BAS/SiC陶瓷基复合材料的制备及其组织与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用热压烧结工艺和放电等离子烧结(SPS)工艺,制备了BAS/SiC、BSAS/SiC和BAS/(Si3N4-SiC)复合材料。采用XRD、SEM、TEM和HRTEM等测试方法对所制备的复合材料进行了物相及组织结构分析;采用三点弯曲、单边切口梁及压痕等方法测定了复合材料的室温力学性能。系统地研究了BAS含量、烧结工艺对复合材料的组织结构及性能的影响,揭示了SiC基复合材料的断裂行为及强韧化机理。并在其基础上,进一步研究了复合材料的高温抗氧化行为及其损伤机理。
     成功地将BAS玻璃陶瓷引入到SiC陶瓷中,获得了致密的SiC基陶瓷复合材料。BAS不仅能有效地促进SiC陶瓷的致密化,而且自身还能完全晶化成高熔点的六方钡长石。SiC晶粒均匀地分散于连续的BAS相中,烧结温度的提高和BAS含量的增加均能进一步提高SiC基复合材料的致密度。BAS/SiC复合材料具有良好的综合力学性能,1900oC热压烧结制备的40wt.%BAS/SiC复合材料的抗弯强度和断裂韧性可分别达到597MPa和7.0MPa·m1/2,且室温力学性能可维持到1200oC。其主要的韧化机理为裂纹的偏转、SiC晶粒的拔出与桥连。Sr部分取代BAS中的Ba,虽能进一步促进材料的致密化,但未能有效地促进BAS由六方相→单斜相的转变。BAS/SiC和BSAS/SiC复合材料的显微组织受BAS含量的影响不大,说明SiC晶粒的生长是受界面反应控制的。TEM分析结果表明,复合材料中BAS和SiC晶粒直接结合,无明显的界面反应层或非晶层,说明在烧结过程中BAS和SiC之间没有发生化学反应,SiC和BAS具有良好的化学相容性。
     BAS/SiC复合材料具有优异的高温抗氧化性能。氧化测试结果表明,BAS/SiC复合材料氧化增重曲线呈抛物线变化规律,高的BAS含量能提高材料的抗氧化性能,40wt.%BAS/SiC复合材料经1200oC下氧化8小时后增重仅为0.31mg/cm2。
     利用放电等离子快速烧结(SPS)技术,成功地制备出致密的BAS/(Si3N4-SiC)复合材料。Si3N4晶粒的加入显著提高了BAS/SiC复合材料的力学性能,30wt.%BAS/(20Si3N4+50SiC)复合材料中,30wt.%BAS/SiC复合材料的抗弯强度由527MPa提高到659MPa;30wt.%BAS/SiC复合材料的断裂韧性由5.5 MPa·m1/2提高到6.7MPa·m1/2,其力学性能的提高主要归结于自生β-Si3N4棒晶对复合材料的强韧化效应。
BAS/SiC, BSAS/SiC and BAS/(Si3N4-SiC) composites were synthesized by hot-press sintering and spark plasma sintering method. Crystalline phases and microstructure observations were characterized by X-ray techniques, SEM, TEM and HRTEM method. Room-temperature mechanical properties of the composites were measured by a three-point bend and single-edge-notch beam method. Fracture mode, strengthening and toughening mechanisms of the SiC matrix composites were studied. Oxidation behavior and toughening mechanisms at high temperature of the composites were also studied.
     BAS was first introduced to the sintering of SiC ceramics. The results showed that BAS could serve as an effective liquid sintering aid to promote densification of SiC grain during sintering process, and could entirely crystallize to high melting hexacelsian. SiC grains are homogenously distributed in the continuous BAS matrix. With increasing the sintering temperature and BAS content, the densities of the composites increase. The excellent mechanical properties were obtained for the BAS/SiC composites. The flexural strength and fracture toughness of 40wt.%BAS/SiC composites HP-ed at 1900oC was up to 597MPa and 7.0 MPa·m1/2, respectively, and its room-temperature flexural strength can maintain to 1200oC. The strength and toughening mechanisms were realized by crack propagation, crack bridging and SiC pullout of the BAS/SiC and BSAS/SiC composites.
     The densites of the composites were increased with Sr instead of Ba of the BAS phase partly. Microstructure of the BAS/SiC and BSAS/SiC composites hardly affect by BAS content, which indicates the growth of SiC grains are controlled by interface reaction. TEM observation indicated that no reaction layers or armosphere layers were observed, there was no reaction between SiC particles and BAS phase. SiC grains are compatible with BAS phase.
     Excellent oxidation resistance was obtained at high temperature for BAS/SiC composites. It was found that the oxidation rate of the composites followed a simple parabolic growth law. The weight change of 40wt.%BAS/SiC was 0.31mg/cm2 after oxidation at 1200oC maintaining 8h.
     Fully dense BAS/(Si3N4-SiC) composites were successfully fabricated by SPS method. The addition ofβ-Si3N4 particles increased the mechcanical properties of the BAS/SiC composites. the flexural strength and fracture toughness of the 30wt.%BAS/(20Si3N4+50SiC) omposites were up to 659MPa and 6.7MPa·m1/2, respectively, comparing with 527MPa and 5.5MPa·m1/2 of 30wt.%BAS/SiC composites, which induced good strengthening and toughening effect of self-reinforces rodβ-Si3N4 particles of the composites.
