Ag、石墨烯纳米流体的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米流体是指把金属或非金属纳米粉体分散到水、醇、油等传统换热介质中,制备成均匀、稳定、高导热的新型换热介质,这是纳米技术应用于热能工程这一传统领域的创新性的研究。纳米流体在能源、化工、汽车、建筑、微电子、信息等领域具有巨大的潜在应用前景,从而成为材料、物理、化学、传热学等众多领域的研究热点。
     本论文主要进行以下几个方面研究:
     以柠檬酸钠、硼氢化钠为还原剂,采用湿化学法制备了Ag-H2O纳米流体;采用分散法,将制备好的Ag纳米颗粒分散到乙二醇中,制备了Ag-EG纳米流体。以天然鳞片石墨为原料,制备了石墨烯-H2O纳米流体。利用粒度分析、zeta电位、透射电镜、扫描电镜、原子力显微镜、X-射线衍射、紫外-可见光谱等手段,研究了制备条件对产物结构、形貌的影响规律,并深入研究了纳米流体的流变及导热性能。研究结果表明:1)Ag纳米颗粒为类球形结构,平均粒径为60nm左右,随硝酸银浓度的增加,所制备的Ag纳米颗粒聚集成链状结构。2)石墨烯为片状结构,其单层厚度约为0.344nm,略高于理论值0.335nm,表面存在不同程度的褶皱。随着石墨烯-H2O纳米流体浓度的增加,石墨烯片之间产生堆垛现象。3)Ag-H2O、Ag-EG纳米流体为牛顿型纳米流体。石墨烯-H2O纳米流体,其浓度大于1mg·ml-1时,表现为非牛顿型纳米流体,反之,有向牛顿型纳米流体转变的趋势。4)20~60℃温度范围内,当Ag纳米颗粒的体积分数为0.121%时,与H2O相比,Ag-H2O纳米流体的导热系数提高了8.9%~78.5%; 25℃时,Ag-EG纳米流体的体积分数由0.03vol%提高到0.12vol%,其导热系数由1.6%增加到7.0%;55℃时,相同体积分数变化的条件下,其导热系数由5.0%增加到24.6%。石墨烯-H2O纳米流体的导热系数随固含量的增加而减小,随温度的升高而增大,25℃时,石墨烯-H2O(0.2mg·ml-1)纳米流体的导热系数提高17.7%。
     本论文的创新之处在于:1、采用湿化学法制备了高体积分数的Ag-H2O纳米流体;分散法将具有链状结构的Ag纳米颗粒分散到乙二醇中,制备了Ag-EG纳米流体。2、采用氧化-还原法首次制备了石墨烯-H2O纳米流体,石墨烯为单层片状结构,单层高度为0.344nm。
Nanofluids are a new type of heat transfer fluids engineered by uniform and stable suspension of nanoparticles (metal or non-metallic nanopowder) into the traditional heat transfer medium (such as water, alcohol, oil at all). This is an innovative research of nanotechnology applied to energy projects in traditional areas. Nnaofluids have great potential application in many industrial sectors, including energy, chemical, automotive, construction, microelectronics, information and other fields, so, it is becoming the hot off the press of material, physical, chemical, heat transfer and many other fields.
     The main contents researched are as follows:
     1) Using Sodium citrate, sodium borohydride as reducing agent, Ag-H2O nanofluids were prepared by wet chemical method. Using dispersion method, the Ag- ethylene glycol (EG) nanofluids were successfully prepared by dispering chain-like Ag nanoparticles into EG. The Graphene-H2O nanofluids have been successfully prepared by useing natural flake graphite as raw materials. By Size distribution, Zeta potential, TEM, SEM, AFM, XRD and UV-Vis spectrometer, the influence of fabrication conditions on the structure and morphology of Ag nanopartickes and Graphene were characterized, the rheologic properties and thermal conductivity of the nanofluids were studied in depth.
     The results and conclusions are as followed:
     1) The Ag nanoparticles possessed sphere-like structure, the mean dimeter was 60nm, as the concentration of AgNO3 increasing, the Ag nanoparticles assembled into chain-like structure.
