基于机器视觉的目标检测在精细农业中的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于机器视觉的目标检测技术将电子技术、传感技术、计算机技术、智能化控制技术等相结合,对于农业机械自动化的实现起着非常重要的作用。在蓝莓,柑橘等农业采摘机器人的实现过程中,果实识别是重点难点问题;在种植柑橘果树的过程中,黄龙病(Huanglongbing or HLB)的危害极大,其检测问题的解决对于果树的健康成长起着非常重要的作用。在总结国内外研究成果的基础上,以蓝莓估产、绿色柑橘估产、以及黄龙病的检测为研究实例,对基于机器视觉的目标检测在精细农业中的关键技术进行研究。主要研究内容和成果包括:
     (1)提出了基于RGB图像颜色分析的蓝莓果实检测方法。在自然场景下除去自然场景中复杂背景(天空、土壤、枝叶等)的干扰,对蓝莓果实进行识别,并对同一枝头不同生长阶段的果实进行分类。基于对多种颜色模型颜色分量的分析,选出了对于果实分类最有用的R、B、H三个分量。通过交叉验证,比较分析朴素贝叶斯分类器,K-近邻分类器(KNN)和提出的监督K-means分类器(SK-means)的表现。KNN分类器在训练集数据的分类精度最高。
     (2)以绿色柑橘作为研究对象,对绿色果实在自然光下RGB图像中的检测问题进一步研究。以建立柑橘早期估产系统为目标,提出了基于快速归一化互相关系数(fast normalized cross correlation, FNCC)和机器视觉的自然光图像中绿色柑橘果实检测方法研究。该方法首先基于RGB图像的颜色分量研究,尽可能多的去除了背景的影响,之后通过FNCC检测图像中的果实潜在位置。结合果实的颜色,纹理以及形状特征来对绿色柑橘果实进行检测之后,该方法对最终的结果进行融合,并最终确定了果实的数目。在检测的59幅验证集图像中共有154个果实,有130个被正确检测,24个果实被丢失,25个正误识。果实的正确检测率为84.4%。
     (3)提出一种基于机载高光谱(HS)图像的柑橘黄龙病新的检测方法,扩展的光谱角度匹配检测方法(Extended spectral angle mapping, ESAM)。该方法结合端元提取方法,红边位置确定等技术对传统光谱角度匹配算法(SAM)进行扩展。该方法首先分析柑橘叶冠的地面测量数据和机载高光谱图像数据健康和HLB感染树冠的特征和区别,然后使用ESAM算法与常用的三种方法SAM,K-均值和马氏距离分类法分别对训练集样本和验证集样本进行HLB检测,并对其结果进行比较。对训练集样本ESAM的正确率为82.6%,验证集的正确率为86.3%,其正确率最高。还探索了应用多光谱图像进行HLB检测的可行性。使用多光谱图像进行HLB检测的结果比使用机载高光谱图像的结果差很多,说明高光谱图像更适合完成这一任务。
     (4)为了更加有效的通过HS图像来检测HLB,需要一种有效的降维方法,来改进HLB的检测精确率。尝试了四种不同的降维方法,主成分分析方法(PCA),最大噪声分离变换方法(MNF),前向特征检测方法(FFSA)和基于Kullback-Leibler散度(KLD)的降维方法。通过使用这四种方法选出的有效波段,比较其检测结果。在基于像素的检测结果中,利用PCA和KLD方法的降维结果表现出较高的HLB检测正确率63.3%。在基于植株的分类中,利用MNF和KLD方法的降维结果的HLB检测正确率达93.3%,显示了降维方法的应用潜力。
Target detection based on machine vision has integreted electronic technology, sensor technology, computer technology, intelligent control technology and so on, which plays a very important role for the realiztion of algricultural machinery automation. Fruit detection is a very challenging problem when developing a blueberry or citrus picking robot. Huanglongbing (HLB) is a great threat to citrus trees during their growth. The identification of HLB is very important for the citrus tree grower. Based on previous research results, this thesis conducted study on machine vision based target detection technology applied on yield mapping of blueberry, green citrus, and HLB detection research. In general, the major works and contribution of this thesis are as follows.
