城市水体中新型病原细菌生态学特征及其溯源研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市水体中病原微生物潜在生物污染风险,危害人群健康,已引起广泛关注,但是对城市水体中病原微生物的了解仍十分有限。本论文利用分子生物学技术、生物信息技术、细菌分离鉴定技术以及数学分析方法,对城市水体中的主要病原菌的生态学特征,包括病原微生物群落的生物多样性、病原微生物种群结构、时空分布特点进行了系统的研究;对城市污水受纳水体中主要病原菌,特别是优势种群—致病性弓形杆菌(Arcobacter)进行了溯源分析,评估了现有污水处理工艺对城市污水中主要病原菌去除效果,既为城市水体中病原微生物污染控制提供基础数据,也为源头控制致病性弓形杆菌传播奠定了基础。本论文包括以下主要研究内容和结论:
     (1)提取水体中微生物总DNA,利用PCR扩增水体细菌的16SrDNA基因片段,构建了16S rDNA基因文库,对基因文库中的克隆测序后进行序列比对,进而分析水体细菌种群结构。镇江市城市受纳水体—内江中细菌分属9大细菌类群,本研究采用的分子生物学方法较为充分地体现了水体中细菌种群的多样性,存在现行水质生物监测指标以外的多种新型病原菌。其中,变形菌(Proteobacteria)为主要细菌类群,Arcobacter为优势菌群,占总检测样品的76.8%,推测其来源于城市污水。
     (2)内江水体中主要病原菌生物活性研究。根据水样中16S rDNA分析结果,采用传统的细菌分离鉴定方法,并通过生理生化指标和细菌16S rDNA序列分析,分离并鉴定了11株分别属于产碱杆菌、气单胞菌、变形菌、不动杆菌等变形菌群的Beta和Gamma亚群的细菌。采用23S rDNA上Arcobacter种属特异性引物,通过PCR扩增技术分析了内江水体中致病性Arcobacter的活性,证明水体中致病性Arcobacter具有潜在的增殖能力。上述结果表明:内江水体中主要病原菌具有生物学活性。
     (3)对内江水体微生物逐级构建的16S rDNA基因文库,采用多样性估算指数S_(ACE)和S_(Chaol)进行计算,两者之一达到稳定或两者同时达到稳定时基因库中的克隆数作为全面反映细菌种群多样性的最小库容值。当构建的内江水体16S rDNA基因文库中测序克隆数约为100个时多样性估算达到最大值。
     (4)利用本研究建立的水体中细菌群落结构分析方法,对内江水体中细菌种群结构、主要病原微生物的时空分布特征研究发现,不同区域位置水体中细菌类群的总体结构没有明显差异,均以变形菌类群为水中的主要菌群;致病性Arcobacter为水体中的优势菌群,Arcobacter cryaerophilus所占比例最高。在水体不同区域主要的病原细菌的组成与城市污水溢流口的方位和距离有关,推测内江水体中主要病原微生物来源于城市污水。
     (5)通过细菌时空分布特征和主要病原菌的生物信息学分析,证明内江水体中微生物种群结构与污水处理厂出水中种群结构相同;内江水体中主要病原菌来源于城市污水,优势细菌菌群Arcobacter主要来自医院污水和居民区生活污水;Trichococcus pasteuri主要来自城市污水中的医院污水;梭菌(Clostridium)则主要来自城市污水中的菜场污水和医院污水;内江水体中其他来自城市污水中的病原菌则与不同来源处的城市污水无明显关系。
     (6)以污水处理厂进水水样和污水处理工艺Ⅰ和处理工艺Ⅱ处理后的出水为研究对象,利用分子生物学技术和生物学信息学技术对水体中的细菌种群进行了分析。两种污水处理工艺对细菌群落的组成没有明显改变,但处理工艺Ⅰ对部分主要的病原菌均有明显的消减作用,存在种属差异,并且对优势种群Arcobacter cryaerophilus的控制效果与处理水温有明显关系,推测工艺Ⅰ对Arcobacter cryaerophilus消减作用主要是通过吸附沉淀作用实现的;处理工艺Ⅱ中紫外消毒能有效地消减优势种群Arcobacter cryaerophilus以外的其他病原菌,表明优势种群Arcobacter cryaerophilus对紫外线作用不敏感。
The pathogenic microorganism in the urban water body, which is a latent risk of biological pollution and harmful to public health, has aroused the widespread attention. However, little is known about the pathogenic microorganism in the urban water body. In this thesis, the microorganism population structural feature in the water body was investigated by constructing bacterium's 16S rRNA gene library, and then the massive pathogenic microorganism was discovered. So the pathogenic microorganism's ecological characteristics were studied, including the population structure, space-time distribution characteristic and community's biodiversity of the pathogenic microorganism. Then the origin of the dominant microflora in the water body was explored and the effect had been appraised in removing the pathogenic microorganisms by the existing sewage treatment process. All the research provided the essential data for control the pathogenic microorganism pollution in the urban water body and also indicated the direction for the source control Arcobacter. The research mainly obtained the following conclusion:
     (1)The 16S rDNA gene bank was constructed by extracting the total bacterial DNA in the water body and amplifying 16S rRNA gene fragment using PCR. The sequence alignment was carried on after cloning and sequencing, and then bacterium population structure was analyzed. The bacterium in Neijiang water body belongs to 9 bacterium class groups. The 16S rDNA gene bank constructed by molecular biology method fully manifests the bacterium population's multiplicity of the water body. The Neijiang water body had many kinds of pathogenic microorganisms outside the water quality biological monitor index, in which Proteobacteria was the main bacterium class group and Arcobacter was the superiority bacteria colony. Arcobacter was presumably from the urban sewage.
