高功率大模场光纤的光传输放大特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了克服非线性效应、光学损伤等物理因素对光纤激光功率扩展带来的限制,目前普遍采用大模场光纤来突破这些限制。但随着光纤芯径的增大,又会激发高阶模造成激光光束质量的下降,且横向模式也会影响小宽带脉冲的光谱和时间波形,因此获得高功率、高光束质量的保真脉冲输出是大模场光纤激光系统的关键技术。
     本论文围绕大模场光纤的横向模式特性对小宽带脉冲的时谱特性及输出的近场分布影响展开理论和实验研究。首次论证了横向模式干涉效应对相位调制脉冲幅频效应的影响,研究了小宽带脉冲及模场的传输放大特性。以此为依据,设计了mJ级近基模输出的全光纤放大系统。
     首先,研究了大模场无源光纤中模场分布的解析及数值求解方法,基于这种理论模型得出了有源光纤在增益小于100dB/m的情况时模场分布可以近似为无源光纤的本征模场分布,基于模场传输及分布特性建立了横向模式干涉的理论模型。
     首次研究了大模场光纤放大器中模间干涉效应对近场分布及对相位调制脉冲时谱特性的影响。在大模场光纤放大器的输出端面,不同波长对应模式间的相位差不同且高阶模式在不同端面位置处的偏振不同,多个模式干涉后造成光纤端面不同位置处的光谱传递函数不同,使得光纤输出的相位调制脉冲具有时空分布特性,由于模式正交性,光纤整个端面输出的脉冲调制度的统计结果为零。首次分析了甚多模模间干涉效应对相位调制脉冲时谱特性的影响,得出模式数量越多,光谱传递函数的调制周期越小,对相位调制脉冲的幅频效应影响越大。这种结果对实验测量具有有益的指导作用,对小宽带保真传输放大的全光纤系统的设计提出了更高的模式控制的要求。
     结合速率方程和Ginzburg-Landau方程,分析了宽带脉冲放大过程中的时谱特性的变化情况,得出造成脉冲畸变的主要因素为增益饱和效应,这可以通过脉冲预整形或采用高斯脉冲有效抑制,而其增益不均匀性对相位调制脉冲幅频效应影响不是很大,约为3%。理论计算结果显示信号光的功率放大到数MW的高功率后,高功率激光会造成模场畸变和自聚焦特性,且高阶模并不能提高光纤的自聚焦阈值。
     针对阶跃大模场光纤的模式控制技术,理论分析和数值计算结果得出增益滤模是一简单有效且减小小宽带脉冲畸变的模式控制方法,配合模场适配器使用,可以有效避免高阶模的激发及模间干涉效应,减少损耗。对于弯曲选模,根据模式匹配原理提出了一种新型锥形绕纤器。
     最后,基于本论文的理论与实验结果,设计了mJ级近基模输出的全光纤放大系统,并进行了初步的实验验证。
In order to overcome the limitations of nonlinear effects, the optical damage and other physical factors that restrict the power expansion of the fiber lasers, the large-mode-area (LMA) fibers is considered as an effective way to breakthrough these restrictions. However, with the fiber core diameter's increasing, the higher order modes will be excited, and the laser beam quality will be degraded. Meanwhile, they will have an impact on the spectrum and the shape of the broadband pulse. So how to gain high power, high beam quality and high signal noise rate pulse is the key technology of LMA fibers laser system.
     In this thesis, the impact of transverse modes of the LMA fiber on the near field and the temporal, spectral characteristics of the broadband pulse was studied in theoretical and experimental. The impact of intermodal interference on the FM-AM effects of the phase modulated pulse in the broadband LMA fiber laser was first advanced. We studied the amplification and transmission characteristics of the broadband singal pulse and the transverse modes of the LMA fiber. On this basis, mJ-level quasi-fundamental mode all fiber amplifier system was predicted.
     We studied the analytical solution and the numerical method of the mode field expressions for the LMA passive fibers. Based on these theoretical models, we derived the mode field expressions are approximated as the eigenmodes of the passive fibers if the gain is lower than 100dB/m for the active fibers. We also derived the theoretical model of the intermodal interference based on the transmission and distribution characteristics of the mode field.