     (1)An algorithm termed 'color component analysis based detection (CCAD)' method, was developed. This newly developed 'CCAD' method for blueberry was proved to be efficient for separating fruit from background and identifying blueberry fruit of different growth stages using natural outdoor color images. Color components in several important color model were analyzed, and three components including R, B, and H were selected to do fruit identification. Cross validation was conducted using not only the traditional classifiers such as K-nearest neighbor (KNN) and naive Bayesian classification (NBC), but another newly introduced 'supervised K-means clustering classifier (SK-means)'. KNN classifier yielded the highest classification accuracy using the prebuilt pixel dataset.
     (2)This thesis further studied the green fruit detection using RGB images. A fast normalised cross correlation (FNCC) based machine vision algorithm was proposed in this study to develop a method for detecting and counting immature green citrus fruit using outdoor colour images toward the development of an early yield mapping system.Firstly, the background was removed as much as possible based on color component based analysis. Then the potential fruit positions were identified using the proposed fast normalised cross correlation (FNCC) based method. Finally, the number of fruit was determined after combining colour, texture, and shape feature analysis. For a validation dataset of59images,130green fruits were identifies,24fruits were misses,25fruits were false positives. The identification accuracy was84.4%.
     (3) In this study, a novel method termed 'extended spectral angle mapping (ESAM)' was proposed to detect HLB.This method extended the traditional spectral angle mapping method by combining endmember extraction method, red edge position technique, and several other techniques. Firstly, the spectral differences between healthy and HLB infected canopies from ground measurement and hyperspectral image was analyzed. Then the performance of the proposed 'ESAM' method and two other commonly used methods:K-means, and Mahalanobis distance (MahaDist) was evaluated and compared, and it was shown ESAM performed best. A fairly high detection accuracy of82.6%was achieved in the calibration set, and86.3%in the validation set was achieved using the proposed ESAM method. The study also explored the feasibility of using MS image for HLB identification. However, it didn't achieve as good result as HS image, which indicated that HS image was a better choice for HLB detection.
     (4) To solve citrus greening disease (Huanglongbing, or HLB) detection problem using airborne HS image, an efficient dimension reduction method needs to be applied. In this study four dimension reduction methods including principal component analysis (PCA), maximum noise fraction (MNF) transformation, forward feature selection algorithm (FFSA) and Kullback-Leibler divergence (KLD) based method, were applied on the obtained HS image. The selected bands or components were used for the following pixel based or tree based classification. KLD showed the highest pixel beased HLB detection accuracy of63.3%using validation pixel dataset, which indicated there was much room for study and improvement of how to use dimension reduction method efficiently. MNF and KLD gave the same tree based HLB detection accuracy, which was93.3%, which also indicated the potential of the dimension reduction.
引文
[1]汪懋华.精细农业.中国农业大学出版社,北京,2011.
    [2]汪懋华.“精细农业”发展与工程技术创新.农业工程学报,1999,15(1):1-8
    [3]Castleman, K. R(朱志刚等译).数字图像处理.北京:电子工业出版社,2006.
    [4]冈萨雷斯.数字图像处理.北京:电子工业出版社,2008.
    [5]Williamson J. G., Lyrene P. M.2009. Increasing efficiencies and reducing costs of commercial blueberry production in Florida. Available from: http://www.reeis.usda.gov/web/crisprojectpages/218118.html.
    [6]U.S Highbush Blueberry Council,2012. Health benefits of blueberries:Blueberry Nutrition research. Available from:.
    [7]Yang C., Lee W.S., Williamson J.G. Classification of blueberry fruit and leaves based on spectral signatures. Biosystems Engineering,2012,113(4):351-362.
    [8]USDA/National Agricultural Statistics Service, "Citrus Fruits 2012 Summary," available:http://usda01.library.cornell.edu/usda/current/CitrFrui/CitrFrui-09-20-2012.pdf,2012.