     2) Graphene was a single layer film with a thickness of about 0.344nm, slightly higher than the theoretical value of 0.335nm. The surfaces possessed varying degrees of fold. With the concentration of Graphene-H2O nanofluids increasing, the graphene films were overlapped and stacking phenomenon occursed.
     3) Ag-H2O and Ag-EG nanofluids showed Newtonian behavior. The Graphene-H2O nanofluids showed non-Newtonian behavior when the Concentrations greater than 1mg·ml-1, otherwise, it had a trend to change into Newtonian nanofluids.
     4) At the range of 20~60℃, when the volume fraction of Ag nanoparticles was 0.121%, the thermal conductivity of Ag-H2O nanofluid was increased by 8.9%~78.5% compared with the water. For the Ag-EG nanofluid, when the volume fraction increased from 0.03vol% to 0.12vol% at 25℃, its thermal conductivity arised from 1.6% to 7.0%, while, the same volume fraction of changing conditions at 55℃, its thermal conductivity was enhanced from 5.0% to 24.6%. Thermal conductivity of Graphene-H2O nanofluid decreased as the solid content increasesing, but boosted with the increasing of temperature. When the solid content of graphene reached to 0.2mg·ml-1, the thermal conductivity of Graphene-H2O nanofluid increased by 17.7%.
     Creative points:
     1) High volume fraction of the Ag-H2O nanofluids were successfully prepared by using a simple wet chemical method; Ag-EG nanofluids with different concentration were prepared by dispersed chain-like Ag nanoparticles into ethylene glycol.
     2) The Graphene-H2O nanofluids were synthesized by oxidation-reduction for the first time. The prepared Graphene was possessed of single-layer sheet structure, the height of single layer was 0.344nm.
引文
[1] Wang X Q, Arun S Mujumdar, et al. Heat transfer characteristics of nanofluids: a review [J], Thermal Sciences, 2007, 46(1): 1-19
    [2] Choi S U S, Enhancement thermal conductivity of fluids with nanoparticles [J], Asem, fed, 1995, 23(1): 99-105
    [3] Johnathan J Vadasz, Saneshan Govender, Peter Vadasz, et al. Heat transfer enhancement in nanofluids suspensions: Possible mechanisms and explanations [J], Heat and Mass Transfer, 2005, 48(13): 2673-2683
    [4] A R A Khaled, K Vafai, Heat transfer enhancement through control of thermal dispersion effects [J], Heat and Mass Transfer, 2005, 48(11): 2172-2185
    [5] Xu J, Yu B M, Zou M Q, et al. A new model for heat conduction of nanofluids based on fractal distributions of nanoparticles [J], J. Phys. D: Appl. Phys, 2006, 39(20): 4486-4490
    [6] Patel H E, Das S K, Sundararajan T, et al. Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects [J], Appl. Phys. Lett, 2003, 83 (14): 2931-2933
    [7] Tsai C Y, Chien H T, Ding P P, et al. Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance [J], Mater. Lett., 2006, 58(9): 1461-1465
    [8] Yu W, Xie H Q, Chen L F, et al. Investigation on the thermal transport properties of ethylene glycol-based nanofluids containing copper nanoparticles [J], Powder technology, 2010, 197(3): 218-221
    [9] Liu M Sh, Lin M Ch, Huang I Te, et al.Enhancement of thermal conductivity with CuO for nanofluids [J], Chem. Eng. Techno1, 2006, 29(1): 72-77
    [10] John Philip, P D Shima, Baldev Raj, et al. Nanofluid with tunable thermal properties [J], Appl. Phys. Lett, 2008, 92(4): 043108-043108-3
    [11] Chopkar M, Das P K, Manna I, Thermal characterization of a nanofluid comprising nanocrystalline ZrO2 dispersed in water and ethylene glycol [J], Philosophical Magazine, 2007, 87: 4433-4444.