     The numerical simulation results show that the spectrum transfer functions are different at different positions of the LMA fiber end face owing to the intermodal interference, so there are temporal-special distribution characteristics for the output broadband pulses. We attain the similar results in the experiment when measuring the output pulse with the single mode fiber (SMF) sampling oscilloscope. Whereas there is no amplitude modulation for the output pulse when measured by the bulk detector owing to the orthogonal characteristic of the eigenmodes. For the super LMA fibers, we studied the impact of much more intermodal interference on the phase modulated pulse, and we learned that the more modes there are in the fibers, the more speckle there are for the near field, the less the modulated period of the spectrum transfer functions is, the more complex the pulse shape is. These results are of benefit to the experimental measurement, and they propose more strictly requirements of mode control for the design of all fiber amplifier system with broadband pulse shape fidelity.
     The pulse shape and the spectrum frame of the phase modulated pulse in the process of amplification were studied based on the rate equations and Ginzburg-Landau equation. Gain saturation is the main factor which lead to pulse distortion, and it can be suppressed by pre-shaping or adopting Gaussian pulse. Whereas, the amplitude modulation depth induced by non-uniform gain is not large, about 3% in the process of amplification. The numerical simulation results show that the mode distortion and self-focusing event will occur when the power of eigenmodes is scaled to several MW, and the self-focusing limit could not be improved by the higher order modes.
     Gain filtering is a method, simple, robust and reducing pulse distortion, to suppress higher order modes in the LMA fibers for broadband pulse. Gain filtering together with mode field adapters between the two modal mismatch fibers can also suppress intermodal interference and reduce splicing loss. We designed a new cone-shaped coiling device for the coiling finer based on the modes matching.
     Finally, we designed an mJ-level quasi-fundamental mode all fiber amplifier system based on the theoretical and experimental results of the thesis and validated it with the primary experimental results.
引文
1 郭星渠著,核能:20世纪后的主要能源,北京,原子能出版社(1987)
    2 刘锡三著,强流离子束及其应用,北京,国防工业出版社(2007)
    3 石秉仁著,磁约束聚变原理与实践,北京,原子能出版社(1999)
    4 王淦昌,王淦昌全集第四卷:惯性约束核聚变,石家庄,河北教育出版社(2004)
    5 W.H.Lowdermilk, "Status of the National Ignition Facility",《Conference on Solid State Lasers for Inertial Confinmnet Fusion》 Paris, France Oct.22-25,1996
    6 B. G. Logan and M. T. Tobin. Inertial Fusion Energy, pp.33-42,1994
    7 郑志坚.ICF基本概念[M].(内部资料),1990
    8 M.Tobak, J.Hammer, P.Glinsky, et al. "Ignition and high gain with ultrapowerful lasers." [J]. Phys. Plasma,1994,1:264.
    9 Betti R, Zhou C D, Anderson K S, et al. [J].Physical Review Letters,2007,98(15):155001.
    10 G. S. Fraley, et al., "Thermonuclear burn characteristics of compressed deuterium-tritium microspheres." [J]. Physics of Fluids,1974,17:474-489.
    11 S. Skupsky, R. S. Craxton, "Irradiation uniformity for high-compression laser-fusion experiments," [J]. Phys. Plasmas,1999,6(5):2157-2163.
    12 J. E. Rothenberg, J. M. Auerbach, B. D. Moran, et al, "Implementation of smoothing by spectral dispersion on beamlet and NIF." [R].1998, UCRL-JC-129771.
    13 E. Storm, et al., Progress in laboratory high gain ICF (Inertial Confinement Fusion):Prospects for the future,1988.
    14 J. T. Huni, K. R. Manes, J. R. Murray, et al, "Laser design basis for the national ignition facility". [J]. FusionTechnology,1994,26:161-771.
    15 H. S. Peng, X. M. Zhang, X. F. Xiao, et al, "Status of the SG-Ⅲ solid state laser project", SPIE,1992, 3492:25-33.
    16 D. M. Pennington, M.D.Perry, "The Petawatt Laser System", LLNL Laser Program Quarterly Report, UCRL-JC-124492,1997.
    17 M. D. Perry, B. C. Stuart, D. Pennington, et al, "The production of Petawatt laser pulses", LLNL Laser Program Quarterly Report, UCRL-JC-129760,1998.
    18 M. Aoyama, K. Yamakawa, Y. Akahane, et al, "0.85-PW,33-fs Ti:sapphire laser", Opt. Lett.2003,28 (17):1594-1596.
    19黄小军,彭翰生,魏晓峰等,“100TW级超短超强钛宝石激光装置”,强激光与粒子束,2005,17(11):1685-1688.
