稀土镁合金微弧氧化工艺及陶瓷层性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微弧氧化是在Al、Mg、Ti等金属或其合金表面原位生长一层陶瓷膜的技术,该膜与基体结合力强,耐磨损和耐腐蚀性能高,是一种极有发展前景的镁合金表面处理技术。本文采用微弧氧化法在Mg-4Gd-3Ymm-0.5Zr镁合金上制得一层均匀的浅灰色微弧氧化陶瓷层。膜层表面有类似“火山堆”的形貌放电微孔,且经微弧氧化处理过的镁合金耐蚀性能均显著提高。借助SEM观察了膜层表面和截面的形貌,采用能谱仪和XRD分析了膜层的成分和结构。结果表明:镁合金表面形成的较致密氧化膜层可分为三层,靠近基体致密层、多孔的疏松层和中间的过渡层,致密层与基体结合紧密。膜层主要由MgO组成。
     采用覆层测厚仪、SEM、XRD和电化学工作站等研究了不同工艺参数对Mg-4Gd-3Ymm-0.5Zr镁合金双脉冲微弧氧化处理膜的组织微观结构及耐腐蚀性能的影响。在硅酸盐电解液体系中采用单因素试验,分别研究了Na_2SiO_3、KOH、NaF和甘油在不同浓度下所制备的陶瓷膜的厚度和性能。结果表明:随着Na_2SiO_3、KOH、NaF和甘油浓度的变化,氧化膜的厚度、硬度及耐蚀性都表现出一定程度的变化规律,当Na_2SiO_3、KOH、NaF和甘油的浓度分别为6g/L,2g/L,2g/L和10ml/L时,氧化膜质量最佳。
     在此溶液体系的基础上,研究了正负向电压、频率、占空比和处理时间对膜层厚度、形貌和性能的影响,试验结果表明:随氧化处理时间的延长,膜层不断增厚,表面微孔数量减小,孔径增大,30min后膜层增长缓慢,粗糙度增大。硬度和耐蚀性先增后减。
     镁合金微弧氧化成膜效果中,正负电压对氧化膜微观结构及性能影响明显,随着正电压升高,膜层厚度增加,膜层表面微孔数量减少、孔径增大,烧结强度增加,裂纹增大,耐蚀性能先增强后降低,最佳正脉冲电压为450V。
     随负脉冲电压由0V增加到100V,膜层厚度先增加后小幅减小,再明显增加;膜层表面微孔由小变大再变小,数量变化则相反,负脉冲电压为40V时耐蚀性能最佳。脉冲频率和占空比对微弧氧化膜层厚度影响较小。
     随着频率的增加,膜层表面微孔数量增加,孔径减小;占空比增加,变化趋势则相反。随频率和占空比的增大,膜层耐蚀性总体趋势均为先增强后降低,最佳频率和占空比分别为600Hz,10%。
     综合以上各因素,最终确定了一套有关Mg-4Gd-3Ymm-0.5Zr镁合金微弧氧化最佳工艺参数,Na_2SiO_3 6g/L,KOH 2g/L,NaF 2g/L,甘油10ml/L,正脉冲电压450V,负脉冲电压40V,频率和占空比分别为600Hz,10%,氧化时间30min。
Micro-arc oxidation(MAO) is new type of surface treating technology that occurs at Al, Mg, Ti and their alloys, grows oxidation coating on original position of metal surface which can improve wear resistant, corrosion resistant and bonging strength.Therefore, MAO is one of the most prospective method of surface treatment for magnesium alloys. A gray oxidation ceramic film was prepaped by micro-arc oxidation on Mg-4Gd-3Ymm-0.5Zr magnesium alloy in the paper.The coating surface has many pores in the center of volcano-like heap, the microarc oxidation treatment obviously improved the corrosive resistance of Mg alloy. The coating surfaces and cross-sections morphology were characterized by scanning electron microscopy, phase composition and microstructure are studied by XRD and EDS analysis. The results show that there are three layers in oxidation coating, of which inner layer is dense, outer layer is loose and porous, transition layer between compact layer and porous layer in structure. The coating is mainly composed of MgO.