    [12] Chio C, Yoo H S, oh J M, Preparation and heat transfer properties of nanoparticle-in- transformer oil dispersions as advanced energy-efficient coolants [J], Current Applied Physics, 2008, 8(6): 710-712
    [13] Jaehoon Kim, Yoo Seok Park, Continuous Synthesis of Surface-Modified Metal Oxide Nanoparticles Using Supercritical Methanol for Highly Stabilized Nanofluids [J], Chem. Mater, 2008, 20(20): 6301-6303
    [14] A R Moghadassi, S Masoud Hosseini, Dale E Henneke, et a1. Effect of CuO Nanoparticles in Enhancing the Thermal Conductivities of Monoethylene Glycol and Paraffin Fluids [J], Ind. Eng. Chem. Res, 2010, 49(4): 1900-1904
    [15] Jagjit Nanda, Clay Maranville, Shannon C Bollin, et a1. Thermal Conductivity of Single-Wall Carbon Nanotube Dispersions: Role of Interfacial Effects [J], J.Phys.Chem C, 2008, 112(3): 654-658
    [16] Neetu Jha, S Ramaprabhu, Synthesis and Thermal Conductivity of Copper Nanoparticle Decorated Multiwalled Carbon Nanotubes Based Nanofluids [J], J.Phys.Chem C, 2008, 112(25): 9315-9319
    [17] Lee K J, Yoon S H, Jang J, et a1. Carbon nanofibers: A novel nanofiller for nanofluid applications [J], Small, 2007, 3(7): 1209-1213
    [18]朱冬生,吴淑英,李新芳,等,纳米流体工质的基础研究及其蓄冷应用[J],化工进展, 2008, 27(6): 857-860
    [19] Ceylan A, Jastrzembski K, Shah S I, Enhanced solubility Ag-Cu nanoparticles and their thermal transport properties [J], Metal. Mater.Trans. A, 2006, 37A (7): 2033-2038
    [20] M Chopkar, S Kumar, D R Bhandari, et al. Development and characterization of Al2Cu and Ag2Al nanoparticle dispersed water and ethylene glycol based nanofluid [J], Materials Science and Engineering B, 2007, 139: 141-148
    [21]马坤全,刘静,纳米流体研究的新动向[J],物理, 2007, 36(4): 295-300
    [22] Yang B, Han Z H, Thermal conductivity enhancement in water-in-FC72 nanoemulsion fluids [J], Appl. Phys. Lett, 2006, 88(26): 261914-261914-3
    [23]Bernath, K Magdassi, S Tawfik, Directed evolution of protein inhibitors of DNA-nucleases by in vitro compartmentalization (IVC) and nano-droplet delivery [J]. J. Mol. Biol, 2005, 345(5): 1015-1026
    [24]谢华清,奚同庚,纳米流体导热系数研究[J],上海第二工业大学学报第, 2006, 23(3): 200-204
    [25]刘静,周一欣,中国发明专利02131419, 5, 2002.
    [26] Burns S, Metal-cooled computing, Technology Review, June22, 2005
    [27] KnightW, Hot chips chilled with liquid metal. New Scientist, Nov. 21, 2005
    [28] Ma K Q, Liu J, Nano liquid-metal fluid as ultimate coolant [J], Physics Letters A, 2007, 361(3): 252-256
    [29] Hwang Y J, Ahn Y C, Shin H S, et al. Investigation on characteristics of thermal conductivity enhancement of nanofluids [J], Current Applied Physics, 2006, 6: 1068-1071
    [30] Tsung Tsing Tshih, Lo Chih Hung, Jwo Ching Song, et al. A novel nanofluid manufacturing process using a cylindrical flow cooling method in an induction heating system [J], International Journal of Advanced Manufacturing Technology, 2006, 29(1-2): 99-104
    [31] Lo C, Tsung T, Chen L, Shape-controlled synthesis of Cu-based nanofluid using submerged arc nanoparticle synthesis system [J], J. Cryst Growth, 2005, 277(1-4): 636-642
    [32] Phuoc T X, Soong Y, Chyu M K, Synthesis of Ag-deionized water nanofluids using multi-beam laser ablation in liquids [J], Opt. Laser Eng, 2007, 45(12): 1099-1106
    [33] Zhu H T, Lin Y, Yin Y, A novel one-step chemical method for preparation of copper nanofluids [J], J. Colloid Interf. Sci, 2004, 227(1): 100-103