    [9]USDA/National Agricultural Statistics Service, "Citrus Fruits 2012 Summary"Available from http://usda01.library.cornell.edu/usda/current/CitrFrui/CitrFrui-09-19-2013.pdf.
    [10]白华菊,龙梦玲.柑橘黄龙病研究进展.中国植保导刊.2009,29(3):13-15.
    [11]Coletta-Filho H.D., Targon M.L.P.N., Takita M.A., etc. First report of the causal Agent of huanglongbing (Candidatus liberibacter americanus") in brazil. [J].Plant Disease,2004,88(12).
    [12]FDACS/DPI. (2011). "Sections (TRS) Positive for Huanglongbing (HLB, Citrus Greening) in Florida," Available: http://www.freshfromflorida.com/pi/chrp/greening/StatewidePositiveHLBSections.pdf.
    [13]Texas Department of Agriculture and the USDA.2012. Texas Department of Agriculture and USDA Confirm Detection of Plant Disease That Damages Citrus Trees. Available: http://www.texascitrusgreening.org/.
    [14]California Department of Food and Agriculture and the USDA.2012. Citrus Disease Huanglongbing Detected in Hacienda Heights Area of Los Angeles County. Available: http://weblogs.nal.usda.gov/invasivespecies/archives/2012/04/citrus_greening.s html.
    [15]Saiki RK et al. "Enzymatic Amplification of P-globin Genomic Sequences and Restriction Site Analysis for Diagnosis of Sickle Cell Anemia" Science,1985,230:1350-54.
    [16]Jimenez A.R., Ceres R., Pons, J.L. A survey of computer vision methods for locating fruit on trees. Transactions of the ASAE,2000,43(6),1911-1920.
    [17]Parrish, E. A. Jr., Goksel, A. K. Pictorial pattern recognition applied to harvesting. Transactions of the ASAE,1977,20:822-827.
    [18]Stajnko, D., Lakota, M., Hocevar, M. Estimation of number and diameter of apple fruits in an orchard during the growing season by thermal imaging. Computers and Electronics in Agriculture,2004,42:31-42.
    [19]Kane, K.E., Lee W.S.Multispectral imaging for in-field green citrus identification. ASABE Paper No. 073025. St. Joseph, Mich.:ASABE,2007.
    [20]Annamalai, P., Lee, W. S. Identification of green citrus fruits using spectral characteristics. ASAE Paper No. FL04-1001, ASAE, St. Joseph, MI, USA,2004.
    [21]Okamoto, H., Lee, W.S.,2009. Green citrus detection using hyperspectral imaging. Computers and Electronics in Agriculture 66,201-208.
    [22]Kurtulmus, F., Lee, W. S., & Vardar, A. Green citrus detection using'eigenfruit', color and circular Gabor texture features under natural outdoor conditions. Computers and Electronics in Agriculture,2011, 78(2),140-149.
    [23]Bansal R, Lee W S, Satish S. Green citrus detection using fast Fourier transform (FFT) leakage [J]. Precision Agriculture,2013,14(1):59-70.
    [24]Kurtulmus F, Lee W S, Vardar A. Immature peach detection in colour images acquired in natural illumination conditions using statistical classifiers and neural network [J]. Precision Agriculture,1-23.
    [25]Zaman, Q. U., Schumann, A. W., Percival, D. C., Gordon, R. J. Estimation of wild blueberry fruit yield using digital color photography. Trans. ASABE,2008,51(5),1539-1544.
    [26]Zaman, Q. U., Swain, K. C., Schumann, A. W., Percival, D. C. Automated, low-cost yield mapping of wild blueberry fruit. Applied Engineering in Agriculture,2010,26(2),225-232.
    [27]Swain, K. C., Zaman, Q. U., Schumann, A. W., Percival, D. C., Bochtis, D.D. Computer vision system for wild blueberry fruit yield mapping. Biosystems Engineering,2010,106(4),389-394.
