具有放电回路的镁合金微弧氧化脉冲电源研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微弧氧化是在阳极氧化工艺的基础上发展起来一种表面改性新技术,它利用微区电弧放电在金属表面生成陶瓷状氧化膜。本文根据微弧氧化处理过程中的工艺要求和现象,以自行研制的多功能脉冲微弧氧化电源为试验平台,通过对膜层生长过程的探讨了镁合金微弧氧化膜层形成机理,提出微区电弧放电模型;根据对系统负载特性的分析提出微弧氧化对电源的要求,并据此设计了一种新型的带放电回路的微弧氧化脉冲电源。
     研究表明,微弧氧化过程主要分为阳极氧化、微弧放电、大弧放电三个阶段。微弧氧化膜层是由一系列离散的微区电弧放电产生的金属氧化物累积形成,瞬间完成的微小区域内的电弧放电,使生成的氧化物经历骤热骤冷过程,从而可获得非平衡组织结构的金属氧化物膜层。微区电弧放电主要分为电解、放电、氧化、冷却等四个过程。其产生电弧放电的必要条件是:试样表面存在氧气气泡并承受强电场。微弧氧化成膜主要包括电解液、初始膜层、导电通道、高压电场及水的电解产生氧气等五个条件。
     通过对微弧氧化系统电压、电流信号的采集和分析发现负载阻抗随时间的增加是逐渐增加的,并用MATLAB拟合出在频率700、占空比20%时的系统阻抗与处理时间的关系式。研究发现,微弧氧化过程中负载特性可以用RC电路来简单等效,并求出了膜层厚度与工艺参数之间的对应公式。分别采用直流电压、单极性脉冲、双极性脉冲、带放电回路的电源形式分别进行微弧氧化实验,发现电源形式对镁合金微弧氧化过程起着关键性的作用。带放电回路的脉冲形式能极大抑制微弧氧化的大弧倾向,因此具有较好的处理效果。研究了恒定电压、电流下微弧氧化陶瓷膜的生长速率,发现在在恒流模式下膜层生长效率较高。探求脉冲作用时间与冷却时间之间的关系,发现在频率700Hz时两者的最佳配比是1:4。
     根据负载特性研究表明,阻性和容性是微弧氧化负载的主要特点,放电回路的引入能解决其电容性在微弧氧化过程中造成电弧持续燃烧的问题。据此设计了一种新型的带放电回路的微弧氧化脉冲电源。电源使用IGBT串联实现脉冲放电间隙放电回路、IGBT并联实现电源的大功率输出;控制系统以80C196KB单片机为核心,利用其高速输入口进行同步信号采集和高速输出口产生IGBT驱动信号;用数字PI调节方式获得恒流、恒压输出特性。研制的样机在运行中表现出良好的稳定性和可靠性。
Micro-Arc Oxidation is a new surface treatment technique,developed from anodic oxidation,which used micro-arc discharge in the metal oxide ceramic membrane.In this paper,we discuss mechanism of micro-discharge and model of micro-arc oxidation, which based on the test platform which build with self-developed high-power, multi-output of the pulse;the techniques requirement and phenomenon and the grown progress of ceramic membrane.Design a new typical power according as the requirement which bring forward based on system load characteristic.
     Study showed Micro-arc oxidation process can be divided into three stages,named: anodic oxidation,the spark discharge and the micro-arc oxidation stages.Ceramic layer was mainly components by metal oxide which formed by a series of micro-discharge.Non-balance metal oxide film can be made by discharge in small extent in the progress of fast hot and then fast cool.Micro-arc discharge can be divided into four stages,named:electrolyte,discharge,oxidation and cooling.The necessary condition of arc-discharge happening is exist of oxygen on the magnesium alloy surface and the oxygen endured definite electric field.Forming Micro-arc Oxidation film must have five conditions,it contains:electrolyte,initialization film,high-handed electric field and the oxygen produced by electrolyze water.
     According to collect and analyze signals of voltage and current.Found that:the increase of load impedance is gradually along with time.And then educe a curve of system impedance-deal time in the condition of frequency 700 and pulse duty 20%by MATLAB.Study showed that:The load characteristic of Micro-arc Oxidation can be replaced by RC circuit.And then educe a formula which between film thickness and techniques parameter.We can find that the typical of power have a key function in the progress of magnesium alloy Micro-arc Oxidation when we tried different power contain:direct current,AC pulse power,DC pulse power and discharge current pulse power.The discharge current pulse power has a good effect because it can abolish big arc effectually.Find that the film grown fast in the invariableness current modal when we study the film speed between invariableness voltage and invariableness current. The best match time between pulse action and cooling is 1:4 in the condition of pulse frequency 700Hz.