    [34] Zhu H T, Zhang C Y, Tang Y M, et al. Novel synthesis and thermal conductivity of CuO nanofluid [J], J. Phys. Chem. C, 2007, 111(4): 1646-1650
    [35]高镰,孙静,刘阳桥,等,纳米粉体的分散与表面改性[M],化学工业出版社, 2003
    [36] Masuda H, Ebata A, Termae K, et al. Alternation of thermal conductivity and viscosity of liquid by dispersing ultra-fine particle (dispersion ofγ-Al2O3, SiO2 and TiO2 ultra-fine particle), Netsu Bussei (Japan), 1993, 4(4): 227-233
    [37] A Einstein, Eineneue Bestimmung der Moleküldimensionen. Annalender Physik, 1906, 19: 289-306
    [38] H C Brinkman, The viscosity of concentrated suspensions and solution [J], J. Chem. Phys., 1952, 20: 571-581
    [39] G K Batchelor, The effect of Brownian motion on the bulk stress in a suspension of spherical particles [J], J. Fluid Mech., 1977, 83(1): 97-117
    [40] I M Krieger, T J Dougherty, A mechanism for non-Newtonian flow in suspensions of rigid spheres [J], Trans. Soc. Rheol., 1959, 3: 137-152
    [41] Chen H S, Ding Y L, Tan C Q, Rheological behaviour of nanofluids [J], New J Phys, 2007, 9: 367
    [42] F M White, Viscous Fluid Flow [M], McGraw Hill, New York, 1991
    [43] D P Kulkarni, D K Das, G A Chukwu, Temperature dependent rheological property of copper oxide nanoparticles suspension [J], Journal of Nanoscience and Nanotechnology, 2006, 6: 1150-1154
    [44] Zhu H T, Liu S Q, Zhang C Y, Preparation, Characterization and Thermal Properties of Nanofluids, in Leading Edge Nanotechnology Research Developments [M], Hauppauge NY, Nova Science Publishers, 2008: 5-38
    [45] Das S K, Choi S, Yu W, Nanofluids: science and thchnology [M], Hoboken, Wiley Interscience, 2007: 101-107
    [46]张灿英,王继鑫,朱海涛,等,纳米流体传热研究最新进展[J],中国材料科技与设备, 2006, 4: 5-8
    [47]强爱红,许春建,周明,等,纳米流体对流传热的研究进展[J],化学工程, 2007, 35(11): 74-78
    [48]毕胜山,史琳,纳米流体沸腾传热研究进展[J],化工进展, 2007, 26(10): 1411-1415
    [49] Tu J P, N Dinh, T Theofanous, An experimental study of nanofluids boiling heat transfer.in Proceedings of 6th International Symposium on Heat Transfer, Beijing China, 2004
    [50] Witharana S, Boiling of Refrigerants on Enhanced Surfaces and Boiling of Nanofluids, Ph.D. thesis, Royal Institute of Technology, Stockholm, Sweden, 2003
    [51] Fanlkner D, Khotan M, Shekarriz R, Practical design of a 1000w/cm2 cooling system [J], Proc. 19th Ann IEEE Semicond. Thermal Meas. Meas. Symp 2003
    [52] Eastman J A, Choi S U S, Li S, et al. Novel thermal properties of nanostructured materials [J], Mater. Sci. Forum., 1999, 312-314
    [53] Xuan Y, Li Q, Heat Transfer Enhancement of Nanofluids [J], Int. J. Heat Fluid Flow, 2000, 21: 58-64
    [54] Wen D S, Ding Y L, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions [J], Int. J. Heat Mass Trans, 2004, 47(24): 5181-5188
    [55] Khanafer K, Vafai K, Lightstone M, Buoyancy-driven heat enhancement in a two dimensional enclose utilizing nanofluids [J], Int. J. Heat Mass Transf, 2003, 46(19): 3639-3653
    [56] Keblinski P, Phillpot S R, Choi S US, et al. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) [J], Int.J.Heat Mass Trans., 2002, 45(4): 855-863
    [57] Xuan Yimin, Li Qiang, Hu Weifeng, et al. Aggregation Structure and Thermal Conductivity of Nanofluids [J], Aiche Journal, 2003, 49 (4): 1038-1043
    [58] Xuan Yimin, Zheng Ping Yao, Lattice Boltzmann model for nanofluids [J], Heat Mass Transfer, 2005, 41(3): 199-205
    [59] Tzeng S C, C W Lin, K D Huang, Heat transfer enhancement of nanofluids in rotary blade coupling of four-wheel-drive vehicles [J], Acta Mech, 2005, 179: 11-23