    [28]Chang, Y. K., Zaman, Q., Farooque, A. A., Schumann, A. W., Percival, D. C. An automated yield monitoring system II for commercial wild blueberry double-head harvester. Computers and Electronics in Agriculture,2012,81,97-103.
    [29]Farooque, A. A., Chang, Y. K., Zaman, Q. U., Groulx, D., Schumann, A. W., Esau, T. J. Performance evaluation of multiple ground based sensors mounted on a commercial wild blueberry harvester to sense plant height, fruit yield and topographic features in real-time. Computers and Electronics in Agriculture, 2013,91,135-144.
    [30]张亚静,邓烈,李民赞.基于图像处理的柑橘测产方法研究.农业信息化、自动化与电气化国际会议,2008.
    [31]司永胜,乔军,刘刚,等.基于机器视觉的苹果识别和形状特征提取.农业机械学报,2009,40(8):161-165.
    [32]司永胜,刘刚,高瑞,等.基于K2均值聚类的绿色苹果识别技术.农业机械学报,2009,增刊:100-104.
    [33]Zhou R., Damerow L., Sun Y., Blanke M. M.Using colour features of cv.'Gala' apple fruit in an orchard in image processing to predict yield. Precision Agriculture,2012,13(5):568-580.
    [34]Jagoueix S., Bove J.M., Gamier M. Techniques for the specific detection of the two Huanglongbing (greening) liberobacter species, DNA/DNA hybridization and DNA amplification by PCR,13th IOCV conference,1996.
    [35]Ustin S. L., Roberts D. A., Gamon J. A, Asener G. P., Green R. O. Using imaging spectroscopy to study ecosystem processes and properties. BioScience,2004,54(6):523-534.
    [36]Zhang M., Qin Z., Liu X., Ustin S. L. Detection of stress in tomatoes induced by late blight disease in California. International Journal of Applied Earth Observation and Geoinformation,2003,4(4):295-310.
    [37]Ye X., Sakai K., Sasaoa A., Asadac S. Potential of airborne hyperspectral imagery to estimate fruit yield in citrus. Chemometrics and Intelligent Laboratory Systems,2008,90(2):132-144.
    [38]Plaza, A., Benediktsson, J. A., Boardman, J. W., Brazile, J.,Bruzzone, L., Valls, G. C., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., Marconcini, M.,Tilton, J. C., & Trianni, G. Recent advances in techniques for hyperspectral image processing. Remote Sensing of Environment,2009,113(Supplement 1):S110-S122.
    [39]Green A. A., Berman M., Switzer P., Craig M. D. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sensing,1988, 26(1):65-74.
    [40]Kruse F. A., Lefkoff A. B., Boardman J. W., Heidebrecht K. B., Shapiro A. T., Barloon P. J., Goetz A. F. H. The spectral image-processing system (SIPS)-interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment,1993,44(2-3):145-163.
    [41]Clark R. N., Gallagher A. J., Swayze G. A. Material absorption band depth mapping of imaging spectrometer data using the complete band shape least-squares algorithm simultaneously fit to multiple spectral features from multiple materials. In Proceedings of the Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Publication,1990,90-54,176-186.
    [42]DuY., Ives R., Chang C-I., Ren H., Chang C-C., Jensen J., Francis M., D. A new hyperspectral discrimination measure for spectral similarity. Optical Engineering,2004,43(8).
    [43]Nidamanuri R.R., Zbell B. Transferring spectral libraries of canopy reflectance for crop classification using hyperspectral remote sensing. Biosystem Engineering,2011,110(3):231-246.
    [44]Smith K. L., Steven M. D., Colls, J. J. Plant spectral responses to gas leaks and other stresses. International Journal of Remote Sensing,2005,26(18):4067-4081.
    [45]Huang W., Lamb D. W., Niu Z., Zhang Y., Liu L., Wang J. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precision Agriculture, 2007,8 (4-5):187-197.