    20张小民,“宽带高功率激光系统总体与关键技术研究,”博士论文,光学,上海:复旦大学,2006.
    21 T. J. Gilrnartin, R. O. Godwin, NOVA (CP&D Final Report, Laser Fusion Program), LLNL, LLL-MISC-111,1978.
    22 C Cavailler, "Inertial fusion with the LMJ", Plasma Phys.Control.Fusion,2005,47:B389-B403.
    23 Claude Cavailler, Noel Fleurot, Jean-Michel Di-Nicola, LIL and LMJ laser facility status, Proc. SPIE, 2005,5580:443-454.
    24 T. Yamanaka, H. Azechi, Y. Fujimoto, "Progress in Direct-Drive Laser Fusion Using GEKKO-Ⅻ/PW Facility",19th Fusion Energy Conference,2002, IAEA-CN-94.
    25 N. Fleurot, M. Andre, P. Estraillier, et al., "Output Pulse and Energy Capabilities of the PHEBUS Laser Facility", Proc. SPIE,1991,1502:230-241.
    26 I. N. Ross, M. S. White, J. E. Boon, et al., "Vulcan-A Versatile High-Power Glass Laser for Multiuser Experiments", IEEE Journal of Quantum Electronics,1981,17(9):1653-1661.
    27 OMEGA System Operations Manual Volume Ⅰ-System Description, S-AA-M-12,2003.
    28 S.G. Garanin, "Russian megajoule laser facility Iskra-6. Creation, investigation and parameter optimization of basic module Luch", Proc. SPIE,2006,5975:59750D.
    29 H. S. Peng, X. M. Zhang, X. F. Wei, et al., "Overview of the solid state laser projects for ICF applications at CAEP", Proc. SPIE,1998,3683:120-127.
    30 Y. Kato, K. Mima, N. Miyanaga, et al, "Random phasing of high power lasers for uniform target acceleration and plasma instability suppression", Phys. Rev. Lett.1984,53(11):1057-1060.
    31 J. Neauport, X. Ribeyre, J. Daurios, et al, "Design and optical characterization of a large continuous phase plate for laser integration line and laser Megajoule facilities", Appl. Opt.2003,42(13): 2377-2382.
    32 S. Skupsky, R. W. Short, T, Kessler, R. S. Craxton, et al, "Improved laser-beam uniformity using the angular dispersion of frequency-modulated light", J. Appl. Phys.1989,66(8):3456-3462.
    33 Tsubakimoto K, Nakatsuka M, Nakano H, et al, "Suppression of interference speckles produced by a random phase plate, using a polarization control plate", Opt. Commun.1992,91(1-2):9-12.
    34 G. A. Mourou, et al., "The Road to High Peak Power and High Average Power Lasers: Coherent-Amplification-Network (CAN)," Varenna (Italy),2006,152-163.
    35 G. A. Mourou, et al., "New amplifying laser concept for Inertial Fusion Driver," in The fifth Inertial Fusion Sciences and Applications,2007,1-4.
    36 C. Labaune, et al., "On the feasibility of a fiber-based inertial fusion laser driver," Optics Communications,2008,281:4075-4080.
    37 P.Sprangle, A. Ting, J. Penano, et al. "Incoherent combining of high power fiber lasers for directed energy applications" [C].2008, Solid State and Diode Laser Technology Review.
    38 A. Desfarges-Berthelemot, V. Kermene, D. Sabourdy, et al. "Coherent combining of fiber lasers" [J]. C. R. Physique,2006,7:244-253.
    39 Optics.org. IPG tests first 10 kW singlemode production laser.2009, Available: http://optics.org/cws/article/newsfeed/39511.
    40 M.-Y. Cheng, et al., "High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200um core highly multimode Yb-doped fiber amplifiers," Optics Letters,2005,30: 358-360.
    41 D. R. Speck, E. S. Bliss, J. A. Glaze, "The SHIVA laser fusion facility", IEEE J. Quantum Electron., 1981,17(9):1599-1619.
    42 R. B. Wilcox, "Photoconductive Switch Pulse Shaping for The NOVA Master Oscillator", Laser and Particle Beams,1986,1:141-143.