    [60] Kulkarni D P, Vajjha R S, Das D K, et al. Applied Thermal Engineering, 2008, 18:1774-1781
    [61]彭小飞,俞小莉,车用散热器中纳米流体高温传热基础问题研究,博士毕业论文, 2007
    [62] You M S, Kim J H, Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer [J], Applied Physics Letters, 2003, 83(16): 3374-3376
    [63] Vassallo P, Kumar R, Amico S, Pool boiling heat transfer experiments in silica-water nanofluids [J], Int. J. Heat and Mass Transfer, 2004, 47: 407-411
    [64] Kim J H, Kim K H, You M S, Proceeding of ASME international mechanical engineering congress and expositon[C], Anaheim, California, 2004
    [65]李强,宣益民,姜军,等,航天用传热强化工质导热系数和粘度的实验研究[J],宇航学报, 2002, 23(6): 73-76
    [66]李强,宣益民,姜军,航天用纳米流体流动与传热特性的实验研究[J],宇航学报, 2005, 26(4): 391-399
    [67] Chien H T, Tsai C, Chen P H, et al. Improvement on thermal performance of a disk-shaped miniature heat pipe with nanofluid [J], Proc. InternationalConference on Electronics Packaging Technology, IEEE, Piscataway, 2003: 389-391
    [68] Kang S W, Wei W C, Tsai S H, et al. Experimental investigation of silver nano-fluid on heat pipe thermal performance [J], Appl. Therm. Eng., 2006, 26(17-18): 2377-2382
    [69] Ma H B, Wilson C, Borgmeyer B, et al. Effect of nanofluid on the heat transport capability in an oscillating heat pipe [J], Appl. Phys. Lett., 2006, 88(14): 143116
    [70] Chein R, Chuang J, Experimental microchannel heat sink performance studies using nanofluids [J], Int. J. Therm. Sci., 2007, 46(1): 57-66
    [71] Palm S J, Roy G, Nguyen C, Heat transfer enhancement with the use of nanofluids in radial Flow cooling systems considering temperature-dependent properties [J], Appl.Therm.Eng, 2006, 26(17-18): 2209-2218
    [72] Lv J Z, Zhou L, Bai M L, et al. Numerical Simulation of the Improvement to the Heat Transfer within the Internal Combustion Engine by the Application of Nanofluids [J], Heat and Mass Transfer, 2010, 17(1): 93-109
    [73] Yu W, Xie H Q, Chen, L F, et al. Investigation on the thermal transport properties of ethylene glycol-based nanofluids containing copper nanoparticles [J], Powder technology, 2010, 197(3): 218-221
    [74] Fang X P, Xuan Y M, Li Q, Experimental investigation on enhanced mass transfer in nanofluids [J], Appl. Phys. Lett, 2009, 95(20): 203108
    [75] Sinha K, Kavlicoglu B, Yanming Liu, et al. A comparative study of thermal behavior of iron and copper nanofluids [J], Journal of Appl. Phys, 2009, 106(6): 064307
    [76] Dan Li, Biyuan Hong, Wenjun Fang, Preparation of Well-Dispersed Silver Nanoparticles for Oil-Based Nanofluids [J], Ind. Eng. Chem. Res, 2010, 49: 1697-1702
    [77] Singh A K, Raykar V S,Microwave synthesis of silver nanofluids with polyvinylpyrrolidone (PVP) and their transport properties [J], Colloid and Polymer Science, 2008, 286(14-15): 1667-1673
    [78] Jha N, Ramaprabhu S, Thermal conductivity studies of metal dispersed multiwalled carbon nanotubes in water and ethylene glycol based nanofluids [J], J Applied Physics, 2009, 106(8): 084317
    [79] Andersson M,Pedersen J S ,Anders E C, et al. Silver nanoparticle formation inmicroemulsions acting both as template and reducing agent [J], Langmuir, 2005, 21(24): 11387-11396
    [80] Ullah M H, Kim L L, Chang Sik Ha, Preparation and optical properties of colloidal silver nanoparticles at a high Ag+ concentration [J], Materials Letters, 2006, 60(12): 1496-1501