    [46]Lee W. S., Ehsani R., Albrigo L. G. Citrus greening (Huanglongbing) detection using aerial hyperspectral imaging. In Proc.9th International Conference on Precision Agriculture, Denver, Colorado, 2008.
    [47]Qin J., Burks T. F., Ritenour M. A., Bonn W. G. Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence. Journal of Food Engineering,2009,93(2):183-191.
    [48]Mewes T., Franke J., Menz G. Spectral requirements on airborne hyperspectral remote sensing data for wheat disease detection. Precision Agriculture,2011,12(6):795-812.
    [49]Bhattacharyya A. On a measure of divergence between two statistical populations defined by probability distributions. Bulletin of the Calcutta Mathematical Society,1943,35:99-109.
    [50]Kumar A., Lee W. S., Ehsani R., Albrigo L. G., Yang C. R., Mangan L. Citrus greening disease detection using aerial hyperspectral and multispectral imaging techniques. J. Appl. Remote Sens.,2012, 6(1),063542-1-063542-22.
    [51]Li X., Lee W. S., Li M., Ehsani R., Mishra A. R., Yang C., Mangan R. L. Spectral difference analysis and airborne imaging classification for citrus greening infected trees. Computers and Electronics in Agriculture,2012,83:32-46.
    [52]章毓晋.图像工程.上册:图像处理.北京:清华大学出版社,2006.
    [53]章毓晋.图像工程.中册:图像分析.北京:清华大学出版社,2006.
    [54]章毓晋.图像工程.下册:图像理解.北京:清华大学出版社,2006.
    [55]陈兵旗,孙明.实用数字图像处理与分析.北京:中国农业大学出版社,2008.2.
    [56]Sonka M., Hlavac V, Boyle, R(艾海舟,苏延超译)Image processing, analysis, and machine vision. (Third edition)北京:清华大学出版社,2011.
    [57]wikihttp://zh. wikipedia.org/wiki/%E9%9B%BB%E7%A3%81%E6%B3%A2%E8%AD%9C.
    [58]曹倩.基于机器视觉的番茄采摘机器人关键技术研究:[博士学位论文].北京:中国农业大学,2011.
    [59]近藤直,门田充司,野口伸.农业机器人.北京:中国农业大学出版社,2009.
    [60]http://en.wikipedia.org/wiki/CIE_1931_color_space.
    [61]重庆禧,张兵,郑兰芬.高光谱遥感——原理、技术与应用.北京:高等教育出版社,2006.
    [62]路威.面向目标探测的高光谱影像特征提取与分类技术研究:[博士学位论文].河南省郑州市:中国解放军信息工程大学,2005.5.
    [63]君占娥.现代遥感导论.北京:科技出版社,2008.
    [64]王立国,赵春晖.高光谱图像处理技术.北京:国防工业出版社,2013.
    [65]Bannon D., Hyperspectral imaging:Cubes and slices, Nature Photonics,2009,3:627-629.
    [66]Landgrebe D. A. Information Extraction Principles and Methods for Multispectral and Hyperspectral Image Data[M]. Chapter 1 of Information Processing for Remote Sensing. Published by the World Scientific Publishing, USA,2000.
    [67]赵芸.基于高光谱和图像处理技术的油菜病虫害虫早期监测方法和机理研究[博士学位论文].浙江:浙江大学,2013.3.
    [68]李修华.基于光谱学和遥感技术的作物生长实时检测研究:[博士学位论文].北京:中国农业大学,2012.5.
    [69]Milton E. J. Principles of field spectroscopy. International Journal of Remote Sensing,1987,8:1807-1827.
    [70]Milton E. J., Rollin E.M., Emery D.R. Advances in field spectroscopy. Advances in environmental remote sensing. F. M. Danson, Plummer, S.E. Chichester, Wiley,1995,9-32.
    [71]Milton E. J., Schaepman M. E., Anderson K., et al. Progress in field spectroscopy [J]. Remote Sensing of Environment,2009,113:S92-S109.