    43 Jay W. Dawson, Zhi Liao, Scott Mitchell, et al., "Fiber laser front ends for high-energy short pulse lasers", Proc. SPIE,2005,5709:37-44.
    44 M. J. Messerly, "High Average Power, High Energy Short Pulse Fiber Laser System",2007, UCRL-TR-236790.
    45林宏奂,王建军,隋展,“用于激光聚变驱动器的全光纤、全固化光脉冲产生系统”,物理学报,2008,57(3):1771-1777.
    46林宏奂,干建军,党钊,“全光纤多种子激光脉冲产生系统”,物理学报,59,2,1130-1136,2010.
    47 C.A.Hayman, P.J.Wegner, J.M.Auerbach, et al. "National ignition facility laser performance status" [J]. Applied Optics.2007,46(16):3276-3303.
    48 Alain Jolly, J. F. Gleyze, J. Luce, et al.,"Front-end sources of the LIL-LMJ fusion lasers:progress report and prospects," Opt. Eng.,2003,42 (5):1427-1438.
    49 D. Penninckx and N. Beck, "On the definition, meaning and measurement of polarization extinction ratio of fiber-based devices," Applied Optics 2005,34(36):7773-7779.
    50 M. Monnerie, "Polarization-maintaining single-mode fiber cables:Influence of joins," Applied Optics 1981,20(14):2400-2406.
    51 Wang Jianjun, Xu Dangpeng, Li Mingzhong, et al., "Optical pulse generation system based on OTDM technique for SG-Ⅲ laser facility", Proc. SPIE,2010,7795:77950G.
    52 J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-maintaining fibers and their applications," J. Lightw. Technol.,1986,4(8):1071-1089.
    53 A. Jolly, J. F. Gleyze, D. Penninckx, N. Beck, L. Videau, and H. Coic, "Fiber lasers integration for LMJ," C. R. Phys.2006,7(2):198-212.
    54 J. A. Alvarez-Chavez, A.B. Grudinin, J. Nilsson, P.W.Turner, W.A. Clarkson, Mode selection in high power cladding pumped fibre lasers with tapered section, CLEO,1999,99:247-248.
    55 U. Griebner, H. Schonnagel. Laser operation withnearly diffraction-limited output from a YbYAG multimode channel waveguide, Opt. Lett.,1999,24(11):750-752.
    56 V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker. "110 w fibre laser'. Electron. Lett.,1999,35(14):1158-1160.
    57 Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson. "Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power "110 w fibre laser". Electron. Lett.,2004,40(8):470-471.
    58 J.Limpert, S.Hofer, A, Lime, et. al. "100-w average-power, high-energy nanosecond fiber amplifier" Appl.Phys.B 2002,75:477-479.
    59 O. Schmidt, J. Rothhardt, F. Roser, et. al. "Millijoule pulse energy Q-swithed short-length fiber laser" Opt. Lett.,2007,32:1551-1553.
    60 J. E. Rothenberg, D. F. Browning, and R. B. Wilcox, "Issue of FM to AM conversion on the National Ignition Facility," Proc. SPIE,1999,3492:51-61.
    61 Denis Penninckx, Nicolas Beck, Jean-Francois Gleyze, and Laurent Videau, "Signal Propagation Over Polarization-Maintaining Fibers:Problem and Solutions,"Journal of Lightwave Technology,2006, 24(11):4197-4207.
    62 Denis Penninckx, Nicolas Beck, "Axis Alternation for Signal Propagation Over Polarization-Maintaining Fibers," IEEE Photonics Technology Letters,2006,18(7):856-858.
    63 Huang Xiaodong, Zhang Xiaomin, et. al., "The effect of dispertion on FM-AM convertion in high power laser front end,"Acta Physica Sinica,2010,59(3):1857-1862.
    64 Huang Xiaodong, Wang Jianjun, Li Mingzhong, et. al., "FM-AM convertion induced by polarization mode dispersion in Fiber System," Chinese Physics Letters,2010,27(10):104211.
    65 Z.Jiang, J.R.Marciante, "Impact of transvers spatial-hole burning on beam quality in large-mode-area Yb-doped fibers", J. Opt.Soc.Am. B,2008,25(2):247-254.
    66廖延彪,光纤光学.2003,北京:清华大学出版社.
    67吴重庆,光波导理论.2005,北京:清华大学出版社.