引文
1 S. K. Lee, W. Ishida, S. Y. Lee, K. W. Nam, K. ando. Crack-Healing Behavior and Resultant Strength Properties of Silicon Carbide Ceramic. Journal of the European Ceramic Society. 2005, 25: 569-576
    2 A. K. Gain, J. K. Han, H. D. Jang, B. T. Lee. Fabrication of Continuously Porous SiC-Si3N4 Composite Using SiC Powder by Extrusion Process. Journal of the European Ceramic Society. 2006, 26: 2467-2473
    3 H. H. Nersisyan, Y. B. Hou, C. W. Won. Synthesis ofα-SiC (6h) Using 6h Polytype SiC Diluent by the Seeding Technique. Powder Technology. 2009, 189: 48-51
    4 O. B. Lopez, A. L. Ortiz, F. Guiberteau, N. P. Padture. Effect of the Nature of the Intergranular Phase on Sliding-Wear Resistance of Liquid-Phase-Sinterdα-SiC. Scripta Materialia. 2007, 57: 505-508
    5 A. Gubernat, L. Stobierski, P. Labaj. Microstructure and Mechanical Properties of Silicon Carbide Pressureless Sintered with Oxide Additives. Journal of the European Ceramic Society. 2007, 27: 781-789
    6 J. Ihle, M. Herrmann, J. Adler. Phase Formation In Porous Liquid Phase Sintered Silicon Carbide: Part I: Interaction Between Al2O3 and SiC. Journal of the European Ceramic Society. 2005, 25: 987-995
    7 J. Ihle, M. Herrmann, J. Adler. Phase Formation in Porous Liquid Phase Sintered Silicon Carbide: Part ???: Interaction between Al2O3 and SiC. Journal of the European Ceramic Society. 2005, 25: 1005-1013
    8 A. Can, M. Herrmann, D. S. Mclachlan, I. Sigalas, J. Adler. Densification of Liquid Phase Sintered Silicon Carbide. Journal of the European Ceramic Society. 2006, 26: 1707-1713
    9 J. S. Gonzalez, A. L. Ortiz, F. Guiberteau, C. Pascual. Complex Impedance Spectroscopy Study of a Liquid-Phase-Sinteredα-SiC Ceramic. Journal of the European Ceramic Society. 2007, 27: 3935-3939
    10 O. B. Lopez, A. L. Ortiz, F. Guiberteau. Sliding-Wear-Resistant Liquid-Phase-Sintered SiC Processed Usingα-SiC Starting Powders. Journal ofthe American Ceramic Society. 2007, 90[2]: 541-545
    11 J. F. Hu, H. Gu, Z. M. Chen, S. H. Tan, D. L. Jiang, M. Ruhle. Core-Shell Structure from the Solution-Reprecipitation Process In Hot-Pressed AlN-Doped SiC Ceramics. Acta Crystallographica. 2007, 55: 5666-5673
    12 N. Matsunaga, K. Nakahama, Y. Hirata, S. Sameshima. Enhancement of Strength of SiC by Heat-Treatment in Air. Journal of Ceramic Processing Research. 2009, 10(3): 319-324
    13郭瑞松.工程结构陶瓷.天津大学出版社. 2002: 177
    14特种陶瓷(第二版)王零森编著中南大学出版社2005: 14
    15 A. R. Verma, P. Krishna. Polymorphism and Polytypism in Crystals, Wiley, New York. 1996
    16 D. Pandey, P. Krishna. The Origin of Polytype Structures. Progress in Crystal Growth and Characterization of Materials. 1983, 7: 213–258
    17 N. Ohtani, J. Takahashi, M. Katsuno, H. Yashiro, M. Kanaya. Development of Large Single-Crystal SiC Substrates Electronics and Communications in Japan, Part 2, 1998, 81(6): 112-121
    18 L. S. Ramsdell. Studies in Silicon Carbide. American Mineral. 1947, 32: 64–82
    19 E. G. Acheson. Chem. News, 1893, 68:179
    20 P. Matje, K. A. Schwetz.‘Ceram. Trans., Ceramic Powder Science Ii’, A, Vol.1, Ed. G. L. Messing, E. R. Fuller, Jr. and H. Hausner, Journal of the American Ceramic Society. Westerville, Ohio (1988) P.460
    21 A. Rosenflanz, I. W. Chen. Kinetics of Phase Transformations in Sialon Ceramics. I. Effects of Cation Size, Composition and Temperature. Journal of the European Ceramic Society. 1999, 19 (13-14):2325-2335
    22 T. Hase, H. Suzuki. Sinterability of Submicron Beta-SiC Prepared from Siliconization of Carbon Black. Journal Ceramic Society Japan. 1978, 86: 606-611
    23 Y. ando Et Al.. Preparation of Ultrafine Particles of Refractory Metal Carbides by A Gas-Evaporation Method. Journal Crystal Growth. 1981,52: 178-181
    24 G. C. Wei, C. R. Kennedy, L. A. Harris. Synthesis of Sinterable SiC Powders by Carbothermic Reaction of Gel-Derived Precursors and Pyrolysis of Polycarbosilane. American Ceramic Society Bulletin. 1984, 63:1054-1061
    25 Y. Okaba, J. Hojo, A. Kato. Formation of Fine Silicon Carbide Powders by A Vapor Phase Method. Journal of the Less Common Metals. 1979, 68:29-41
    26 Y. Okaba, J. Hojo, A. Kato. Journal Chemical Society Japan, 1980. 88:188
    27 W. R. Cannon, S. C. Danforth, J. H. Flint, J. S. Haggerty, R. A. Marra. Sinterable Ceramic Powders from Laser-Driven Reactions: I, Process Description and Modeling. Journal of the American Ceramic Society.1982, 65:324-330
    28 W. R. Cannon, S. C. Danforth, J. S. Haggerty, R. A. Marra. Sinterable Ceramic Powders from Laser-Driven Reactions. II. Powder Characteristics and Process Variables. Journal of the American Ceramic Society. 1982, 659:330-335
    29 M. Luce, O. Croix, C. Robert, M. Cauchetier.‘Ceram. Trans., Ceramic Powder Science III’, Vol.12, Ed. G. L. Messing, S. Hirano and H. Hausner, Journal of the American Ceramic Society. Westerville, Ohio (1990) P.267
    30殷庆瑞,祝炳和.功能陶瓷的显微结构、性能与制备技术.冶金工业出版社. 2005: 240
    31 C. Greskovich, J. H. Rosolowski. Sintering of Covalent Solids. Journal of the American Ceramic Society. 1976, 59 [7-8]:336-343
    32 S. Prochazka.‘Mass Transport Phenomena In Ceramics’, Ed. A. R. Cooper and A. H. Heuer, Vol.9, Plenum Press, New York (1975) P.421
    33 H. Hausner,‘Energy and Ceramics’, Mater. Sci. Monographs, Vol.6, Ed. P. Vincenzini, Elsevier Scientific Publ. Co., Amsterdam (1980) P.582
    34 H. Suzuki, T. Hase.‘Proc. Int. Symp. On Factors In Densification and Sintering of Oxide and Non-Oxide Ceramics’, Ed. S. Sōmiya and S. Salto, Gakujutsu Bunken, Fukyu-Kai, Tokyo (1979) P.345