     (2)According to the result by the molecular and biological method, the main pathogenic bacteria in Neijiang water body were isolated and identified by traditional bacteria isolation and identification method, specific and selective medium method and morphological and biochemical method. The isolated strains were identified as Alcaligenes faecalis, Providencia stuartii, Aeromonas hydrophila、Aeromonas salmonicida , Acinetobacter junii、Acinetobacter rhizosphaera, and so on. The activity of pathogenic Arcobacter spp. was detected through PCR amplification technique using species-specific primers, which amplify the most variable areas of 23S rRNA gene. The result proved that pathogenic Arcobacter spp. in the water had the potential proliferative ability.
     (3) The diversity estimators S_(ACE) and S_(Chaol) were carried on computation for the progressive construction of 16S rDNA gene bank of the microorganisms in Neijiang water body. The best library size for analyzing bacterial diversity could been achieved when one of both index reached stable or both simultaneously. The research result showed that the species richness estimators reached the maximum when the number of clones sequenced in bacterial 16S rDNA library of Neijiang water body was about 100.
     (4)The characteristics of bacterial space-time distribution of main pathogenic microorganisms from Neijiang water body were studied by population structure analysis method constructed in the study. The result showed that that the bacterium gross structure didn't have the obvious difference in the region Proteobacteria was the main class group and pathogenic Arcobacter was the the dominant bacteria colony in which Arcobacter cryaerophilus held the high proportion. The type and proportion of the main pathogenic bacteria at different position were related with the orientation and the distance between the urban sewage overflow site and other monitoring sites. The result indicated that the main pathogenic microorganisms probably originated from the urban sewage.
     (5) Through the analysis of bacterial space-time distribution characteristics and bioinformatics of the main pathogenic bacteria, it proved that the characteristic of the microorganism population structure in Neijiang water body was the same as that of in the effluent from the wastewater treatment plant. The dominant genus Arcobacter in Neijiang water body came from the hospital sewage and the resident sanitary sewage. Trichococcus pasteuri mainly came from the hospital sewage. Clostridium spp.mainly came from the food market sewage and the hospital sewage. Other pathogenic microorganisms in the Neijiang water body was not obviously related with the sewage from different places.
     (6) The microorganisms in the influent of wastewater treatment plant and the effluents from treatment process I and II were investigated by molecular and biological methods and bioinformatics methods. The analysis results showed that there were no significant difference of the community structure of total bacterial population between the influents and the effluents, but partial main microorganisms were removed by treatment process I, and the effect of the treatment process to control the dominant genera Arcobacter cryaerophilus was related to the water temperature. It is guessed that partial bacteria are removed by an adsorption precipitation process in the treatment method. And in treatment process II some other bacterial species decreased except the dominant genus Arcobacter cryaerophilus by ultraviolet irradiation, which meaned Arcobacter cryaerophilus was not sensitive with ultraviolet irradiation.
引文
[1]钱易.中国水污染控制对策之我见[J].环境保护,2007,(14):20-23.