    [72]United States. National Bureau of Standards, Nicodemus F E. Geometrical considerations and nomenclature for reflectance [M]. Washington, D. C:US Department of Commerce, National Bureau of Standards,1977.
    [73]Duggin M. J., Phillipson W. R. Field measurement of reflectance:Some major considerations. Applied Optics,1982,21:2833-2840.
    [74]Richardson A. J. Measurement of reflectance factors under daily and intermittent irradiance variations. Applied Optics,1981,20(19):3336-3340.
    [75]Robinson F. B., Behl L. L. Calibration procedures for measurements of reflectance factors in remote sensing field research. Society of Photo-Optical Instrumentation Engineering,1979,196:16-26.
    [76]Goetz A. F. H., Vane G., Solomon J.E., RockB.N. Imaging spectrometry for earth remote sensing:Science,1985,228:1147-1153.
    [77]Celvin W. M, Vaughan R. G, Taranik J., et al. Spectral analysis of SEBASS data. Atmosphere correction, calibration surface emissivity and mineral mapping, Proceedings ofthel4th International Conference on Applied Geologic Remote Sensing,2000,1:20-26.
    [78]Green A. A., Berinan M., Switzer P., Craig M. D. A transformation for ordering multispcctral data interms ofimage quality with implications for noise removal. IEEE Trans.Geosci.Remote Sens.,1988, 26:65-74.
    [79]童庆禧,1990,遥感信息获取技术的研究与发展,遥感应用的实践与创新,测绘出版社.
    [80]童庆禧,郑兰芬.1999,高光谱遥感发展现状,遥感知识创新文集,中国科学技术出版社.
    [81]耿修瑞.高光谱遥感目标探测与分类技术研究:[博士学位论文].北京:中国科学院,2005.1.
    [82]Duda R. O., Hart P. E., Stork D. G模式分类.北京:机械工业出版社,2003.
    [83]Jolliffe I. T. Principal Component Analysis, Series:Springer Series in Statistics,2nd ed., Springer, NY,2002.
    [84]Green A. A., Berman M., P. Switzer, Craig M. D. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sensing,1988, 26(1):65-74.
    [85]Whitney A. W. A direct method of nonparametric measurement selection. IEEE Trans. Comput.,1971, C-20 (9):1100-1103.
    [86]Kumar S., Ghosh J., Crawford M. M., Best-bases feature extraction algorithms for classification of hyperspectral data. IEEE Trans. Geosc. Remote Sensing,2001,39(7),1368-1379.
    [87]Martinez-Uso A.,Pla F., Sotoca J. M., Garcia-Sevilla P. Clustering based hyperspectral band selection using information measures. IEEE Trans. Geosci. Remote Sens.,2007,45(12):4158-4171.
    [88]李小娟,宫兆宁,刘小萌等编译ENVI遥感影像处理教程.北京:中国环境科学出版社,2007.
    [89]边肇祺,张学工,模式识别.北京:清华大学出版社,2001.
    [90]Kruse F. A., Lefkoff A. B., Boardman J. W., Heidebrecht K. B., Shapiro A. T., Barloon P. J., Goetz A. F. H. The spectral image-processingsystem (SIPS)-interactive visualization and analysis of imaging spectrometer data.Remote Sensing of Environment,1993,44(2-3):145-163.
    [91]Szeliski S. Computer vision:Algorithms and Applications. Springer,2010.
    [92]章毓晋.图像工程.上册:图像处理和分析.北京:清华大学出版社,1999:20-21.
    [93]杨欧,郭宝平,郭轩等.基于HIS彩色空间的加权中值滤波算法.科学技术与工程,2007,7(14):1671-1819.
    [94]文山,李葆青.图像的色彩空间研究.六盘水师范高等专科学校学报,2005,17(6):15-18.
    [95]张笃振,刘淑娥.三种基于空间转换的彩色图像分割算法比较研究.电脑知识与技术,2004:146.