    35 Y. Murata, R. H. Smoak. Proc. Int. Symp. On Factors In Densification and Sintering of Oxide and Non-Oxide Ceramics, Ed. S. Sōmiya and S. Saito, Gakujutsu Bunken, Fukyu-Kai, Tokyo (1979) P.383
    36 D. H. Stutz, S. Prochazka, J. Lorenz. Sintering and Microstructure Formation ofβ-Silicon Carbide. Journal of the American Ceramic Society. 1985,68: 479-482
    37 R. A. Alliegro, L. B. Coffin, J. R. Tinklepaugh. Pressure-Sintered Silicon Carbide. Journal of the American Ceramic Society. 1956, 39: 386-389
    38 W. Br?cker, H. Landfermann, H. Hausner. Powder Metall. International. 1979,11: 83
    39 S. Shinozaki, J. Haugas, W. T. Donlon, R. M. Williams, B. N. Juterbock.‘Advanced Ceramics Ii’, Ed. S. Sōmiya, Elsevier Applied Science, London (1988) P.7
    40 A. Kerber, H. Hoffmann, P. Wirth.‘Ceram. Trans., Ceramic Powder Science III’, Vol.12, Ed. G. L. Messing, S. Hirano and H. Hausner, Journal of the American Ceramic Society. Westerville, Ohio (1990) P.895
    41 J. Hojo,‘Silicon Carbide Ceramics’, Vol.1, Ed. S. Sōmiya and Y. Inomata, Elsevier, Barking, U.K. (1991) P.149
    42 H. Tanaka,‘Silicon Carbide Ceramics’, Vol.1, Ed. S. Sōmiya and Y. Inomata, Elsevier, Barking, U.K. (1991) P.213
    43 S. Prochazka, C. A. Johnson, R. A. Giddings.‘Proc. Int. Symp. On Factors In Densification and Sintering of Oxide and Non-Oxide Ceramics’, Ed. S. Sōmiya and S. Saito, Gakujutsu Bunken, Fukyu-Kai, Tokyo (1979) P.366
    44 M.N. Rahaman.‘Ceramic Processing and Sintering’, Marcel Dekker, New York (1995) P.707
    45 J. S. Nadeau. Very High Pressure Hot Pressing of Silicon Carbide. American Ceramic Society Bulletin, 1973,52: 170-174
    46 D. Kalish, E. V. Clougherty. Am. Ceram. Soc. Bull., 1969,48(5): 570-578
    47 K. Takatori, N. Ogawa, M. Shimada, M. Koizumi.‘Energy and Ceramics’, Mater. Sci. Monographs, Vol.6, Ed. P. Vincenzini, Elsevier Scientific Publ. Co., Amsterdam (1980) P.525
    48 T. Sakai, T. Aikawa. Phase Transformation and thermal Conductivity of Hot-Pressed Silicon Carbide. Containing Alumina and Carbon. Journal of the American Ceramic Society. 1988,71(1): C7-C9
    49 T. Sakai, N. Hirosaki. Hot-Pressing of SiC with Additions of Bao and C. Journal of the American Ceramic Society. 1985,68: C191- C193
    50 R. Ruh, A. Zangvil, J. Barlowe. Elastic Properties of SiC, AlN and their Solid Solutions and Particulate Composites. American Ceramic Society Bulletin, 1985, 64(10): 1368-1373
    51 J. Schoennahl, B. Willer, M. Daire.‘Sintering-New Developments’, Ed. M. M. Ristic, Elsevier Scientific Publ. Co., Amsterdam (1979) P.338
    52 M. Omori, H. Takei. Pressureless Sintering of SiC. Journal of the American Ceramic Society. 1982,65 (6): C92-C92
    53 N. P. Padture, B. R. Lawn. Toughness Properties of a Silicon Carbide with An In-Situ-Induced Heterogeneous Grain Structure. Journal of the American Ceramic Society. 1992,77: 2518-2522
    54 M. A. Mulla, V. D. Kristic. Pressureless Sintering ofα-SiC with Additions.Journal of Materials Science. 1994,29: 934-938
    55 M. A. Mulla, V. D. Kristic. Mechanical Properties ofβ-SiC Pressureless Sintered with Al2O3 Additions. Acta Crystallographica. 1994,42: 303-308
    56 N. P. Padture. In Situ-Toughened Silicon Carbide. Journal of the American Ceramic Society. 1994,77: 519-523
    57 Y. W. Kim, M. Mitomo, H. Hirotsuru. Grain Growth and Fracture Toughness of Fine-Grained Silicon Carbide Ceramics. Journal of the American Ceramic Society. 1995,78(11): 3145-3148
    58 A. Can, M. Herrmann, D. S. Mclachlan, I. Sigalas, J. Adler. Densification of Liquid Phase Sintered Silicon Carbide, Journal of the European Ceramic Society. 2006,26: 1707-1713
    59 A. Can, D. S. Mclachlan, G. Sauti, M. Herrmann. Relationship between Microstructure and Electrical Properties of Liquid-Phase Sintered Silicon Carbide Materials Using Impedance Spectroscopy. Journal of the European Ceramic Society. 2007,27: 1361-1363
    60 J. Ihle, M. Herrmann, J. Adler. Phase Formation in Porous Liquid Phase Sintered Silicon Carbide: Part ?: Interaction between Al2O3 and SiC, Journal of the European Ceramic Society. 2005,25: 987-995
    61 J. Ihle, M. Herrmann, J. Adler. Phase Formation in Porous Liquid Phase Sintered Silicon Carbide: Part ??: Interaction between Y2O3 and SiC, Journal of the European Ceramic Society. 2005, 25: 997-1003
    62 J. Ihle, M. Herrmann, J. Adler. Phase Formation in Porous Liquid Phase Sintered Silicon Carbide: Part ???: Interaction between Al2O3-Y2O3 and SiC, Journal of the European Ceramic Society. 2005,25: 1005-1013
    63 M. A. Mulla, V. D. Kristic. Low Temperature Pressureless Sintering ofβ-Silicon Carbide with Aluminum Oxide and Yttrium Oxide Additions. American Ceramic Society Bullitin. 1991,70: 439-443
    64 O. B. López, A. L. Ortiz, F. Guiberteau, N. P. Padture. Effect of Liquid-Phase Content on the Contact-Mechnical Properties of Liquid-Phase-Sinteredα-SiC, Journal of the European Ceramic Society. 2007,27: 2521-2527
    65 A. Gubernat, L. Stobierski, P. Labaj. Microstructure and Mechanical Properties of Silicon Carbide Pressureless Sintered with Oxide Additives, Journal of the European Ceramic Society. 2007, 27: 781-789
    66 M. Omori, H. Takei. Preparation of Pressureless-Sintered SiC-Y2O3-Al2O3.Journal of Material Science. 1988, 23: 3744-3749
    67 A. K. Misras. Thermochemical Analysis of the Silicon Carbide-Alumina Reaction with Reference To Liquid-Phase Sintering of Silicon Carbide. Journal of the American Ceramic Society. 1991,74(2): 345-351
