002
    [12]张在明.对于发展环境岩土工程的初步探讨[J].土木工程学报,2001,34(2):1-7
    [13]韩鹏举,白晓红.污染土的腐蚀作用机理[J].太原理工大学学报,2006增刊,253-255
    [14]赵永强.污染对水泥土影响的力学试验及其损伤本构模型研究[D].太原理工大学博士学位论文,2008
    [15]工业建筑防腐蚀设计规范(GB 50046-2008)[S],北京:中国计划出版社,2008
    [16]苏彤,成晓平.微观土样的制作、撕皮与镀膜[J].建材技术与应用,2001,3:37-38.
    [17]黄新,宁建国,郭晔,朱宝林.水泥含量对固化土结构形成的影响研究[J].岩土工程学报,2006,(4).
    [18]黄新,李战国,牛晨亮.利用工业废渣制备混凝土膨胀剂的初步研究[J].建筑材料学报,2009,(4).
    [19]李战国,赵永生,黄新.工业废渣制备软土地基固化剂设计方法探讨[J].北京航空航天大学学报,2009,(4).
    [20]宁建国,黄新.利用工业废渣配制水泥系软土固化剂探讨[J].工业建筑,2005,(S1).
    [21]刘松玉,钱国超,章定文.粉喷桩复合地基理论与工程应用[M].北京:中国建筑工业出版社,2006
    [22]徐瑛,陈友治,吴力立.建筑化学材料[M].北京:化学工业出版社,2005
    [23]张誉.混凝土结构耐久性概论[M].上海,上海科学技术出版社,2003
    [24]韩鹏举,白晓红,赵永强.硫酸对水泥土早期腐蚀的试验研究[C].重庆:重庆大学出版社,下册,2007,786-789
    [1]Rabotnov Y. N, On the equations of State for Creep, Progress in applied mechanics, 1963, 307~315
    [2]Lemaitre J. Evaluation of Dissipation and Damage in Metals Submitted to dynamic Loading, Proceedings of ICM - 1, Kyoto, 1971
    [3]Janson J., Hult J., Fracture Mechanics and damage Mechanics, a Combined Approach, J. de Mech. Appl., 1997, 1(1): 59~64
    [4]Lemaitre J. Application of Damage Concept s to Predict Creep - Fatigue failure, J. Eng. Mat. Tech, ASME, 1979, 101(1):202~209
    [5]Chaboche J. L. Continuum Damage Mechanics, Present State and Future Trends, Nucl. Eng. Design, 1987,105 (6): 19~33
    [6]Hult J., Introduction and Overview. In, Continuum Damage Mechanics: Theory and Applications. Wien -New York, Springer - Verlag, 1989
    [7]Leckie Constitutive equation for damaging platerials, J. Appl Mech 983(50):55~360
    [8]Krajicinovic D. Damage Mechanics, Mech. Mater., 1989, (8): 117~197
    [9] Kachanov L M, Time of rupture process under creep conditions, TVZ Akad Nauk, S.R.Otd, Tech. Nauk, 1982, 8
    [10] Rabotnov Y.N, Creep rupture, Proc.12th Int.Cong.Appl.Mech.IUTAM,1968
    [11] Lemaitre J, Evolution of dissipation and damage in metals,subitted to dynamic loading, Proc. I.C. M.1, Kyoto Japan, 1971
    [12] Broberg L, A new criterion for brittle creep rupture, J.Mech.Trans ASME Ser E1974,41,809
    [13]楼志文.损伤力学基础[M].西安:西安交通大学出版社,1990
    [14]任建喜,葛修润,杨更社.单轴压缩岩石损伤扩展细观机理CT实时试验[J].岩土力学, 2001, 22(2):130-13
    [15]杨更社.岩石损伤检测技术及其进展[J].长安大学学报:自然科学版,2003,23(6),47-55
    [16]王让甲.声波岩石分级和岩石动弹性力学参数的分析研究[M].北京:地质出版社, 1997,13-37
    [17] Tang Chunan, Xu Xiao he. Evolution and Propagation of Material Defects and Kaiser Effect Function[J].Journal of Seismological Research, 1990, 13(2):203-213
    [18]杨更社,张长庆.岩体损伤及检测[M].西安:陕西科学出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700