     The study of load characteristic showed that:the mostly characteristic are resistance and capacitance.The problem of arc persistence burning can be settled by importing the discharge current.According this we design a new typical power with discharge current.This power come true pulse discharge alternation with IGBT in series;come true output great power with IGBT parallel connection.The control system core is 80C196KB which high speed input gob can be used to collect in-phase signal and output high speed IGBT drive signal;invariableness voltage and invariableness current output characteristic can be obtained by figure PI adjusted.The sample power has a good characteristic of credibility in the circulating.
引文
[1]黄伯云.我国有色金属材料现状与发展战略.中国有色金属学报,2004,14
    [2]吴振宁,李培杰,刘树勋等.镁合金腐蚀问题研究现状.铸造,2001,50(10):583-586
    [3]B L Mordike,T Ebert Magneaium.Properties-applications-potential.Materials Science and Engineering,2001,(302):37-45
    [4]Gray J E,Luan B.Protective coatings on magnesium and its alloys-a critical review.Journal of Alloys and Compounds,2002,(336):88-113
    [5]Yerokhin A L,Nie X,Leyland A.Plasma electrolysis for surface engineering.Surface and Coatings Technology,1999,(122):73-93
    [6]Oscar K,Yahalom J.Constant Voltage Anodizing of Mg-Alalloys in KOH-Aluminate Solutions.Journal of Electrochem Soc,1998,145(1):190-193
    [7]张文华,胡正前,马晋.俄罗斯微弧氧化技术研究进展.轻合金加工技术,2004,32(1):25-29
    [8]Chigrinova S.R.Monison and T.Freund,J.Chem.Phys.47.1543(1967)
    [9]Chigrinova Rudnev V S,Vasil'eva MS,Lukiyanchuk IV.On the Surface Structure of Coatings Formed by Anodic Spark Method.Protection of Metal,2004,40(4):352-357
    [10]Nie,nTwite and Shimizu G P Wirtz,S.D.Brown and W.M.Kriven,Ceramic Coatings by Anodic Spark Depostition,Mater.&Manu,Proc,6(1):87-115
    [11]Aicai,Yongqing and Shaffei Yuhuulon J.Proc.Shmp.Oxie-Electrolyte Interfaces (Edited by Aluitt R.S.).The Journal Electrochem.Inc,1973
    [12]Gordienko and Rudnev Van T B etal.Am.Ceram.Soc.Bulletin,1977,56(6):563
    [13]Vlyssides Wirtz G P,Brown S D,Kriven W M.Ceramic coatings by anodic spark deposition.Materials and Manufacturing Processes,1991,6(1):87-115
    [14]Nie Haruto Fukuda,Yasumichi Matsumoto.Formation of Ti-Si composite oxide films on Mg-Al-Zn alloy by electrophoretic deposition and anodization.Electrochimica Acta 50(2005):5329-5333
    [15]Faramarz Y Han,S H Hong,K W Xu,Porous nanocrystalline titania films by plasma electrolytic oxidation,Surface and Coatings Technology,2002,154,(2-3):314-318
    [16]张英,孟保平,杨国英.镁合金表面微弧氧化法.轻合金加工技术,2004,32 (10):23-25
    [17]胡宗纯,谢发勤,吴向清.不同控制方式下占空比对钛合金微弧氧化膜的影响.电镀与环保,2006,26(5):23-25
    [18]段关文,李金富,王拥军,等.铝合金的微弧氧化研究.表面技术,2007,36(3):30-33
    [19]李颂.镁合金微弧氧化膜的制备、表征及其性能研究.吉林大学,2007
    [20]王立世,蔡启舟,魏伯康,等.国外镁合金微弧氧化研究状况.材料保护,2004,37(7):61-65
    [21]蒋百灵,李均明.铝、镁合金微弧氧化技术的研究现状及应用前景.第八次全国热处理大会论文集,2003
    [22]李瑛,余刚,刘跃龙,等.镁合金的表面处理及其发展趋势.表面技术,2003,(02)
    [23]马跃洲,陈海涛,等.镁合金微弧氧化过程中局部烧蚀现象的研究,表面技术,2008,(1)21-24
    [24]梁春林,刘宜汉,韩变华,等.镁合金表面处理研究现状及发展趋势.表面技术,2006,(06)
    [25]张勇,张虹,陈跃良,等.微弧氧化技术在航空领域的应用前景及存在的问题.材料保护,2008,41(9):43-45
    [26]旷亚非,许岩,李国希.铝及其合金材料表面处理研究进展,电镀与精饰,2000(1):16-19
    [27]张先锋,将百灵.能量参数对镁合金微弧氧化陶瓷层耐蚀性的影响,腐蚀科学与防护技术,2005,17(3):14-19
    [28]Changzhong Wang,Dong Zhang,Yongfeng Jiang.Growth process and wear resistance for ceramic coatings formed on Al-Cu-Mg alloy by micro-arc oxidation.Applied Surface Science(2006)
    [29]Fanya Jin,Paul K Chu,Guidong Xu,et al.Structure and mechanical properties of magnesium alloy treated by micro-arc discharge oxidation using direct current and high-frequency bipolar pulsing modes,Materials Science and Engineering A 435-436(2006):123-126
    [30]金凡亚,童洪辉.钛合金微弧氧化陶瓷膜微观特性的分析,材料保护,2005,38(8):30-31
    [31]郝建民,陈宏,张荣军,等.镁合金微弧氧化陶瓷层的耐蚀性.中国有色金属学报,2003,13(4):988-991
    [32]杨世彦,邓宇航,等.铝合金微弧氧化陶瓷膜过程中的特性研究.无机材料学报,2004,19(3):617-622
    [33]蒋百灵,张先锋,朱静.铝合金镁合金微弧氧化陶瓷层的形成机理及性能.西 安理工大学学报,2003,19(4):17-21
    [34]薛文彬,邓志威,来永春,等.镁合金微等离子体氧化膜的特性.材料科学与工艺,1997,5(2):89
    [35]蒋百灵,张淑芬,吴建国,等.镁合金微弧氧化陶瓷层显微缺陷与相组成及其耐蚀性,中国有色金属学报,2002,12(3):454
    [36]KrysmanW,Kurze P,Dittrich K H.Process Characteristics and Parameters of Oxidation by Spark Discharge(ANOF).Cryst Res Technology,1984,19(7):973-979
    [37]Xue W B,Deng Z W,Lai Y C.Analysis of phase distribution for ceramic coatings formed by Microarc Oxidation on Aluminum alloy.J Am Ceram Soc,1998,81(5):1365-1368.