    68 K. Suzuki.‘Silicon Carbide Ceramics’, Vol.2, Ed. S. Sōmiya and Y. Inomata, Elsevier, Barking, U.K. (1991) P.163.
    69 L. S. Sigl, H. J. Kleebe. Core/Rim Structure of Liquid-Phase-Sintered Silicon Carbide. Journal of the American Ceramic Society. 1993, 76: 773-776
    70 T. Grande, H. Sommerset, E. Hagen, K. Wiik, M. A. Einarsrud. Effect of Weight Loss on Liquid-Phase-Sintered Silicon Carbide. Journal of the American Ceramic Society. 1997, 80: 1047-1052
    71 F. F. Lange. Hot-Pressing Behavior of Silicon Carbide Powders with Additions of Aluminum Oxide. Journal of Material Science. 1975, 10(2): 314-320
    72 K. Y. Chia, W. D. G. B?cker, R. S. Storm. Silicon Carbide Bodies Having High Toughness and Fracture Resistance and Method of Making Same. U. S. Pat. 5 298 470 1994
    73 H. W. Jun, H. W. Lee, G. H. Kim, H. S. Song, B. H. Kim. Effect of Sintering Atmosphere on the Microstructure Evolution and Mechanical Properties of Silicon Carbide Ceramics. Ceramic Engineering Science Processing. 1997, 18(4): 487-504
    74 Z. K. Huang, T. Y. Tien. Solid-Liquid Reaction in the Si3N4-AlN-Y2O3 System. Journal of the American Ceramic Society. 1996, 79: 1717-1719
    75 B. W. Lin, M. Imai, T. Yano, T. Iseki. Hot-Pressing ofβ-SiC Powder with A1-B-C Additives. Journal of the American Ceramic Society. 1986, 69: C67-C68
    76 K. Suzuki, M. Sasaki. Fundamental Structural Ceramics, Edited by S. Sōmiya and R. C. Bradt (Terra Scientific Publishing Co., Tokyo, Japan, 1987), Pp. 75–87
    77 D. I. K., J. Kim, S. J. L. Kang. Effect of Isothermal Annealing on the Microstructure and Mechanical Properties of SiC Ceramics Hot-Pressed with Y2O3 and Al2O3 Additives. Journal of the European Ceramic Society. 2002, 22: 1321-1327
    78 Y. Zhou, K. Hirao, Y. Yamauchi, S. Kanzaki. Tailor the Mechanical Properties of Silicon Carbide Ceramics by Modification of the Intergranular Phase Chemistry and Microstructure, Journal of the European Ceramic Society. 2002,22: 2689-2696
    79 J. S. González, A. L. Ortiz, F. Guiberteau, C. Pascual. Complex Impedance Spectroscopy Study of a Liquid-Phase-Sinteredα-SiC Ceramic. Journal of the European Ceramic Society. 2007, 27: 3935-3939
    80 H. G. An, Y. W. Kim, J. G. Lee. Effect of Initialα-Phase Content of SiC on Microstructure and Mechanical Properties of SiC-TiC Composites, Journal of the European Ceramic Society. 2001, 21: 93-98
    81 G. Rixecker, K. Biswas, A. Rosinus, S. Sharma, I. Wiedmann, F. Aldinger. Fracture Properties of SiC Ceramics with Oxynitride Additives. Journal of the European Ceramic Society. 2002, 22: 2669-2675
    82 A. M. Kueck, L. C. Dejonghe. Two-Stage Sintering Inhibits Abnormal Grain Growth duringβtoαTransformation in SiC. Journal of the European Ceramic Society. 2008, 28: 2259-2264
    83 H. W. Xu, T. Bhatia, S. A. Deshpande, N. P. Padture, A. L. Ortiz, F. L. Cumbrera. Microstructural Evolution in Liquid-Phase-Sintered SiC: Part ?, Effect of Starting Powder. Journal of the American Ceramic Society. 2001, 84(7): 1578-1584
    84 S. A. Deshpande, T. Bhatia, H. W. Xu, N. P. Padture, A. L. Ortiz, F. L. Cumbrera. Microstructural Evolution in Liquid-Phase-Sintered SiC: Part ??, Effect of Plannar Defects and Seeds in the Starting Powder. Journal of the American Ceramic Society. 2001, 84(7): 1585-1590
    85 A. L. Ortiz, T. Bhatia, N. P. Padture, G. Pezzotti. Microstructural Evolution in Liquid-Phase-Sintered SiC: Part ???, Effect of Nitrogen-Gas Sintering Atmosphere. Journal of the American Ceramic Society. 2002, 85(7): 1835-1840
    86 N. P. Padture. In Situ-Toughened Silicon Carbide. Journal of the American Ceramic Society. 1994, 77(2): 519-523
    87 O. B. López, A. L. Ortiz, F. Guiberteau, N. P. Padture. Sliding-Wear-Resistant Liquid-Phase-Sintered SiC Processed Usingα-SiC Starting Powders. Journal of the American Ceramic Society. 2007, 90(2): 541-545
    88 A. Ma?tre, A. V. Put, J. P. Laval, S. Valetta, G. Trolliard. Role of Boron on the Spark Plasma Sintering of anα-SiC Powder, Journal of the American Ceramic Society. 2008, 28(9): 1881-1890
    89 F. Guillard, A. Allemand, J. D. Lucewicz, J. Galy. Densification of SiC by SPS-Effects of Time, Temperature and Pressure, Journal of the EuropeanCeramic Society. 2007, 27: 2725-2728
    90赵宏,金宗哲.晶粒增强复相陶瓷残余应力和增韧机制分析.硅酸盐学报.L996, 24 (25): 491-497
    91晏建武.Si3N4/SiC纳米陶瓷的显微组织与抗弯性能.机械工程材料.2003, 27(9): 18-25
    92魏明坤,张丽,鹏张广军.碳化硅耐火材料的发展与性能.硅酸盐通报.2001, 26(3): 36-40
    93 F. F. Lange. Effect of Microstructure on Strength of SiC/Si3N4 Composite System. Journal of the American Ceramic Society. 1973, 9 : 445-449
    94 Y. W. Kim. Fabrication and Mechanical Properties of Silicon Carbide–Silicon Nitride Composites with Oxynitride Glass. Journal of the American Ceramic Society. 1999, 82 (4): 1058-1060
    95 J. Wan. Highly Creep-Resistant Silicon Nitride/Silicon Carbide Nano-Nano Composites. Journal of the American Ceramic Society. 2006, 89: 274-280
    96张勇等.Sps工艺制备sicp/Si3n4复相陶瓷及力学性能的研究.粉末冶金工业.2008, 18(2): 1-5
    97董利民,张宝清.Si3N4-SiC纳米复合陶瓷材料的研究.清华大学学报(自然科学版) .1996, 36(6): 36-39
    98孙东立.Si3N4/SiC纳米复合陶瓷的微观结构.材料科学与工艺.1998, 6(3): 97-100
    99 C. H. Drummond. Application of Glass-Ceramic Process for the Fabrication of Wisker Reinforced Celsian-Composites. Ceramic Engineering Science Processing. 1999, 11: 1078-1086
    100 S. Boskovic, D. Kosanovic, H. D. Bahioul, P. Thomas, S. J. Kiss. Formation of Celsian from Mechanically Activated BaCO3-Al2O3–SiO2 Mixtures. Journal Alloys and Compound. 1999, 290: 230-235
    101 J. Hyatt, N. P. Bansal. Crystal Growth Kinetics in BaO·Al2O3·2SiO2 and SrO·Al2O3·2SiO2 Glasses. Journal of Material Science. 1996, 31: 172-184.
    102 W. E. Lee, M. Chen, P. E. James. Crystallization of Celsian (BaAl2Si2O8) Glass. Journal of the American Ceramic Society. 1995, 78(8): 2180-2186
    103 F. Ye, L. M. Liu, H. J. Zhang, Y. Zhou. Refractory Self-Reinforced Y-α-SiAlON with Bariumaluminosilicate Glass Ceramic Addition. Materials Science and Engineering A. 2008, 488: 352–357
    104 C. H. Drummond, W. E. Lee, N. P. Bansal, M. J. Hyatt. Crystallization of a Barium-Aluminosilicate Glass, Ceramic Engineering Science Processing. 1989, 10(9-10): 1485-1502
    105 N. P. Bansal. CVD SiC Fiber-Reinforced Barium Aluminosilicate Glass-Ceramic Matrix Composites. Materials Science and Engineering A. 1996, 220: 129-139
    106 N. P. Bansal, M. J. Hyatt. Crystallization Kinetics of BaO-Al2O3-SiO2 Glasses, 90th Annual Meeting of the American Ceramic Society Cincinnati, Ohio, May 1-5, 1998
    107 V. Cannillo, E. Caelier. Design and Optimization of Glass-Celsian Composites. Composites Part A. 2006, 37: 23-30
    108 N. P. Bansal. Celsian Formation in Fiber-Reinforced Barium Aluminosilicate Glass-Ceramic Matrix Composites. Materials Science and Engineering A. 2003, 342: 23-27
    109 I. Yoshihiko. Maltilayered Low Temperature Cofired Ceramics Technology. Baston: Springer. 2005, 13215
    110 H. Wolfram, B. George. Glass-Ceramic Technology. Ohio. Journal of the American Ceramic Society. 2002, 229-318
    111 B. Hoghooghi, J. Mckittrick. Microstructural Development, Densification, and Hot Pressing of Celsian Ceramics from Ion-Exchanged Zeolite Precursors. Journal of the American Ceramic Society. 1998, 81: 845-852
    112 R. E. Newnham, H. D. Megaw. The Crystal Structure of Celsian (Barium Feldspar). Acta Crystallogrphica. 1960, 13: 303-312