     The effect of different technical parameters on the microstructure and corrosion resistance of microarc oxidation film of Mg-4Gd-3Ymm-0.5Zr alloy treated by micro-arc technique was investigated by SEM, XRD, coating thickness gauge and electrochemical workstation etc. By one factor experiment in silicate system, thickness and properties of prepared coating of different electrolyte (include Na_2SiO_3, KOH, NaF and glycerol)content were studied.The results indicated coating thickness,hardness and corrosion resistance show certain orderwith electrolyte content. When Na_2SiO_3 6g/L, KOH 2g/L, NaF2g/L, glycerol 10ml/L, coating quality was optimize.
     Then on the foundation of silicate system, the effect of positive&negative pulse voltage, pulse frequency, duty cycle, treatment time on oxidation film thickness, morpholog and properties were studied.The experiment results show the coating thickness increased, fewer pores with larger diameters with the prolonging of MAO process, film thickness growth slowly and rougher. Hard- ness and corrosion resistance of the film increases first and thereafter decreases as oxidation time prolonging.
     The positive&negative pulse voltage greatly influences the microstructure and properties of micro-arc oxidation film in micro-arc oxidation for magnesium alloy. With the increasing of pulse positive, the film thickness increased, fewer pores with larger diameters, more strength sintering and larger crack were found on the film. corrosion resistance of the film increases first and thereafter decreases as positive pulse raise, The optimal positive pulse voltage was 450 V.
     The film thickness firstly increases and then decreases a little followed by a vital increasing when the negative pulse voltage varies from zero to 100V. The pores diameter of microarc oxidation film surface change from small to large and then small again, whereas the pore amount goes in the opposite way, and the best corrosion resistance of the film was achieved when negative pulse voltage was 40V.
     The duty cycle and frequency have little effect on growth thickness. More pores with smaller diameters and rougher surface were found on the film when the frequency increased while opposite changes occurred with the increase of duty cycle. Corrosion resistance of the film increases first and thereafter decreases as frequency and duty cycle raise gradually and the optimal conditions were 600Hz and 10%.
     In this paper through a lot of tests, studies about composition ,positive&negative pulse voltage,frequency, duty cycle and oxidation time on the Mg-4Gd-3Ymm-0.5Zr Mg alloy ceramic coating. The result of experiment shows , best technical parameters is : 6g/L Na_2SiO_3, 2g/L KOH, 2g/L NaF, 10ml/L glycerol, positive&negative pulse voltage 450&40V, frequency 600 Hz, duty cycle 10 %, oxidation time 30min.
引文
[1]翟春泉,曾小勤,丁文江,王渠东,吕宜振,徐小平.镁合金的开发与应用[J].机械工程材料, 2001,(01)55-57.
    [2]王小强,李全安,张兴渊.国内耐热铸造镁合金的研究进展[J].轻金属, 2007,(06)66-69.
    [3]陈振华,严红革,陈吉华等编著.镁合金[M].化学工业出版社,2004,北京.
    [4]刘冰.加强技术创新,为经济结构调整提供强大动力—论实施“镁合金开发应用及产业化”重大专项战略意义.材料热处理学报,2001,22(增刊):1
    [5]刘静安,盛春磊.镁及镁合金的应用及市场发展前景[J].有色金属加工,2007,36(2):1-6.
    [6] T. Beldjoudi, C. Fiaud, and L. Robbiola. Influence of homogenization and artificial ageing heat treatments on corrosion behaviour of Mg- A1 alloys[J]. Corrosion,1993, 49 (9):738-745.
    [7] Mitrovic-Scepanovic V Brigham R J. Localized corrosion initiation on magnesium alloy[J]. corrosion, 1992, 48(9):480-484.
    [8]王洁,丁毅.镁合金化学转化处理[J].材料保护,2006,39(7):39-41.
    [9]杨黎晖,李峻青.镁合金表面处理技术的研究进展[J].中国腐蚀与防护学报, 2008,28(5):316-320.
    [10] Dittrich K H,Krysmann W,Kuaze P,et al. Structure and properties of ANOF layers [J]. Crystal Resand Technol,1984,19(1): 93-99.
    [11]李海先,安茂忠.镁合金环保型阳极氧化工艺进展[J].电镀与环保,2008,2(1):4-8.
    [12]郭洪飞,安茂忠.镁及镁合金电镀与化学镀[J].电镀与环保,2004,24(2):1-5.
    [13]姚建华,苏宝蓉.金属表面激光处理技术及其工业应用[J].制造技术,2002,25(5):28-30.
    [14]王安安.在纯镁上激光熔覆镁铝合金层提高表面的耐蚀性[J].应用激光,1992,12(6): 244-248.