    [2]王晓昌,王巧,熊家晴.宝鸡市城市水环境系统LCA研究[J].西安建筑科技大学学报,2006,38(6):741-745.
    [3]陈吉宁,董欣.城市水系统规划的发展与挑战[J].给水排水,2007,33(9):1-1,16.
    [4]高廷耀,顾国维.水污染控制工程[M].北京:高等教育出版社,2002.
    [5]叶茂.城市污水再生利用的病原微生物风险分析[D].西安:西安建筑科技大学,2004.
    [6]Tyndall R L,Ironside K S,Metier P Let al.Presence of Pathogenic Microorganisms in Power Plant Cooling Waters[J].Applied and Environmental Microbiology,1989,55(3):722-732.
    [7]He X H,Ma S H,Li A D.Concentration limitations of pathogenic microorganisms in reclaimed water[J].Huanjing Ke xue Environmental Science,2006,27(7):1402-1405.
    [8]Payment P,Berte A,Prevost M,et al.Occurrence of pathogenic microorganisms in the Saint Lawrence River(Canada) and comparison of health risks for populations using it as their source of drinking water[J].Canadian Journal of Microbiology,2000,46(6):565-576.
    [9]Johnson P E,Lund M L,Shorthill R W,et al.Real time biodetection of individual pathogenic microorganisms in food and water[J].Biomedical Science Instrumentation,2001,37:191-196.
    [10]Payment P,Berte A,Prevost M,et al.Erratum:Occurrence of pathogenic microorganisms in the Saint Lawrence River(Canada) and comparison of health risks for populations using it as their source of drinking water[J].Canadian Journal of Microbiology,2001,47(10):965-967.
    [11]Chung H,Rim Y,Kwon O,et al.Practical selection of microorganisms indicating the stability of pathogenic removal in water treatment plants[J].Water Science and Technology:Water Supply,2002,2(5-6):373-380.
    [12]Martins V C B,Fonseca L P,Ferreira H A,et al.Use of magnetoresistive biochips for monitoring of pathogenic microorganisms in water through bioprobes:Oligonucleotides and antibodies[J].Nano Science and Technology Institute,2005,1:493-496.
    [13]Mancini L,Rosemann S,Puccinelli C,et al.Microbiological indicators and sediment management[J].Ann Ist Super Sanita,2008,44(3):268-272.
    [14]中国质量新闻网.健康杀手新发传染病[EB/OL].http://www.cqn.com.cn/NEWS/zggmsb/2007829/127671.html.2003-01-29.
    [15]李旭.人类面临着新传染病的挑战[J].中国健康月刊,2007,(10):14-17.
    [16]刘殿武,张丽梅.新发传染病研究的内容和方法[J].中国预防医学杂志,2007,8(4):478-480.
    [17]Neill S D,Ellis W A,O'Brien J J,et al.Designation of aerotolerant Campylobacter-like organisms from porcine and bovine abortions to the genus Campylobacter[J].Res Vet Sci, 1979,27(2):180-186.
    [18]Vandamme P,Deley J,et al.Proposal for a new family,Campylobacteraceae[J].International journal of systematic bacteriology,1991,41(3):451-455.
    [19]Hoa T K H,Lcn J A L.Wim G.Arcobacter,what is known and unknown about a potential foodborne zoonotic agent[J].Veterinary Microbiology,2006,115(1-3):1-13.
    [20]Shelling W J,Matsuda M,Moore J E,et al.Under the microscope:Arcobacter[J].Letters in Applied Microbiology,2006,42(1):7-14.
    [21]Rice E W,Rodgers M R,Wesley I V,et al.Isolation of Arcobacter butzleri from groundwater[J].Letters in Applied Microbiology,1999,28(1):31-35.
    [22]吕爱军,季为一.嗜水气单胞菌研究进展[J].中国动物检疫,2000,(11):42-43.
    [23]董传甫.嗜水气单胞菌研究进展[J].福建农业学报,2003,18(4):243-248.
    [24]董利平.一起嗜水气单胞菌引起的食物中毒[J].中国人兽共患病杂志,2005,21(7):637.
    [25]叶方友,王琳娜.一起嗜水气单胞菌感染导致群体性腹泻的调查[J].中华流行病学杂志,2004,25(5):406.
    [26]高玲玲,张伟忠.一起由嗜水气单胞菌引起食物中毒的调查报告[J].职业与健康,2002,18(9):56.