    113 D. T. Griffen, P. H. Ribbe. Refinement of the Crystal Structure of Celsian. American Mineral. 1976, 61: 414-418.
    114 W. Wong-Ng, H. Mcmurdie, B. Paretzkin, C. Hubbard, A. Dragoo. Standard X-Ray Diffraction Powder Patterns of Fifteen Ceramic Phases. Powder Diffi. 1987, 2: 107 and Jcpds Card No. 38-1450
    115 J. V. Smith. the Crystal Structure of Paracelsian, BaAl2Si2O8. Acta Crystallographica. 1953, 6: 613-620
    116 G. Chiari, G. Gazzoni, J. R. Craig, G. V. Gibbs, S. J. Louisnathan. Two Independent Refinements of the Structure of Paracelsian, BaAl2Si2O8. American Mineral. 1985, 70: 969-974
    117 W. Muller. On the Polymorphism of BaAl2Si2O8. Electron Microscopy inMineralogy. Edited by H-R. Wenk. Springer-Verlag, New York, 1976, 354-360
    118 Y. Takeuchi. A Detailed Investigation of the Structure of Hexagonal BaAl2Si2O8 with Reference to itsα-βInversion. Mineral. Journal. 1958, 2(5): 311-332
    119 F. Yu, N. Nagarajan, Y. Fang, K.W. White, Microstructural Control of a 70% Silicon Nitride-30% Barium Aluminum Silicate Self-Reinforcement Composite. Journal of the American Ceramic Society. 2001, 84: 13-22
    120 H. C. Lin, W. R. Foster. Studies in the System BaO-Al2O3-2SiO2, the Polymorphism of Celsian. American Mineral. 1968, 53: 134-144
    121 C. H. Drummond III. Glass Formation and Crystallization in High-Temperature Glass-Ceramics and S3N4. Journal of Non-Crystalline Solids. 1990, 123(1-3): 114-128
    122 N. P. Bansal, M. J. Hyatt. Crystallization Kinetics of BaO-Al2O3-2SiO2 Glasses. Journal of Materials Science.1989, 4: 1257-1265
    123 B. Yoshiki, K. Matsumoto. High-Temperature Modification of Barium Feldspar. Journal of the American Ceramic Society. 1951, 34: 283-286
    124 W. E. Lee, M. Chen, P. F. James. Crystallization of Celsian (BaAl2Si2O8) Glass. Journal of the American Ceramic Society. 1995, 78: 2180-2186
    125 H. C. Lin, W. R. Foster. Studies in the System BaO-Al2O3-SiO2: I. the Polymorphism of Celsian. American Mineral. 1968, 53: 134-138
    126 H. Barnighausen. Re-Examination of the UZR6FO14 Crystal Structure. Acta Crystallographica. 1975, 31: 3-7
    127 T. Ito, X-Ray Studies on Polymorphism; P. 19. Maruzen Co. Ltd., Tokyo, Japan, 1950.
    128 Y. C. Kobayashi. Transformation Kinetics from Hexacelsian to Celsian for Powders Having Uniform Particle Size. Ceramics International. 2001, 27: 179–184
    129 D. Bahat. Homogeneous and Heterogeneous Polymorphic Transformations in Alkaline Earth Feldspars. Journal of Material Science.1978, 13: 2548-2554
    130 N. P. Bansal, M. J. Hyatt. Crystallization Kinetics of BaO–Al2O3–SiO2 Glasses. Journal of Materials Science. 1989, 4 (5) 1257–65
    131 C. H. Drummond III, N. P. Bansal. Crystallization Behavior and Properties of BaO–Al2O3–SiO2 Glass Matrices. Ceramics Engneering Science Procesing. 1990, 11(7–8): 1072–86
    132 C. H. Drummond III. Glass Formation and Crystallization in High-TemperatureGlass-Ceramics and Si3N4. Journal of Non-Cryst. Solids. 1990, 123:114
    133 N. P. Bansal. Strong and Tough Hi-Nicalon-Fiber-Reinforced Celsian-Matrix Composites. Journal of the American Ceramic Society. 1997, 80(9): 2407-2409
    134 C. H. Drummond, N. P. Bansal. Microstructure Control of Silicon Nitride-Celsian Composites. Ceramics Engneering Science Procesing. 1990: 1072-1086
    135 N. P. Bansal. J. A. Setlock. Fabrication of Fiber-Reinforced Celsian Matrix Composites. Composites Part A 2001, 32(8): 1021-1029
    136 N. P. Bansal. Mechanical Properties of Hi-Nicalon Fiber-Reinforced Celsian Composites after High-Temperature Exposure in Air. Journal of the European Ceramic Society. 2009, 29(3): 525-535
    137 J. A. Griggs, K. J. Anusavice, J. J. Mecholsky, J. R. Devitrification and Microstructural Coarsening of a Fluoride-Containing Barium Aluminosilicate Glass, Journal of Material Science. 2002, 37: 2017-2022
    138 K. T. Lee, P. B. Aswath. Role of Mineralizers on the Hexacelsian to Celsian Transformation in the Barium Aluminosilicate (BAS) System, Materials Science and Engineering A. 2003, 352: 1-7
    139 Y. P. Fu, C. C. Chang, C. H. Lin, T. S. Chin. Solid-State Sythesis of Ceramics in the BaO-SrO-Al2O3-SiO2 System, Ceramics International. 2004, 30: 41-45
    140 S. Ghosh, P. Kundu, A. D. Sharma, R. N. Basu, H. S. Maiti. Microstructure and Property Evaluation of Barium Aluminosilicate Glass-Ceramic Sealant for Anode-Supported Solid Oxide Fuel Cell, Journal of the European Ceramic Society. 2008, 28: 69-76
    141 K. T. Lee, P. B. Aswath. Role of Mineralizers on the Hexacelsian to Celsian Trans-Formation in the Barium Aluminosilicate System. Materials Science and Engineering A. 2003,352(1-2): 1-7
    142 K. T. Lee, P. B. Aswath. Kinetics of the Hexacelsian to Celsian Transformation in Barium Aluminosilicates Doped with CaO. Inter. Journal Inorganic Materials. 2001,3(7): 687-692
    143 K. T. Lee, P. B. Aswath. Synthesis of Hexacelsian Barium Aluminosilicate by Solid-State. Journal of the American Ceramic Society. 2000, 83 (12): 2907-2912
    144 S. Chen, F. Ye, Y. Zhou. Low Temperature Hot Pressed BAS Matrix Composites Reinforced with in Situ Grown Si3N4 Whiskers. Ceramics International. 2002, 28: 51-58
    145 V. Murthy, M. Lewis. Matrix Crystallization and Interface Structure in SiC Celsian Composites. Braitn Ceramic Transmission. 1990, 89: 173-174
    146杨觉明,周万城,张立同.单斜钡长石作为晶种对bas玻璃陶瓷相变的影响.西安工业学院学报. 1998, 18(1): 40-45