    [81] Wang Chih Feng, Chou Cheng Tung, et al. Polybenzoxazine as a mold-release agent for nanoimprint lithography [J], Langmuir, 2007, 23(11): 5868-5871
    [82] Mishra A, Ram S, Ghosh G, Dynamic Light Scattering and Optical Absorption in Biological Nanofluids of Gold Nanoparticles in Poly(vinyl pyrrolidone) Molecules [J], J. Phys. Chem. C, 2009, 113(17): 6976-6982
    [83] Wang H S, Qiao X L, Chen J G et al. Mechanisms of PVP in the preparation of silver nanoparticles [J], Mater Chem Phys, 2005, 94 (2-3): 449-453
    [84]周全法,徐正,包建誊,等,还原-保护法制备纳米级银粉的研究[J],精细化工, 2001, 18(1): 39-42
    [85]代大庆,冯军强,张慧茹,等,具有自相似结构纳米银粉的制备及表征[J],中国材料进展, 2009, 28(3): 31-34
    [86] John Philip, P D Shima, Baldev Raj et al. Enhancement of thermal conductivity in magnetite based nanofluid due to chainlike structures [J], Appl. Phys. Lett. 2007, 91(20), 203108-1-3
    [87] John Philip, P D Shima, Baldev, Raj et al. Nanofluid with tunable thermal properties[j], Appl. Phys. Lett. 2008, 92(4), 043108-043108-3
    [88] Van Hyning D L, Klemperer Walter G et al. Characterization of Colloidal Stability during Precipitation Reactions [J], Langmuir, 2001, 17(11): 3120
    [89] Xie H Q, Lee H Y, Youn W I, et al. Nanofliuds containing multiwalled carbon nanotubes and their enhanced thermal conductivities [J], J AppI Phys, 2003, 94(8): 4967-4971
    [90] Ding Y L, Alias H, Wen D S, et al. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids) [J], Int. J. Heat and Mass Transfer, 2006, 49(1-2): 240-250
    [91]陈立飞,吴峰,张晖,等,碳纳米管表面羟基化及其纳米流体的导热性能研究[J],上海第二工业大学学报, 2009, 26(2): 94-98
    [92] Geim A K, Novoselov K S, The rise of graphene [J], Nature material, 2007, 6(3): 183-191
    [93] Alexander A Balandin, Suchismita Ghosh, et al. Superior Thermal Conductivity of Single-Layer Graphene [J], Nano Lett, 2008, 8(3): 902-907
    [94] Yongchao Si, Edward T Samulski, et al. Synthesis of Water Soluble Graphene [J], Nano Lett, 2008, 8(6): 1679-1682
    [95] Pan Y, Zhang H, Shi D, et al. Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001) [J], Adv Mater, 2009, 21(27): 2777-2780
    [96] Kim K, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes [J], Nature, 2009, 457(7230): 706-710
    [97] Dacheng Wei, Yunqi Liu, Hongliang Zhang, et al. Scalable Synthesis of Few-Layer Graphene Ribbons with Controlled Morphologies by a Template Method and Their Applications in Nanoelectromechanical Switches [J], J. Am. Chem. Soc., 2009, 131(31): 11147-11154
    [98] Hummers W, Offeman R E, Preparation of graphitic oxide [J], J. Am. Chem. Soc., 1958, 80(6): 1339
    [99] Li D, Muller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets [J], Nature Nanotechnology, 2008, 3(2): 101-105
    [100] Vincent C T, Matthew J A, Yang Y, et al. High-throughput solution processing of large-scale graphene [J], Nature Nanotechnology, 2009, 4(1): 25-29
    [101] Li X, Zhang G, Bai X, Highly conducting graphene sheets and Langmuir-Blodgett films [J], Nature Nanotechnology, 2008, 3(9): 538-542
    [102] Qian H, Wang Z, Yue W, et al. Exceptional coupling of tetrachloroperylene bisimide: Combination of Ullmann reaction and C-H Transformation [J], J.Am.Chem.Soc., 2007, 129(35): 10664-10665
    [103] Qian H, Negri F, Wang C, et al. Fully conjugated tri(perylene bisimides): An approach to the construction of n-type graphene nanoribbons [J], Am.Chem.Soc, 2008, 130(52): 17970-17976