    [27]Yuen K Y,Woo P C Y,Teng J L,et al.Laribacter hongkongensis gen.nov.,sp.nov.,a novel Gram-negative bacterium isolated from a cirrhotic patient with bacteremia and empyema[J].Journal of Clinical Microbiology,2001,39(12):4227-4232.
    [28]Woo P C Y,Kuhnert P,Bumens A P,et al.Laribacter hongkongensis:a potential cause of infectious diarrhea[J].Diagnostic Microbiology and Infectious Disease,2003,47(4):551-556.
    [29]岑剑伟,郝淑贤等.香港海鸥型菌(Laribcter hongkongensis)的鉴定方法研究现状[J].中国食品卫生杂志,2005,17(4):341-344.
    [30]王飞.不可忽视的水污染[J].生态经济,2006,(7):142-145.
    [31]新华网.尼泊尔饮用水不卫生造成1.28万人染病,177人死亡[EB/OL].http://news.163.com/40727/1/0S9V0MF60001121R.html.2004-07-27.
    [32]RSS W.Introduction to the special issue[J].Mar Pollute Bull,1999.39(1-9):1-2.
    [33]Salgot M,Huertas E,Weber S,et al.Wastewater reuse and risk:definition of key objectives[J].Desalination,2006,187:29-40.
    [34]仲夏.国际环境生物指标研究动态[J].环境保护与循环经济,2008,28(2):10-11.
    [35]王力,王磊.水环境标准中回用水质参数指标的研究[J].民营科技,2008,(7):18-18.
    [36]马旭亮,徐毅,吴建根.二次供水及市政直供水微生物学调查分析[J].中国环境卫生,2007,10(1):22-23.
    [37]Marc B,Lyle G W,Charles W G.Rapid,direct extraction of DNA from soils for PCR analysis using PolyvinylPolyPyrrolidone spin columns[J].FEMS Microbiology Letters,1996,138(1): 17-22.
    [38]Marco J L.Analysis of subfossil molecular remains of Purple sulfur bacteria in a lake sediment[J].Applied and Environmental Microbiology,1998,64(11):4513-4521.
    [39]Ferguson R L,Buckley E N,Palumbo A V.Response of marine bacterioplankton to differential filtration and confinement[J].Applied and Environmental Microbiology,1984,47(1):49-55.
    [40]Amann R I,Ludwig W,Schleifer K H.Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J].Microbiology and Molecular Biology Reviews,1995,59(1):143-169.
    [41]Brock T D.The study of microorganisms in situ:Progress and problem[J].Symptom Social Gene Microbiology,1987,41:1-17.
    [42]Burke T,Seidler R,Smith H.Editorial[J].Molec Ecol,1992,1:1-1.
    [43]Leff L G,Dana J R,Mcarthur J V et al.Comparison of methods of DNA extraction from stream sediments[J].Applied and Environmental Microbiology,1995,61(3):1141-1143.
    [44]Asa F,Sophie C,Vincent R et al.Quantification of bias related to the extraction of DNA directly from soils[J].Applied and Environmental Microbiology,1999,65(12):5409-5420.
    [45]Devereux R,He S H,Orkland S et al.Diversity and origin of Desulfovibrio species:phylogenetic definition of a family[J].Journal of bacteriology,1990,172(7):3609-3619.
    [46]Cheryl R K,Kaysie L B,Dante L A et al.Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil[J].Applied and Environmental Microbiology,1998,64(7):2463-2472.
    [47]Zhou J,Bruns M A,Tiedje J M.DNA Recovery from Soils of Diverse Composition[J].Applied and Environmental Microbiology,1996,62(2):316-322.
    [48]Pace N R.New perspectives on the natural microbial world:molecular microbial ecology[N].ASM news,1996,62:463-470.
    [49]滕齐辉,曹慧,崔中利等.太湖地区典型菜地土壤微生物16S rDNA的PCR-RFLP分析[J].生物多样性,2006,14(4):345-351.
    [50]Muyzer G.DGGE/TGGE a method for identifying genes from natural ecosystems[J].Curr Opini in Microbiol,1992,2(3):317-322.
    [51]郑斯平,陈彬,关雄等.小叶满江红内生细菌多样性的PCR-DGGE及电子显微镜分析[J].农业生物技术学报,2008,16(3):508-514.