    147 W. E. Lee, M. Chen, P. E. James. Crystallization of Celsian (BaA12Si2O8) Glass. Journal of the American Ceramic Society. 1995, 78 (8): 2180-2186
    148 X. D. Zhang, K. H. Sandhage, H. L. Fraser. Synthesis of Celsian (BaA12Si2O8) from Solid Ba- Al-Al2O3-SiO2 Precursors: ??, Tem Analyses of Phase Evolution. Journal of the American Ceramic Society. 1998, 81 (11):2983-2997
    149 N. P. Bansal. Solid State Synthesis and Properties of Monoclinic Celsian. Journal of Material Science. 1998, 33:4711-4715
    150 S. M. Allameh, K. H. Sandhage. Synthesis of Celsian (BaA12Si2O8) from Solid Ba- Al-Al2O3-SiO2 Precursors: ?, XRD and SEM/EDX Analyses of Phase Evolution. Journal of the American Ceramic Society. 1997, 80 (12):3109-3126
    151 B. Hoghooghi, J. M. Kittrick, E. Helsel, O. A. Lopez. Microstructural Development, Densification, and Hot Pressing of Celsian Ceramics from Ion-Exchanged Zeolite Precursors. Journal of the American Ceramic Society. 1998, 81 (4):845-852
    152 L. M. Liu, F. Ye, H. J. Zhang, J. Yu, Z. G. Zhang. Celsian Formation in Si3N4- Ba0.75Sr0.25Al2Si2O8 Composites. Scripta Materialia. 2009, 60:463-466
    153 S. Chen, F. Ye, Y. Zhou. Low Temperature Hot-Pressed BAS Matrix Composites Reinforced with in Situ Grown Si3N4 Whiskers. Ceramics International. 2002, 28:51-58
    154 F. Ye, L. M. Liu, J. X. Zhang, M. Iwasa, C. L. Su. Sythesis of Silicon-Nitride-Barium Aluminosilicate Self-Reinforced Ceramic Composite by a Two-Step Pressureless Sintering. Composites Science and Technology. 2005, 65: 2233-2239
    155 V. Cannillo, T. Manfredini, A. Motori, F. Patuelli, A. Saccani, A. Sola. Technologies Properties of Celsian Reinforced Glass-Matrix Composites. Ceramics International. 2007, 33(8): 1597-1601
    156 Douglas W. Freitag. in Situ Processed Si3N4 Whiskers in the System Barium Aluminosilicate-Si3N4, Materials Science and Engineering A. 1995, 195:197-205
    157 A. Bandyopadhyay, S. W. Quander, P. B. Aswath, D. W. Freitag, K. K. Richardson, D. L. Hunn. Kinetics of In-Situαtoβ-Si3N4 Transformation in aBarium Aluminosilicate Matrix. Scripta Metallurgica et Materialia. 1995, 32(9): 1417-1422
    158 S. W. Quander, A. Bandyopadhyay, P. B. Aswath. Synthesis and Properties of in Situ Si3N4-Reinforced BaO·Al2O3·2SiO2 Ceramic Matrix Composites. Journal of Material Science. 1997, 32:2021-2029
    159 S. Boskovic, D. Kosanovic, V. Dondur, R. Dimitrijevic. Sythesis of Si3N4-Celsian Composite Materials, Ceramics International. 2000, 26:33-37
    160 Y. Fang, F. Yu, K. W. White. Microstructural Influence on the R-Curve Behavior of a 70% Si3N4-30% Barium Aluminum Silicate Self-Reinforced Composite. Journal of Material Science. 2000, 35: 2695-2699
    161 F. Yu, N. Nagarajan, Y. Fang, K. W. White. Microstructural Control of a 70% Silicon Nitride-30% Barium Aluminum Silicate Self-Reinforced Composite. Journal of the American Ceramic Society. 1998, 84 (1):13-22
    162 V. Lansmann, M. Jansen. Application of the Glass-Ceramic Process for the Fabrication of Whisker Reinforced Celsian-Composites. Journal of Material Science. 2001, 36:1531-1538
    163 F. Yu, K. W. White. Relationship between Microstructure and Mechanical Performance of A 70% Silicon Nitride-30% Barium Aluminum Silicate Self-Reinforced Ceramic Composite, Journal of the American Ceramic Society. 2001, 84(1): 5-12
    164 F. Ye, L. M. Liu, L. J. Huang. Fabrication and Mechanical Properties of Carbon Short Fiber Reinforced Barium Aluminosilicate Glass-Ceramic Matrix Composites, Composites Science and Technology. 2008, 68:1710-1717
    165 F. Ye, L. M. Liu, Y. J. Wang, B. Peng, Q. C. Meng, Y. Zhou. Preparation and Mechanical Properties of Carbon Nanotube Reinforced Barium Aluminosilicate Glass-Ceramic Composites, Scripta Materialia. 2006, 55:911-914
    166 G. Gouadec, P. Colomban, N. P. Bansal. Raman Study of Hi-Nicalon-Fiber-Reinforced Celsian Composites: ?, Distribution and Nanostructure of Different Phase, Journal of the American Ceramic Society. 2001, 84(5):1129-1135
    167ō.ūnal, N. P. Bansal. In-Plane and Interlaminar Shear Strength of a Unidirectional Hi-Nicalon Fiber-Reinforced Celsian Matrix Composite, Ceramics International. 2002, 28:527-540
    168 N. P. Bansal. Celsian Formation in Fiber-Reinforced Barium Aluminosilicate
    Glass-Ceramic Matrix Composites, Materials Science and Engineering A. 2003, 342:23-27
    169 F. Ye, J. M. Yang, L. T. Zhang, W. C. Zhou, Y. Zhou, T. C. Lei. Fracture Behavior of SiC-Whisker-Reinforced Barium Aluminosilicate Glass-Ceramic Matrix Composites, Journal of the American Ceramic Society. 2001, 84(4):881-883
    170 F. Ye, S. Chen, M. Iwasa. Sythesis and Properties of Barium Aluminosilicate Glass-Ceramic Composites Reinforced with in Situ Grown Si3N4 Whiskers, Scripta Materialia 2003, 48:1433-1438
    171 F. Ye, J. C. Gu, Y. Zhou, M. Iwasa. Sythesis of BaA12Si2O8 Glass-Ceramic by a Sol-Gel Method and the Fabrication of SiCpl/BaA12Si2O8 Composites, Journal of the European Ceramic Society. 2003, 23:2203-2209
    172 N. P. Bansal. Cvd SiC Fiber-Reinforced Barium Aluminosilicate Glass-Ceramic Matrix Composites, Materials Science and Engineering A. 1996, 220: 129-139
    173 J. C. Gu, F. Ye, Y. Zhou, T. C. Lei. Microstructure and Mechanical Properties of SiC Platelet Reinforced BaA12Si2O8 (BAS) Composites, Ceramics International. 2000, 26: 855-863