    [15]张宁,强颖怀.氮离子注入生物医用金属材料的表面性能研究[J].热加工工艺,2007, 36(4):52-57.
    [16] Yerokhin A L, Nie X, Leyland A et al. Plasma electrolysis for surface engineering[J]. Surface and Coatings Technology, 1999, 122:73-79.
    [17] NV Kukhtarev,VB Markov, SG Odulov Ferroelectrics .Holographic storage in electrooptic crystals,Steady state[J]. 1979.22(33), 949-960.
    [18]邓志威,薛文彬,汪新福,等.铝合金表面微弧氧化技术[J].材料保护,1996,29(2):15 -16.
    [19]王志刚,朱瑞富,吕宇鹏,等.钛、镁、铝合金的表面微弧氧化技术[J].陶瓷, 2007 (1),17-20.
    [20]张津,章宗和编著.镁合金及应用[M].北京:化学工业出版社,2004.
    [21]来永春,施修龄,华铭.铝合金表面等离子微弧氧化处理技术[J].电镀与涂饰2003,22(3):1-3.
    [22]陈显明,罗承萍,刘江文,李文芳.镁合金微弧氧化热力学和动力学分析[J].兵器材料科学与工程,2006,29(3):17-20.
    [23]赵晴,章志友,陈宁.终止电压对MB8镁合金微弧氧化膜耐蚀性的影响[J].表面技术.2007,36 (4):4-6.
    [24] Albella J M,Montero I,Martinnez-Duart J M.Electron injection and Advalanche during the Anodic Oxidation of Tantalum[J].J Electrochem soc,1984, 131(5): 1101 -1104.
    [25]姚美意,周邦新,王均安.电压对镁合金微弧氧化膜组织及耐蚀性的影响[J].材料保护, 2005, 38 (6):7-10.
    [26]邓姝皓,易丹青,龚竹青等.镁合金微弧氧化膜的制备工艺研究[J].材料科学与工艺, 2007, 15(1):22-15.
    [27]陈显明,罗承萍,刘江文等.镁合金微弧氧化膜层形成过程探讨[J].中国表面工程,2006,19 (5):14-21.
    [28] Jun Liang, Litian Hu , Jingcheng Hao , Improvement of corrosion properties of microarc oxidation coating on magnesium alloy by optimizing current density parameters[J]. Applied Surface Science,253 (2007) :6939-6945.
    [29]徐桂东,沈丽如,李炯.电流密度对镁合金微弧氧化膜层性能的影响[J].热加工工艺,2006,35(12): 4-6.
    [30]王燕华,王佳,张际标.电流密度对AZ91D镁合金微弧氧化膜性能的影响[J].中国腐蚀与防护学报, 2005,25(6):332-335.
    [31]张先锋,蒋百灵.能量参数对镁合金微弧氧化陶瓷层耐蚀性的影响[J].腐蚀科学与防护技术, 17(3):141-143.
    [32] Guo-Hua Lv, Huan Chen, Wei-Chao Gu, Li Li, Er-Wu Niu,Xian-Hui Zhang, Si-Ze Yang. Effects of current frequency on the structural characteristics and corrosion property of ceramic coatings formed on magnesium alloy by PEO technology. journal of materials processing technology [J], 2008.
    [33]刘全心.电参数对镁合金微弧氧化膜层的显微结构和耐蚀性能的影响[D].华中科技大学硕士学位论文,2005.
    [34]惠记庄.不同电参数条件下铝-镁合金微弧氧化陶瓷研究.长安大学硕士学位论文[D],2006.
    [35]王立世,蔡启舟,魏伯康,刘全心.硅酸盐和磷酸盐电解液中AZ91D镁合金微弧氧化的成膜特性[J].金属热处理,2005,30(4):17-20.
    [36] Jun Liang , Litian Hu , Jingcheng Hao ,Characterization of microarc oxidation coatings formed on AM60B magnesium alloy in silicate and phosphate electrolyte [J].Applied Surface Science ,253 (2007) :4490-4496.
    [37]章志友,赵晴,刘月娥.不同体系中镁合金微弧氧化膜层的耐蚀性研究[J].材料保护,2008,41(5): 19-22.
    [38]蒋百灵,张先锋.不同电导率溶液中镁合金微弧氧化陶瓷层的生长规律及耐蚀性[J].稀有金属材料与工程,2005,34 (3):393-396.