    [52]肖勇,杨朝晖,曾光明等.PCR-DGGE研究处理垃圾渗滤液序批式生物膜反应器(SBBR)中的细菌多样性[J].环境科学,2007,28(5):1095-1101.
    [53]Wu Q,Zhao X H,Zhao S Y Application of PCR-DGGE in Research of Bacterial Diversity in Drinking Water[J].生物医学与环境科学:英文版,2006,19(5):371-374.
    [54]James E M,Stephan B,Justin Pet al.PCR-SSCP comparison of 16S rDNA sequence diversity in soil DNA obtained using different isolation and purification methods[J].FEMS Microbiology Ecology,2001,3(2-3)6:139-151.
    [55]肖生祥.PCR原理及应用中存在的问题[J].中国皮肤性病学杂志,1998,12(4):245-244.
    [56]陈秀珍.浅谈聚合酶链反应技术的正确使用[J].现代医药卫生,2002,18(9):811-812.
    [57]Woese C R.Bacterial evolution[J].Microbiology and Molecular Biology Reviews,1987,51(2):221-271.
    [58]Ingraham J L,Maaloe O,Neidhardt F C.Growth of the bacteria cell[M].Sunderland,Massachusetts Sinauer,1983,12-107.
    [59]David A S,David J L,Gary J Oet al.Analysis ofhydrothermal vent-associated symbionts by ribosomal RNA sequences[J].Science,1984,224(4647):409-411.
    [60]Stahl D A,Lane D J,Olsen G Jet al.Characterization of a yellowstone hot spring micribial community by 5S rRNA sequences[J].Applied Environmental Microbiology,1985,49(6):1379-1384.
    [61]Kemp P F,Josephine Y A.Bacterial diversity in aquatic and other environments:what 16S rDNA libraries can tell us[J].FEMS Microbiology Ecology,2006,47(2):161-177.
    [62]Muyzer G.,Ramsing N B.Molecular methods to study the organization of microbial communities[J].Water Science&Technology,1995,32(8):1-9.
    [63]Yves V P,An C,Peter D Aet al.Database on the structure of small ribosomal subunit RNA [J].Nucleic Acid Research,1997,26(1 ):179-182.
    [64]Selenska S,Klingmuller M.DNA recovery and direct detection of Tn5 sequences from soil[J].Letters in Applied Microbiology,1991,13(1):21-24.
    [65]Toranzos G A,Alvarez A J.Quantifying PCR templates using the most probable number polymerast chain reaction(MPN-PCR)[C].Abstr.Ann.Meet Am.Soc.Microbiol,1992:390.
    [66]Tebbe C C,Vahjen W.Interference of humic acid and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast[J].Applied and Environmental Microbiology,1993,59(8):2657-2665.
    [67]Kreader C A.Relief of amplification inhibition in PCR with bovine serum albumin or T4gene 32 protein[J].Applied and Environmental Microbiology,1996,62(3):1102-1106.
    [68]Von W F,Gobel U B,Stackebrandt E.Determination of microbial diversity in environmental samples:pitfalls of PCR-based rRNA analysis[J].FEMS Microbiology Reviews,1997,21:213-229.
    [69]Wang G C,Wang Y.Frequency of formation of chimeric molecules as a consequence of PCR coamplification of 16S rRNA genes from mixed bacterial genomes[J].Applied and Environmental Microbiology,1997,63(12):4645-4650.
    [70]Qiu X Y,Wu,Wu L Y,McDonel P E,et al.Evaluation of PCR-generated chimeras,mutations,and heteroduplexes with 16S rRNA gene-based cloning[J].Applied and Environmental Microbiology,2001,67(2):880-887.
    [71]Speksnijder A G,Kowalchuk G A,Jong S D,et al.Microvariation artifacts introduced by PCR and cloning of closely related 16S rRNA gene sequences[J].Applied and Environmental Microbiology, 2001, 67(1):469-472.
    [72]Thompson J R, Marcelino L A, Polz M F. Heteroduplexes in mixed-template amplifications:formation, consequence and elimination by reconditioning PCR [J]. Nucleic Acids Research,2002,30(9): 2083-2088.
    [73]Hongoh Y, Yuzawa H, Ohkuma M, et al. Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment [J]. FEMS Microbiology Letters, 2003,221(2): 299-304.