    174 F. Ye, Y. Zhou, T. C. Lei, J. M. Yang, L. T. Zhang. Microstructure and Mechanical Properties of Barium Aluminosilicate Glass-Ceramic Matrix Composites Reinforced with SiC Whiskers. Journal of Material Science. 2001, 36: 2575-2580
    175 I. G. Talmy, J. A. Zaykoski, C. A. Martin. Flexural Creep Deformation of ZrB2/SiC Ceramics in Oxidizing Atmosphere. Journal of the America Ceramic Society. Doi: 10.1111/J.1551-2916. 2008. 02370. X
    176 G. Magnani, L. Beaulardi. Properties of Liquid Phase Pressureless Sintered SiC–Based Materials Obtained without Powder Bed. Journal of the Austrilia Ceramic Society. 2005, 41(1): 31-36
    177 G. Magnani, L. Beaulardi. Mechanical Properties of Pressureless Sintered SiC–AlN Composites Obtained without Sintering Bed. Ceramic Engineering Science Processing. 2004, 25(4): 31-36
    178 M. Balog, K. Sedlackova, P. Zifcak, J. Janega, Liquid Phase Sintering of SiC with Rare-Earth Oxides. Silikaty. 2005, 49(4): 259-262
    179 Y. W. Kim, Y. S. Chun, S. H. Lee, J. Y. Park, T. Nishimura, M. Mitomo, W. S. Ryu. Microstructure and Mechanical Properties of Heat-Resistant SiliconCarbide Ceramics. Key Engineering. Materials.2007, 336–338: 1409-1413
    180 K. Biswas, G. Rixecker, F. Aldinger. Effect of Rare-Earth Cation Additions on the High Temperature Oxidation Behaviour of LPS–SiC. Materials Science and Engineering A. 2004, 374(1–2): 56-63
    181 L. Charpentier, A. Ma?tre, M. B. Pichelin, S. Foucaud, F. Audubert. Influence of Alumina on the Passive Oxidation at Low Oxygen Pressure of Hot-Pressedα-SiC. Scripta Materialia. 2009, 60: 481-484
    182 S. Nogami, N. Otake, A. Hasegawa, Y. Katoh, A. Yoshikawa, M. Satou, Y. Oya, K. Okuno. Oxidation Behavior of SiC/SiC Composites for Helium Cooled Solid Breeder Blanket. Fusion Engineering and Design. 2008, 83: 1490-1494
    183 H. J. Choi, Y.W. Kim, M. Mitomo, T. Nishimura, J. H. Lee, D. Y. Kim. Intergranular Glassy Phase Free SiC Ceramics Retains Strength at 1500oC. Scripta Materialia. 2004, 50: 1203-1207
    184 Y. W. Kim, S. H. Lee, T. Nishimura, M. Mitomo. Heat Resistant Silicon Carbide with Aluminium Nitride and Scandium Oxide. Acta Crystallographica. 2005, 53: 4701-4708
    185 V. A. Izhevskyi, A. H. A. Bressiani, J. C. Bressiani. Effect of Liquid Phase Sintering On Microstructure and Mechanical Properties of Yb2O3–AlN Containing SiC-Based Ceramics. Journal of the American Ceramic Society. 2005, 88(5): 1115-1121
    186 S. Ozden, R. Ekici, F. Nair. Investigation of Impact Behaviour of Aluminium Based SiC Particle Reinforced Metal–Matrix Composites. Composites Part A. 2007, 38: 484-494
    187 K. Biswas, J. Schneider, G. Rixecker, F. Aldinger. Comparative Bending Creep Behaviour of Silicon Carbide Sintered with Oxynitride Additives. Scripta Materialia. 2005, 53: 591–596
    188 F. Takashi, O. Taro, A. Hidemitsu, K. Naoyoshi, K. Chiharu, S. Takashi. Low-Temperature Oxidation of SiC Surfaces by Supercritical Water Oxidation. Applied Surface Science. 2010, 256(22): 6512-6517
    189 O. N. Grigoriev, B. A. Galanov, V. A. Lavrenko, A. D. Panasyuk. Oxidation of ZrB2–SiC–ZrSi2 Ceramics in Oxygen. Journal of the European Ceramic Society. 2010, 30(11) 2397-2405
    190 G. Magnani, A. Brillante, I. Bilotti, L. Beaulardi, E. Trentini. Effect of Oxidation on Surface Stresses and Mechanical Properties of Liquid PhasePressureless-Sintered SiC-AlN-Y2O3 Ceramics. Materials Science and Engineering A. 2008, 486: 381-388
    191 K. A. Weidenmann, G. Rixecker, F. Aldinger. Liquid Phase Sintered Silicon Carbide (LPS-SiC) Ceramics Having Remarkably High Oxidation Resistance in Wet Air. Journal of the European Ceramic Society. 2006, 26: 2453-2457
    192 L. Charpentier, M. Balat-Pichelin, A. Maitre, S. Foucaud, F. Audubert. Influence of Alumina on the Passive Oxidation at Low Oxygen Pressure of Hot-Pressedα-SiC. Scripta Materialia. 2009, 60: 481-484
    193 Z. Q. Yan, X. Xiong, P. Xiao, F. Chen, H.B. Zhang, B.Y. Huang. Oxidation Behavior of Oxidation Protective Coatings for C/C-SiC Composites at 1500oc. Transactions of Nonferrous Metals Society of China. 2009, 19: 61-64
    194 J. S. Lee, S. H. Lee, T. Nishimura, N. Hirosaki, H. Tanaka. A Ternary Compound Additive for Vacuum Densification ofβ-Silicon Carbide at Low Temperature. Journal of the European Ceramic Society. 2009, 29: 3419-3423
    195 K. N. Lee, D. S. Fox, N. P. Bansal. Rare Earth Silicate Environmental Barrier Coatings for SiC/SiC Composites and Si3N4 Ceramics. Journal of the European Ceramic Society. 2005, 25: 1705-1715
    196 N. Matsunagaa, K. Nakahamaa, Y. Hiratab, S. Sameshima. Enhancement of Strength of SiC by Heat-Treatment in Air. Journal of Ceramic Processing Research. 2009, 10(3): 319-324
    197 V. Zamora, E. S. González, A. L. Ortiz, P. Miranda, F. Guiberteau. Hertzian Indentation of a ZrB2–30% SiC Ultra-High-Temperature Ceramic up to 800oC in Air. The American Ceramic Society. Doi: 10.1111/J.1551-2916. 2010.03631. X
    198 X. Yang, Q. Z. Huang, Y. H. Zou, X. Chang, Z. A. Su, M. Y. Zhang, Z. Y. Xie. Anti-Oxidation Behavior of Chemical Vapor Reaction SiC Coatings on Different Carbon Materials at High Temperatures. Transactions of Nonferrous Metals Society of China. 2009, 19: 1044-1050
    199 M. Villegas, T. Sierra, F. Lucas, J. F. Fernández, A. C. Caballero. Oxidation Treatments for SiC Particles and its Compatibility with Glass. Journal of the European Ceramic Society. 2007, 27: 861-865