    68 Govind P.Agrawal,“非线性光纤光学原理及应用”,电子工业出版社,2002.
    69 廖素英,“大模场Yb3+光纤激光模式特性研究,”博士论文,光学工程,北京:清华大学,2009.
    70 Siegman A.E., "Propagating modes in gain-guided optical fibers", J. Opt. Soc. Am. A,2003,20: 1617-1628.
    71 Siegman A.E., "Gain-guided, index-antiguided fibers lasers", J. Opt. Soc. Am. B,2007,24: 1677-1682.
    72 Z. Zhu, G. B. Thomas, et. al., "Full-vectorial finite-difference analysis of microstructured optical fibers", Opt. Express,2002,10(17):853-864.
    73 S. Guo, F. Wu, S. Albin, Loss and dispersion analysis of microstructure fibers by finite-difference method, Opt. Express,2004,12(15):3341-3352.
    74 Kenji Kawano and Tsutomu Kitoh, "Introduction to optical waveguide analysis",2001, NewYork, John Wiley.
    75 M. D. Feit, J. A. Fleck. "Light propagation in graded-index optical fibers. Applied optics",1978,17: 3990-3997.
    76 Yevick D, Hermansson B. "Split-step finite difference analysis of rib waveguides". Electronic Letters, 1989,25:461-462.
    77 Okamoto, K., "Fundamentals of Optical Waveguides".2000:Adademic Press.
    78 Hadley G. R., et. al., "Transparent boundary condition for the beam propagation method", IEEE Journal of Quantum Electronics,1992,28(1):363-370.
    79 Feit, M.D. and J. J. A. Fleck, "Computation of mode eigenfunctions in graded-index optical fibers by the propagating beam method". Applied Optics,1980,19(13):2240-2246.
    80 Chen, J.C. and S. Jungling, "Computation of higher-order waveguide modes by the imaginary-distance beam propagation method". Optical Quantum Electronics,1994,26:S199-S205.
    81 Xu, C.L., W.P. Huang, and S.K. Chaudhuri, "Efficient and accurate vector mode calcualtions by beam propagation method". Journal of Lightwave Technology,1993,11:1209-1215.
    82 Lucas B. Soldano, Erik C. M. Pennings, "Optical Multi-Mode Interference Devices Based on Self-Imaging:Priciples and Application". Journal of Lightwave Technology,1995,13:615-627.
    83 Ivan Turek, Ivan Martincek, Roman Stransky, "Interference of modes in optical fibers," Opt. Eng 2000,39(5):1304-1309.
    84 D. Kacik, Ⅰ. Turek, Ⅰ. Martincek, et. al., "Influence of fibre length on intermodal interference in PCF" Proc. SPIE,2005,5950:595011.
    85 H. J. Baker, J. R. Lee, and D. R. Hall, "Self-imaging and high-beam-quality operation in multi-mode planar waveguide optical amplifiers," Opt. Express,2002,10:297-302.
    86 X. Zhu, A. Schulzgen, H. Li, L. Li, et. al., "Detailed investigation of self-imaging in large-core multimode optical fibers for application in fiber lasers and amplifiers", Opt. Express,2008,16(21): 16632-16645.
    87 Y. Liao, H. J. Zhou, and Z. Meng, "Modulation efficiency of a LiNbO3 waveguide electro-optic intensity modulator operating at high microwave frequency," Opt. Lett.2009,34(12):1822-1824.
    88 Xu Dangpeng, Wang Jianjun, Li Mingzhong, et. al., "Weak etalon effect in wave plates can introduce significant FM-to-AM modulations in complex laser systems", Opt. Express,2010,18(7):6621-6627.
    89 Mali Gong, Yanyang Yuan, Chen Li, Ping Yan, Haitao Zhang and Suying Liao, "Numerical modeling of transverse mode competition in strongly pumped multimode fiber lasers and amplifiers". Optics Express,2007,15(6):3236-3246.
    90 Liao Suying, Gong Mali, Zhang Haitao. "Influence of mode distorti on the transverse mode competition in large-mode-area fiber amplifiers", Optics Communications,2008,282(1):406-412.
    91 J. R. Carson, "Notes on the theory of modulation," Proc. IRE 10,57-64 (1922).
    92 Rudiger Paschotta, Johan Nolsson, Anne C. Tropper, et al., "Ytterbium-Doped Fiber Amplifiers" IEEE Journal of Quantum Electronics,1997,33(7):1049-1056.