    [39]郭洪飞,安茂忠,霍慧彬,等.电解液组成对AZ91D镁合金微弧氧化的影响[J].材料科学与工艺, 2006,14 (2):116-119.
    [40]梁军,郭宝刚,田军,等.氢氧化钾对镁合金微弧氧化的影响[J].电镀与涂饰,2005, 38(4):6-8.
    [41]郭洪飞,安茂忠,霍慧彬,徐莘.工艺条件对镁合金微弧氧化的影响[J].材料科学与工艺,2006, 14 (6):616-621.
    [42] DING Jun, LIANG Jun, HU Li-tian ,HAO Jing-cheng ,XUE Qun-ji. Effects of sodium tungstate on characteristics of microarc oxidation coatings formed on magnesium alloy in silicate-KOH electrolyte[J]. Trans.Nonferrous Met.SOC. China 17(2007) :244-249.
    [43]王萍,李建平,马群. Mg-9Gd-3Y-0. 6Zn-0.5Zr镁合金微弧氧化配方的优化.特种铸造及有色合金[J],2008, 28(7):502-504.
    [44] Jun Liang, Baogang Guo, Jun Tian, Huiwen Liu, Jinfang Zhou, Tao Xu. Effect of potassium fluoride in electrolytic solution on the structure and properties of microarc oxidation coatings on magnesium alloy[J]. Applied Surface Science, 252 (2005):345-351.
    [45]阎峰云,范松岩,强旭东,张文群. AZ91D镁合金微弧氧化工艺参数的研究[J].特种铸造及有色合金2008年年会专刊:240-242.
    [46]马跃洲,马凤杰,陈明,陈海涛.电解液温度对镁合金微弧氧化成膜过程的影响[J].兰州理工大学校报,2008,34(3):25-27.
    [47] Tran Bao Van,Brun S D Write G P Anodil Spork reation products in aluminate, tungstate and silicate[J],Bulletions Americasocity,1997,56(6):563-565.
    [48]孔庆山.微弧氧化技术的发展[J].材料工程1996,13(4):110-114.
    [49] Vijh A.K,Sparking Voltagts and Side Reactions During Anodization of Valve Metals in Terms of ElectronTunnelling[J].Sci.1971(11):411-417.
    [50] Yahalo J,Proc.Shmp. Oxie-Electrolyte Interfaces[J].TheJournal Electrochem. Inc, 1973.
    [51] Van T.B.etal,Machanism of Anodic Spark Deposition Am.Ceram [J].Soc. Bulletin. 1977,56(6): 563-566.
    [52] Ikonopisov S.Theory of Electrical Breakdown During Formation of barrier Anodic Films[J]. Electrochem.Soc.1977,135(11):2685-2700.
    [53] Albella J.Metal,Electron infection and avalanche during the anoxic oxidation of tantalum. [J].Electrochem.Soc.1984,131:1101-1105.
    [54]薛文彬,邓志威.铝合金微弧氧化陶瓷膜的形成及特性[J].电镀与精饰,1996,(9):3-6.
    [55] Kurzs P,Krysmann W et al.Process Characteristics and Parameters of Anodic Oxidation by Spark Discharage (ANOF) [J].Crystal res & Technol,1984,19(7): 973-979.
    [56] Dittrich K.H et al.Structure and poperties of ANOF Layers[J]. Crystal res & Technol,1984,19 (1):93-99.
    [57] Kurzs P,Krysmann W et al.Process Characteristics and Parameters of Anodic Oxidation by Spark Discharage (ANOF) [J].Crystal res & Technol,1984,19 (7): 973-979.
    [58] Nikolacv AV etal.Peshchevitskii B I.A New Phenomenon Eletrolysis[J].Izv Sib Otd Akad Nauk SSSR,Ser Khim.1977,34(5):32-35.
    [59] M. Boinet, S. Verdier, S. Maximovitch, F. Dalard. Plasma electrolytic oxidation of AM60 magnesium alloy: Monitoring by acoustic emission technique[J]. Electro- chemical properties of coatings. Surface & Coatings Technology,199 (2005) : 141-149.
    [60]章志友,赵晴,刘月娥.不同体系中镁合金微弧氧化膜层的耐蚀性研究[J].材料保护, 2008, 41(5): 19-22.