    [104] Dmitry V, Kosynkin1 A L, Higginbotham J, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons [J], Nature, 2009, 458(7240): 872-876
    [105] Shen J, Hu Y, Shi M, et al. Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets [J], Chem Mater, 2009, 21(15): 3514-3520
    [106] Jiao L, Zhang L, Wang X, et al. Narrow graphene nanoribbons from carbon nanotubes [J], Nature, 2009, 458: 877-880
    [107] Meyer J C, Geim A K, Katsnelosn M L, et al. The structure of suspended graphene sheets [J], Nature, 2007, 446: 60-63
    [108] Fasolino A,Los J H,Katsnelson M I, Intrinsic ripples in graphene [J], Nature Materials, 2007, 6: 858-861
    [109]杨全红,吕伟,杨永岗,等,自由态二维碳原子晶体一单层石墨烯[J],新型碳材料, 2008, 23(2): 97-103
    [110] Varchon F, Rotational disorder in few-layer graphene films on 6H-SiC(000-1): A scanning tunneling microscopy study [J], Physical Review B, 2008, 77(16): 165415-165421
    [111] Everett, D H, Basic Principles of Colloid Science [J], The Royal Society of Chemistry, 1989, 338(6211): 182-182
    [112] C T Nguyen, F Desgranges, N Galanis, Viscosity data for Al2O3-water nanofluid-hysteresis: is heat transfer enhancement using nanofluids reliable? [J], Int. J. Heat and Mass Transfer, 2008, 47(2): 103-111
    [113] F M White, Viscous Fluid Flow [M], McGraw Hill, New York, 1991
    [114] D P Kulkarni, D K Das, G A Chukwu, Temperature dependent rheological property of copper oxide nanoparticles suspension. Journal of Nanoscience and Nanotechnology, 2006, 6: 1150-1154
    [115] Put ra Nandy, Roetzel Wilf ried, Das Sarit K, et al. Natural Convection of NanoFluids [J], Heat and Mass Transfer, 2003, 39: 775-784
    [116] Namburu Praveen K, Kulkarni Devdatta P, Misra Debasmita, et al. Viscosity of Copper Oxide Nanoparticles Dispersed in Ethylene Glycol and Water Mixture [J], Experimental Thermal and Fluid Science, 2007, 32: 397-402
    [117] Das Sarit K, Put ra Nandy, Roetzel Wilf ried, Pool Boiling Characteristics of Nanofluids [J], Int. J. Heat and Mass Transfer, 2003, 46: 851-862
    [118] Prasher R, Song D, Wang J L, et al. Measurements of Nanofluid Viscosity and Its Implications for Thermal Applications [J], Appl. Phys. Lett, 2006, 89(13): 133108
    [119] Chevalier J, Tillement O, Ayela F, Rheological properties of nanofluids flowing through microchannels [J], Appl Phys Lett, 2007, 91(23): 233103
    [120] Ding Y L, Alias H, Wen D S, et al. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids) [J], Int. J. Heat and Mass Transfer, 2006, 49(1-2): 240-250
    [121] Chen H S, Ding Y L Lapkin A, Rheological behaviour of nanofluids containing tube/rod-like nanoparticles [J], Powder Technology, 2009, 194(1-2): 132-141
    [122] Kwak K and Kim C, Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol [J], Koraa-Australia Rheology J, 2005, 17(2): 35-40
    [123]张立明,马天,杨金龙,等,氧化铝悬浮液剪切流变特性的研究[J],无机材料学报, 2004, 19(5): 11456-1150
    [124]李芃,仇中柱,纳米流体热导率的测量与评价[J],节能, 2005, 4: 13-15
    [125] Maxwell J C, A Treatise on Electricity and Magnetism [M], 2nd Edition, London: Clarendon Press, 1881
    [126] Hamilton R L, Crosser O K, Thermal conductivity of heterogeneous two-component systems [J], I. EC Fundamentals, 1962, 2: 187-191
    [127] Yu W, Choi S U S, The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model [J], Journal of Nanoparticle Research, 2003, 5(1-2): 167-171
    [128] Xie H, Fujii M, Zhang X, Effect of Interfacial Nanolayer on the Effective Thermal Conductivity of Nanoparticle-Fluid Mixture [J], Int. J. Heat Mass Transf, 2005, 48(14): 2926-2932