    [74] Reysenbach A L, Giver L J, Wickham G S, et al. Differential amplification of rRNA genes by polymerase chain reaction [J]. Applied and Environmental Microbiology, 1992,58(10):3417-3418.
    [75] Hansen M C, Tim T N, Michael G, et al. Biased 16S rDNA PCR amplification caused by interference from DNA flanking the template region [J]. FEMS Microbiology Ecology, 1998,26(2): 141-149.
    
    [76] Sambrook J.分子克隆实验指南[M].北京: 科学出版社, 1999.
    [77] Hugenholtz P, Brett M G, Norman R P. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity [J]. Journal of Bacteriology, 1998, 180(18):4765-4774..
    [78] Ravenschlag K, Kerstin S, Jakob P, et al. High bacterial diversity in permanently cold marine sediments[J]. Applied and Environmental Microbiology, 1999,65(9): 3982-3989.
    [79] Soberoon J, Jorge L. The use of species accumulation functions for the prediction of species richness [J]. Conservation Biology, 1993,7(3): 480-488.
    [80] Jennifer B H, Jessica J H, Taylor H R, et al. Counting the Uncountable: Statistical approaches to estimating microbial diversity[J]. Applied and Environmental Microbiology, 2001, 67(10):4399-4406.
    
    [81] Preston F W. The commonness and rarity of species [J]. Ecology, 1948,29:254-283.
    [82]Bulmer M G. On fitting the Poisson lognormal distribution to species abundance data [J].Biometrics, 1974, 30: 101-110.
    
    [83] Williams C B. Patterns in the Balance of the Nature [M]. London: Academic Press, 1964.
    [84] Magurran A E. Ecological diversity and its measurement [D]. Princeton University: Princeton N.J.1995.
    [85] Sugihara G. Minimal community structure: an explanation of species abundance patterns [J].The American Naturalist, 1980,116: 770-787.
    [86] Harte J, Kinzig A, Green J. Self-similarity in the distribution and abundance of species [J].Science, 1999, 284(5412):334-336.
    [87] Hughes R G. Theories and models of species abundance[J]. The American Naturalist, 1986,128:897-899.
    
    [88] Krebs C J. Ecological methodology [M]. New York: Harper and Row, 1989.
    [89] Seber G A F. The estimation of animal abundance and related parameters [M]. London, Griffin.1973.
    [90]Chao A,Lee S M.Estimating the number of classes via sample coverage[J].Journal of the American Statistical Association,1992,87:210-217.
    [91]Chao A,Yang M C K.Stopping rules and estimation for recapture debugging with unequal failure rates[J].Biometrika,1993,80(1):193-201.
    [92]Chao A,Hwang W H,Chert Y C,et al.Estimating the number of shared species in two communities[J].Statistica Sinica 1999,10(2000):227-246.
    [93]Chazdon R L,Colwell R K,Denslow J S,et al.Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of NE Costa Rica[J].Man and the Biosphere Serifs,1998:285-309.
    [94]Chao A.Non-parametric estimation of the number of classes in a population[J].Scandinavian Journal of Statistics,1984,11:265-270.
    [95]Chao A.Estimating the population size for capture-recapture data with unequal catchability [J].Biometrics,1987,43:783-791.
    [96]Heltshe J F,Forrester N E.Estimating species richness using the jackknife procedure[J].Biometrics,1983,39:1-11.
    [97]Smith E P,Belle G V.Nonparametric estimation of species richness[J].Biometrics,1984,40(1):119-129.
    [98]Colwell R K,Coddington J A.Estimating terrestrial biodiversity through extrapolation[J].Phil Trans R Soc Lond,1994,B345:101-118.
    [99]王意敏,黄志勇,张传伦.认识生态未知物:用统计系统方法研究生物多样性[J].高校地质学报,2005,11(2):224-233.
    [100]仇付国.城市回用污水中病毒对人体健康风险的评价[J].环境与健康杂志,2003,(4):197-199.
    [101]张薛.再生水中病原指示微生物的浓度水平研究[J].中国给水排水,2006,(9):26-29.
    [102]Bano N,Hollibaugh J T.Phylogenetic Composition of Bacterioplankton Assemblages from the Arctic Ocean[J]Applied and Environmental Microbiology,2002,68(2):505-518.
    [103]Gich F,Garcia G J,Overmann J.Previously unknown and phylogenetically diverse members of the green nonsulfur bacteria are indigenous to freshwater lakes[J].Archives Microbiology,2001,177(1):1-10.