    [61] S. Verdier , M. Boinet, S. Maximovitch, F. Dalard. Formation, structure and composition of anodic films on AM60 magnesium alloy obtained by DC plasma anodising[J]. Corrosion Science ,47 (2005) :1429-1444.
    [62]刘亚萍,段良辉,潘俊德,等.镁合金微弧氧化陶瓷膜的微观结构、相成分和耐腐蚀性能[J].2006,39(2):49-51.
    [63] Fei Chen, Hai Zhou, Bin Yao, Zhen Qin, Qingfeng Zhang. Corrosion resistanceproperty of the ceramic coating obtained through microarc oxidation on the AZ31 magnesium alloy surfaces [J]. Surface & Coatings Technology ,201 (2007): 4905-4908.
    [64] Jun Liang, Baogang Guo, Jun Tian, Huiwen Liu, Jinfang Zhou, Weimin Liu, Tao Xu. Effects of NaAlO2 on structure and corrosion resistance of microarc oxidation coatings formed on AM60B magnesium alloy in phosphate–KOH electrolyte[J]. Surface & Coatings Technology, 199 (2005): 121-126.
    [65] Jiang zhaohua, Zeng xiaobin, and Yao zhongping. Preparation of micro-arc oxidation coatings on magnesiumalloy and its thermal shock resistance property[J]. rare metal. 2006, 25(3): 270-273.
    [66] Hongfei Guo , Maozhong An, Shen Xu, Huibin Huo. Microarc oxidation of corrosion resistant ceramic coating on a magnesium alloy[J]. Materials Letters,60 (2006):1538-1541.
    [67]何宏辉,曾庆圣,王天石,等.镁合金等离子体微弧氧化过程负电压调控的研究[J].材料热处理学报,2006,27(2):118~121.
    [68]杨巍,蒋百灵,鲜林云.溶质离子在镁合金微弧氧化膜形成过程中的作用[J].材料热处理学报,2009,30(1),157~160.
    [69] Qizhou Cai, Lishi Wang, Bokang Wei, Quanxin Liu. Electrochemical performance of microarc oxidation films formed onAZ91D magnesium alloy in silicate and phosphate electrolytes [J]. Surface & Coatings Technology, 200 (2006) :3727-3733.
    [70]骆海贺蔡启舟魏伯康.AZ91D镁合金微弧氧化工艺参数的优化[J].特征铸造及有色合金,2007,27(7):554-557.
    [71]郭洪飞,安茂忠,徐莘等.镁合金微弧氧化工艺条件对陶瓷膜耐蚀性的影响[J].材料工程, 2006,3:29-36.
    [72]阎峰云,范松岩,强旭东,张文群. AZ91D镁合金微弧氧化工艺参数的研究[J].特种铸造及有色合金2008年年会专刊:240-242.
    [73]王立世,蔡启舟,魏伯康,刘全心.硅酸盐和磷酸盐电解液中AZ91D镁合金微弧氧化的成膜特性[J].金属热处理,2005,30(4):17-20.
    [74]梁军,郭宝刚,田军,等.氢氧化钾对镁合金微弧氧化的影响[J].材料保护,2005,38(4):6-8.
    [75] Jun Liang, Baogang Guo, Jun Tian, Huiwen Liu, Jinfang Zhou, Weimin Liu, Tao Xu. Effects of NaAlO2 on structure and corrosion resistance of microarc oxidation coatings formed on AM60B magnesium alloy in phosphate–KOH electrolyte[J].Surface & Coatings Technology, 199 (2005): 121-126.
    [76]梁军,郭宝刚,田军,等.AM60B镁合金微弧氧化膜层的结构与性能研究[J].材料化学与工艺,2007,15(3):309-312.
    [77] Alex J Z, Duane E B. Anodized Coatings forMagnesium Alloys [J]. Metal Finish- ing, 1994, 92 (3) : 39-44.
    [78]乌迪,刘向东,吕凯.负向电压与氧化时间对AZ91D微弧氧化膜层形成特性的影响[J].特种铸造及有色合金,2008,28(7):564-566.
    [79]何宏辉,曾庆圣,王天石,等.镁合金等离子体微弧氧化过程负电压调控的研究[J].材料热处理学报,2006,27(2):118-121.
    [80]赵晴,杜楠,丽娜.电参数对压铸镁合金微弧氧化的影响[J].材料保护,2007,40(8): 6-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700