    [38]杨世彦.微弧氧化电源及负载特性分析与匹配:哈尔滨工业大学,2005,35-39
    [39]龙北玉,吴汉华,王乃丹.单片机控制的微弧氧化电源.自动化技术与应用2004,23(12):55
    [40]冯欣荣,吴汉华,龙北玉.多功能微弧氧化电源的研制.仪表技术与传传感器,2004,9
    [41]叶振忠,孙梅等.晶闸管 CO_2 焊机的新型同步及触发电路.电焊机.2003.6
    [42]陈克选,祖立国,李春旭,等.微弧氧化电源 IGBT 驱动和保护研究.电焊机,2006,36(10):40-44
    [43]孙涵芳.Intel 16 位单片机[M].北京:北京航空航天大学出版社,1995
    [44]丁坤,邱华.单片机系统在全位置自动焊接中的应用(抗干扰方面).电焊机.2002.8
    [45]Rudnev V S,Vasil'eva M S,Lukiyanchuk I V.On the surface structure of coatings formed by anodic spark method.Protection of Metal,2004,40(4):352-357
    [46]田健,郭会军,王华民等.大功率 IGBT 瞬态保护研究.电力电子技术,2000,(4):29-30
    [47]Protiwa F F,Apeldoorn O,Groos N.New IGBT model for PSPICE.Power Electronics and Applications.France Fifth European Conference,1993
    [48]阎峰云,范松岩,强旭东等.AZ91D 镁合金微弧氧化工艺参数的研究.特种铸造及有色合金,2008年年会专刊:240-243
    [49]蒋莉,樊芷芸.等离子体及其应用.惠州大学学报,2000(4):53-60
    [50]雷红.等离子体技术及应用.琼州大学学报,2004(2):86-92
    [51]蒋百灵,张先锋,朱静.铝镁合金微弧氧化技术研究现状和产业化前景.金属热处理,2004(1):98-103
    [52]朱爱国,许雪艳,朱仁义.介质阻挡放电产生等离子体简介.巢湖学院学报, 2008(6):56-62
    [53]王振滨,曹广益,朱新坚.基于状态空间模型分解的分数阶系统辨识算法.系统工程与电子技术,2004(12):38-45
    [54]贺永胜,赵志龙,刘一洋.铝合金微弧氧化热力学机理及影响因素的分析.电镀与环保,2005(6):126-141
    [55]王乃丹,龙北玉,吴汉华.单极性脉冲电流密度对铝合金 MAO 膜相结构和微结构的影响.吉林大学学报(理学版).2005,34(5):645-649
    [56]王立世,蔡启舟,魏伯康.镁合金双脉冲微弧氧化表面膜层的形成及结构分析.特种铸造及有色合金,2005,25(3):187-190
    [57]吕宪义,金曾孙,吴汉华.阴/阳极电流密度对铝合金微弧氧化陶瓷膜特性的影响.吉林大学学报(理学版),2005,43(1):64-67
    [58]龙辉.可控硅的特性检测和典型应用.益阳职业技术学院学报,2006,3,52-54
    [59]钱金川,朱守敏.电力电子器件 IGBT 的应用与保护.电焊机,2008,38(3):42-47
    [60]金磐石,王永明.Intel 96 系列单片微机应用详解.北京:电子工业出版社.1992
    [61]孙稚,孙梅生,王磊.大功率 IGBT 驱动模块 2SD315A 的特性及其应用.电力电子技术,2002,36(6):73-75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700