    [104]Tsai Y L,Olson B H.Rapid method for direct extraction of DNA from soil and sediments[J].Applied and Environmental Microbiology,1991,57(4):1070-1074.
    [105]Watanabe K,Watanabe K,Kodama Yet al.Molecular Characterization of Bacterial Populations in Petroleum-Contaminated Groundwater Discharged from Underground Crude Oil Storage Cavities[J].Applied and Environmental Microbiology,2000,66(11):4803-4809.
    [106]Edwards U,Rogall T,Blocker H,et al.Isolation and direct complete nucleotide determination of entire genes Characterization of a gene coding for 16S ribosomal RNA[J].Nucleic Acid Research,1989,17(19)7843-7853
    [107]Sievert S M,Brinkhoff T,Muyzer G,et al.Spatial Heterogeneity of Bacterial Population along an Environmental Gradient at a Shallow Submarine Hydrothermal Vent near Milos Island(Greece)[J].Applied and Environmental Microbiology,1999,65(9):3834-3842.
    [108]Helmut B,Manuel P,Franco W,et al.A strategy for optimizing quality and quantity of DNA extracted from soil[J].Journal of microbiological methods,2001,45(1):7-20.
    [109]卫生部.关于印发《人间传染的病原微生物名录》的通知[EB/OL].http://www.pharmnet.com.cn,2006-02-05.
    [110]许飞,戴欣,陈月琴等.南沙海区沉积物中细菌和古细菌16S rDNA多样性的研究[J].海洋与湖沼,2004,35(1):89-94.
    [111]Borneman J,TriPlett E W.Molecular microbial diversity in soils from eastem Amazonia:evidence for unusual microorganisms and microbial population shifts associated with deforestation[J].Applied and Environmental Microbiology,1997,63(7):2647-2653.
    [112]Watanabe K,Watanabe K,Yumiko K,et al.Molecular Characterization of Bacterial Populations in Petroleum-Contaminated Groundwater Discharged from Underground Crude Oil Storage Cavities[J].Applied and Environmental Microbiology,2000,66(11):4803-4809.
    [113]Urakawa H,Kita T K,Ohwada K.Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay Japan,as determined by 16S rRNA gene analysis[J].Microbiology,1999,145(11):3305-3315.
    [114]王峰,傅以钢,夏四清等.PCR-DGGE技术在城市污水化学生物絮凝处理中的特点[J].环境科学,2004,25(6):75-79.
    [115]Diergaardt S M,Venter S N,Spreeth A,et al.The occurrence of campylobacters in water sources in South Africa[J].Water Res,2004,38:2589-2595.
    [116]Lehner A,Tasarra T,Stephan R.Relevant aspects ofArcobacter spp.as potential foodborue pathogen[J].International Journal of Food Microbiology,2005,102:127-135.
    [117]Diergaardt S M,Venter S N,Spreeth A et al.The occurrence of campylobacters in water sources in South Africa J].Water Res,2004,38:2589-2595.
    [118]Woo P,Lau S,Teng J,et al,Association of in community-acquired gastroenteritis with travel and eating fish:a multicentre case-control study[J].The Lancet,2004,363:1941-1947.
    [119]林曦,曾润颖.南极中山站排污口土壤中微生物群落的DGGE分析[J].应用与环境生物学报,2008,14(2):253-257.
    [120]Daniel B O,Jakob P,Andreas S,et al.Monitoring Precursor 16S rRNAs of Acinetobacter spp.in Activated Sludge Wastewater Treatment Systems[J].Applied Environmental Microbiology,2000,66(5):2154-2165.
    [121]Gene W T,JiIlian F B.Cultivating the uncultivated:a community genomics perspective [J].Trends in Microbiology,2005.13(9):411-414.
    [122]Fera M T,Maugeri T L,Gugliandol C,et al.Detection ofArcobacter spp.in the Coastal Environment of the Mediterranean Sea[J].Applied and Environmental Microbiology,2004. 70(3):1271-1276.
    [123]许云台.西湖沉积物中微生物对有机磷循环影响研究[D].杭州:浙江大学,2005.
    [124]Zuber H.Temperature adaptation of lactate dehydrogenase.Structural,functional and genetic aspects[J].Biophys Chem,1988.29:171-179.