    93 陈吉欣.掺Yb3+双双包层光纤激光器研究[D].博士学位论文,成都:电子科技大学,2006.
    94 Yong Wang, Hong Po, "Dynamic Characteristics of Double-clad Fiber Amplifiers for High-Power Pulse Amplification", Journal of Lightwave Technology,2003,21(10):2262-2270.
    95 Andrew Malinowski, Khu Tei Vu, Kang Kang Chen, et al, "High power pulsed fiber MOPA system incorporating electro-optic modulator based adaptive pulse shaping", Optics Express,2009,17(23): 20927-20937.
    96 Damian N. Schimpf, Clemens Ruchert, Dirk Nodop, et. al., "Compensation of pulse-distortion in saturated laser amplifiers", Optics Express,2008,16(22):17637-17646.
    97 Li Jing, Wang Jianjun, Xu Dangpeng, Feng Jing et. al., "The impact of spectral filter on the phase modulation pulse in the fiber front end system". Chinese Physics Letter,2011,28,3,034205.
    98 Arlee V. Smith, Binh T. Do, G. Ronald Hadley, "Optical damage limits to pulse energy from fibers", IEEE Journal of Selected Topics in Quantum Electronics,2009,15(1):153-158.
    99 B. C. Stuart, M. D. Feit, S. Herman, "Nanosecond-to-femtosecond laser-induced breakdown in dielectrics", Physics Review B,1996,53(4):1749-1761.
    100 G. Ronald Hadley, Arlee V. Smith, "Self-focusing in High-Power Optical Fibers", Proc. SPIE,2007, 6475:64750G.
    101 Roger L. Farrow and Dahv A. Kliner, "Peak-power limits on fiber amplifiers imposed by self-focusing" Opt. Lett.2006,31(23),3423-3425.
    102 Boullet J, Zaouter Y, Desmarchelier R, et al. "High power ytterbium-doped rod-type three-level photonic crystal fiber laser". Opt. Express,2008,16:17891-17902.
    103 Michael Craig S, Chi-Hung L, Doug G, et al. "33μm Core Effectively Single-Mode Chirally-Coupled-Core Fiber Laser at 1064-nm". Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference:Optical Society of America, 2008:OWU2.
    104 Ramachandran S, Nicholson J W, Ghalmi S, et al. "Light propagation with ultralarge modal areas in optical fibers". Opt. Lett.,2006,31:1797-1799.
    105 Koplow J P, Kliner D A V, Goldberg L. "Single-mode operation of a coiled multimode fiber amplifier" Opt. Lett.,2000,25:442-444.
    106 Jens L, Zellmer H, Tunnermann A, et al. "Suppression of higher order modes in a multimode fiber amplifier using efficient gain-loss-management (GLM)". Advanced Solid-State Lasers:Optical Society of America,2002:MB20.
    107 D. Marcuse, "Theory of Dielectric Optical Waveguides", Academic, New York,1974.
    108 D. Marcuse. "Curvature loss formula for optical fibers". J. Opt. Soc. Am.1976,66(3):216-220.
    109 C. R. Giles and E. Desurvire, "Modeling erbium-doped fiber amplifiers," Journal of Lightwave Technology,1991,9:271-283.
    110 John R. Marciante, "Gain filtering for single-spatial-mode operation of large-mode-area fiber amplifiers", IEEE Journal of Selected Topics in Quantum Electronics,2009,15(1):30-36.
    111 Mathieu Faucher, Yannick Keith Lize, "Mode field adaptation for high power fiber lasers", Conference on Lasers and Electro-Optics,2007, CF17.
    112 Ross T. Schermer. "Mode scalability in bent optical fibers". Opt. Express,2007,15(24):15674-15701.
    113 A. B. Sharma, A.-H. Al-Ani, "Constant-curvature loss in monomode fibers:an experimental investigation". Applied Optics 1984,23:3297-3301.
    114 Fransois Gonthier, Alain H6nault. "Mode coupling in nonuniform fibers:comparison between coupled-mode theory and finite-difference beam-propagation method simulations". J. Opt. Soc. Am. B. 1991,8:416-421.
    115 Ross T. Schermer. "Improved bend loss formula verified for optical fiber by simulation and experiment". IEEE J. Quantum Elect.2007,43:899-909.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700