    200 J. Eck. M. B. Pichelin, B. Charpentier, L. E. F. Audubert, Behavior of SiC at High Termperature under Helium with Low Oxygen Partial Pressure. Journal of the European Ceramic Society. 2008, 28: 2995-3004
    201 G. Magnani, L. Beaulardi. Long Term Oxidation Behaviour of Liquid PhasePressureless Sintered SiC–AlN Ceramics Obtained without Powder Bed. Journal of the European Ceramic Society. 2006, 26: 3407-3413
    202 G. Magnani, F. Antolini, L. Beaulardi, E. Burresi, A. Coglitore, C. Mingazzini. Sintering, High Temperature Strength and Oxidation Resistance of Liquid-Phase-Pressureless-Sintered SiC–AlN Ceramics with Addition of Rare-Earth Oxides. Journal of the European Ceramic Society. 2009, 29: 2411-2417
    203 J. A. Costello, R. E. Tressler. Oxidation Kinetic of Hot-Pressed and Sinteredα-SiC. Journal of the American Ceramic Society. 1981, 64: 327-331
    204 J. A. Costello, R. E. Tressler. Oxidation of Silicon Carbide Crystals and Ceramics: ?, in Dry Oxygen. Journal of the American Ceramic Society. 1986, 69(9): 674-681
    205 R. C. A. Harris. Oxidation of 6h-αSilicon Carbide Platelets. Journal of the American Ceramic Society. 1975, 58: 7-9
    206 P. J. Jorgensen, M. E. Wasworth, I. B. Cutler. Oxidation of Silicon Carbide. Journal of the American Ceramic Society. 1959, 42: 613-616
    207 K.L.Luthra. Some New Perspectives on Oxidation of Silicon Carbide and Silicon Nitride. Journal of the American Ceramic Society. 1991, 74(5): 1095-1103
    208 W. L. Vaughn, H. G. Maahs. Active-to-Passive Transition in the Oxidation of Silicon Carbide and Silicon Nitride in Air. Journal of the American Ceramic Society. 1990, 73: 1540-1543
    209 S. C. Singhal. Oxidation Kinetics of Hot-Pressed Silicon Carbide. Journal of Material Science. 1976, 11: 1246-1253
    210 J. R.Guy Ervin. Oxidation Behavior of Silicon Carbide. Journal of the American Ceramic Society. 1958, 41(9): 347-352
    211 F. Rodríguez-Rojas, A. L. Ortiz, O. Borrero-López, F. Guiberteau. Effect of Ar or N2 Sintering Atmosphere on the High-Temperature Oxidation Behaviour of Pressureless Liquid-Phase-Sinteredα-SiC in Air. Journal of the European Ceramic Society. 2010, 30: 119-128
    212 F. Rodríguez-Rojas, A. L. Ortiz, O. Borrero-López, F. Guiberteau. Effect of the Sintering Additive Content on the Non-Protective Oxidation Behaviour of Pressureless Liquid-Phase-Sinteredα-SiC in Air. Journal of the European Ceramic Society. 2010, 30: 1513-1518
    213 K. Biswas, F. Aldinger. High Temperature Compliance Test: A New Methodology to Characterize Visco-Elastic, Anelastic and Plastic Behaviour. Materials Chemistry and Physics. 2008, 112: 366-372
    214 N. P. Bansal, M. J. Hyatt. Crystallization. Kinetics of BaO-Al2O3-SiO2 Glasses. Journal of Materials Research. 1989, 4 (5):1257-1265
    215 H. Ye, V. V. Pujar, N. P. Padture. Coarsening in Liquid-Phase-Sinteredα-SiC. Acta Mater. 1999, 47: 481-487
    216 A. L. Ortiz, T. Bhatia, N. P. Padture. Microstructural Evolution in Liquid-Phase-Sintered SiC: Part III, Effect of Nitrogen-Gas Sintering Atmosphere. Journal of the American Ceramic Society. 2002, 85: 1835-1840
    217 L. S. Sigl, H. J. Kleebe. Core/Rim Structure of Liquid-Phase-Sintered Silicon Carbide. Journal of the American Ceramic Society. 1993, 76: 773-776
    218 J. S. Zhang, Y. Y. Zhang, M. T. Wang, F. X. Xu. Microstructure and Properties of Ceramics. Chemical Industry Publishing House, Beijing, China, 2007. P. 213
    219 K. Biswas, G. Rixecker, F. Aldinger. Improved High Temperature Properties of SiC-Ceramics Sintered with Lu2O3-Containing Additives. Journal of the European Ceramic Society. 2003, 23:1099-1104
    220 G. Ziegler, J. Heinrich, G. W?ting. Relationships Between Processing, Microstructure and Properties of Dense and Reaction-Bonded Silicon Nitride. Journal of Materials Science 1987, 22: 3041-3086
    221金志浩,王笑天.高温结构陶瓷研究进展.航空材料学报. 1999, 10(2): 53
    222 Y. W. Kim, M. Mitomo, T. Nishimura. High-Temperature Strength of Liquid-Phase-Sintered SiC with AlN and Re2O3 (Re=Y, Yb). Journal of the American Ceramic Society. 2002, 85(4): 1007-1009
    223 M. Omori. Sintering, Consolidation, Reaction and Crystal Growth by the Spark Plasma System (SPS). Materials Science and Engineering A. 2000, 287: 183-188
    224 P. F. Becher, M. K. Ferber. Temperature Dependent Viscosity of Sireal-based Glasses as a Function of N: O and Re: Al Ratios. Journal of the American Ceramic Society. 2004, 87: 1274-1279
    225 M. A. Lamkin, F. L. Riley, R. J. Fordam. Oxygen Mobility in Silicon Dioxide and Silicate Glasses: A Review. Journal of the European Ceramic Society. 1992, 10: 347-367
    226廖金带.高温结构陶瓷之一.陶瓷工程. 1994, 27(3): 43-48
    227徐永东,张立同,韩金探.高温结构陶瓷材料的设计准则.硅酸盐通报. 1997, (3):55~57
    228 M. K. Cinibulk, G. Thomas. Oxidation Behavior of Rare-Earth Disilicate-Silicon Nitride Ceramics. Journal of the American Ceramic Society. 1992, 75(8): 2044-2049
    229 E. Gomez, I. Iturriza, J. Echeberria, F. Castro. Oxidation Resistance of SiCCeramics Sintered in the Solid State or in the Presence of a Liquid Phase. Scripta Metallurgica et Materialia. 1995, 33 (3): 491-496
    230 K. Biswas, G. Rixecker, F. Aldinger, Effect of Rare-Earth Cation Additions on the High Temperature Oxidation Behaviour of LPS-SiC. Materials Science and Engineering A. 2004, 374:56-63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700