    [125]Moreno Y,Alonso J L,Botella S,et al.Survival and injury of Arcobacter after artificial inoculation into drinking water[J].Research in Microbiology,2004,155(9):726-730.
    [126]Kabeya H,Kobayashi Y,Maruyama S,et al.One-step polymerase chain reaction-based typing of Arcobacter species[J].International Journal of Food Microbiology,2003,81(2):163-168.
    [127]Motyl M R,Mckinley G,Janda J M.In Vitro Susceptibilities of Aeromonas hydrophila,Aeromonas sobria,and Aeroraonas caviae to 22 Antimicrobial Agents[J].Antimicrobial Agents and Chemotherapy,1985,28(1):151-153.
    [128]Jacob J,Woodward D,Feuerpfeil I,et al.Isolation of Arcobacter butzleri in raw water and drinking water treatment plants in Germany[J].Zentralbl Hyg Umweltmed,1998,201(2):189-198.
    [129]Escalante A,Wacher C.Lactic acid bacterial diversity in the traditional Mexican fermented dough pozol as determined by 16S rDNA sequence analysis[J],international Journal of Food Microbiology,2001,64:21-31.
    [130]Alio C P.Marine microbial diversity:can it be determined?[J].Trends in Microbiology,2006,14(6):257-263.
    [131]Chao A.Non-parametric estimation of the number of classes in a population]J].Scandinavian Journal of Statistics,1984,11:265-270.
    [132]沈宗荏.生物多样性的预测[D].台湾:清华大学,2003.
    [133]Curtis T P,Sloan W T,Scannell J W,et al.Estimating prokaryotic diversity and its limits[J].Acad.Sci,2002,99:10494-10499.
    [134]Smit E,Leeflang P,Gommans S,et al.Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods[J].Applied and Environmental Microbiology,2001,67(5):2284-2291.
    [135]Frias L J,Zerkle A L,Bonheyo G T,et al,Partitioning of bacterial communities between seawater and healthy,black band diseased,and dead coral surfaces.Applied and Environmental Microbiology,2002,68(5):2214-2228.
    [136]Ravenschlag K,Sahm K,Pernthaler J.et al.High bacterial diversity in permanently cold marine sediments[J].Applied and Environmental Microbiology,1999,65(9):3982-3989.
    [137]Libor C,Zachova I.Effect of pH and water activity on the growth of Arcobacter sp.in Culture[J].Czech Journal of Food Sciences,2003,21(6):203-209.
    [138]Wesley I V.Helicobacter and Arcobacter:Potential human foodborne pathogens?[J].Trends in Food Science& Technology,1997,8:293-299.
    [139]Ingrid W,Breynaert J.Isolation of Arcobacter skirrowii from a Patient with Chronic Diarrhea[J].Journal of Clinical Microbiology,2004,42(4):1851-1852.
    [140]李达,王永全,孙强.2006年北京西城区军团菌污染状况调查[J].中国预防医学杂质,2007,8(5):12-14.
    [141]Assanta M A,Roy D,Lemay M J,et al.Attachment of Arcobacter butzleri,a new waterborne pathogen,to water distribution pipe surfaces[J].Food Protection,2002,65:1240-1247.
    [142]薛晓红.先进氧化技术防治海洋生物入侵性传播研究[D].大连:大连海事大学,2006.
    [143]杨波.强电离放电制取羟基杀灭压载水微生物研究[D].大连:大连海事大学,2003.
    [144]乐毅全,顾国维.16S rRNA基因技术在环境科学领域中的应用[J].四川环境,2003,22(6):1-4,16.
    [145]汪晓莺,汤伟,马国光等.PCR快速检测细菌16S rRNA基因的初步研究[J].南通医学院学报,2003,23(4):379-382.
    [146]Adelfo Escalante,Carmen Wacher,Amelia Farres.Lactic acid bacterial diversity in the traditional Mexican fermented dough pozol as determined by 16S rDNA sequence analysis[J].International Journal of Food Microbiology,2001,64:21-31.
    [147]柳劲松,王丽华,宋秀娟.环境生态学基础[M].北京:化学工业出版社,2003.
    [148]谢风君,丁建华等.城市污水综合利用中的生物性污染问题[J].城市管理与科技,2001,3(2):1-3.
    [149]焦振泉,刘秀梅等.16S rRNA序列同源性分析与细菌系统分类鉴定[J].国外医学卫生学分册,1998,25(1):12-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700