    [129] Leong K C, Yang C, Murshed, Model for the Thermal Conductivity of Nanofluids-The Effect of Interfacial Layer [J], Journal of Nanoparticle Research, 2006, 8(2): 245-254
    [130] Xuan Y, Li Q, Hu W, Aggregation Structure and Thermal Conductivity of Nanofluids [J], AIChE Journal, 2003, 49(4): 1038-1043
    [131] Koo J, Kleinstreuer C, A New Thermal Conductivity Model for Nanofluids [J], Journal of Nanoparticle Research, 2004, 6: 577-588
    [132] Kumar D H, Patel H E, Kumar, V R R, et al. Model for Heat Conduction in Nanofluids [J], Physical Review Letters, 2004, 93(14): 144301-1-4
    [133] Prasher R, Bhattacharya P, Phelan P E, Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids) [J], Physical Review Letters, 2005, 94(2): 025901-1-4
    [134] Jang S P, Choi S U S, Effects of Various Parameters on Nanofluid Thermal Conductivity [J], Journal of Heat Transfer, 2007, 129(5): 617-623
    [135] Prasher R, Phelan P E, Bhattacharya P, Effect of Aggregation Kinetics on the Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluid) [J], Nano Letters, 2006, 6(7): 1529-1534
    [136] Patel H E, Das S K, Sundararajan, T A, et al. Thermal conductivities of naked and nanolayer protected metal nanoparticles based nanofluids: manifestation of anomalous enhancement and chemical effects [J], Appl. Phys. Lett., 2003, 83: 2931-2933
    [137] Keblinski P, Eastman J A, Cahill D G, Nanofluids for thermal transport [J], Mater. Today, 2005, 8(6): 36-44
    [138] Yu W, Choi S U S, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model [J], J. Nanopart. Res., 2003, 5(1-2): 167-171
    [139] Jang S P, Choi S U S, Role of Brownian motion in the enhanced thermal conductivity of nanofluids [J], Appl. Phys. Lett., 2004, 84(21): 4316-4318
    [140] Gharagozloo P E, Eaton J K, Goodson K E, Diffusion, aggregation, and the thermal conductivity of nanofluids [J], Appl. Phys. Lett., 2008, 93(10): 103110
    [141] Le D, Kim J W, Kim B G, A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension [J], J. Phys. Chem. B, 2006, 110(9): 4323-4328
    [142] Jung J Y, Yoo J Y, Thermal conductivity enhancement of nanofluids in conjunction with electrical double layer (EDL) [J], Int. J. Heat Mass Tran., 2009, 52(1-2): 525-528
    [143] Xie H Q, Yu W, Li Y, et al. In: Influencing factors for thermal conductivity enhancement of nanofluids, Proceedings of the ASME 2009 2nd Micro/Nanoscale Heat & Mass Transfer International Conference, Shanghai, China, December 18-21, 2009; American Society of Mechanical Engineers: New York, USA, 2009; MNHMT 2009-18445
    [144] Das S K, Putra N, Thiesen P, et al. Temperature dependence of thermal conductivity enhancement for nanofluids [J], J. Heat Tran.AMSE, 2003, 125(4): 567-574
    [145] Chon C H, Kihm K D, Thermal conductivity enhancement of nanofluids by Brownian motion [J], J. Heat Trans., 2005, 127(8): 810-810
    [146] Li C H, Peterson G P, Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids) [J], J. Appl. Phys., 2006, 99(8): 084314
    [147] Murshed S M S, Leong K C, Yang C, Investigations of thermal conductivity and viscosity of nanofluids [J], Int. J. Therm. Sci., 2008, 47(5): 560-568
    [148] Yang B, Han Z H, Temperature-dependent thermal conductivity of nanorod-based nanofluids [J], Appl. Phys. Lett., 2006, 89(8): 083111

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700