    [96]Woebbecke D. M., Meyer G. E., von Bargen K., Mortensen D. A. Color indices for weed identification under various soil, residue, and lighting conditions. Transactions of the American Society of Agricultural Engineers,1995,38:259-269.
    [97]S(?)gaard H. T., Olsen H. J. Determination of crop rows by image analysis without segmentation. Comput. Electron. Agric,2003,38 (2):141-158.
    [98]Hammouda K., Karray F. A comparative study of data clustering techniques. SYDE 625:Tools of intelligent systems design, course project,2000.
    [99]Johnson, R. A., Wichern, D. W.1998. Applied multivariate statistical analysis. Englewood Cliffs, NJ: Prentice-Hall.
    [100]Ye N., Li X. A scalable, incremental learning algorithm for classification problems. Comput Ind. Eng. J.,2002,43 (4):677-692.
    [101]Lewis J. P. Fast normalized cross-correlation. Vision interface,1995,10(1):120-123.
    [102]Kurtulmus F., Lee W. S., Vardar A. Green citrus detection using 'eigenfruit', colour and circular Gabor texture features under natural outdoor conditions. Computers and Electronics in Agriculture,2011, 78(2):140-149.
    [103]Bansal R., Lee W. S, Satish S. Green citrus detection using fast Fourier transform (FFT) leakage. Precision Agriculture,2013,14(1),59-70.
    [104]Kurtulmus F., Lee W. S., Vardar A. Immature peach detection in colour images acquired in natural illumination conditions using statistical classifiers and neural network. Precision Agriculture,2013, DOI 10.1007/s11119-013-9323-8,1-23.
    [105]Duda R. O., Hart P. E. Use of the Hough Transform to detect lies and curves in pictures. Comm. ACM,1972,15(1):11-15.
    [106]Pourreza A., Pourreza H., Abbaspour-Fard M. H., Sadrnia, H. Identification of nine Iranian wheat seed varieties by textural analysis with image processing. Computers and Electronics in Agriculture,2012, 83:102-108.
    [107]http://www.specim.fi/index.php/products/airborne/aisaeagle.
    [108]http://galileo-gp.com/technologies/airborne-hyperspectral-imaging/.
    [109]Smith G. M., Milton E. J.The use of the empirical line method to calibrate remotely sensed data to reflectance. Int. J. Remote Sens.,1999,20(13):2653-2662.
    [110]Savitzky A., Golay M. J. E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem.,1964,36(8):1627-1639.
    [111]Boardman J.W. Automating spectral unmixing of AVIRIS data using convex geometry concepts.In Summaries 4th Annu. JPL Airborne Geoscience Workshop,1993,1:11-14.
    [112]Winter M.E. N-findr:An algorithm for fast autonomous spectral endmember determinate in hyperspectral data. In Proc. SPIE Conf. Image Spectrometry V, Proc.,1999,266-277.
    [113]Nascimento J. M. P., Dias J. M. B. Vertex component analysis:A fast algorithm to unmix hyperspectral data. IEEE Transactions on Geoscience and Remote,2005,43(4):898-910.
    [114]Collins W., Raines G. L., Canney F. C. Airborne spectrora diometer discrimination of vegetation anomalies over sulphide mineralisation-a remote sensing technique. Geological Society of America, 90th Annual Meeting Programs and Abstracts,1977,9(7):932-933.
    [115]Collins W. Remote sensing of crop type and maturity. Photogrammetric Engineering and Remote Sensing,1978,44:43-55.
    [116]Dawson, T. P., Curran, P. J. A new technique for interpolating the reflectance red edge position. International Journal of Remote Sensing,1998,19(11):2133-2139.
    [117]Cho M. A., Skidmore A. K. A new technique for extracting the red edge position from hyperspectral data:The linear extrapolation method. Remote Sensing of Environment,2006,101(2):181-193.
    [118]Parker J.A., Kenyon R.V., Troxel D.E. Comparison of interpolating methods for image resampling. IEEE Transactions on Medical Imaging,1983, MI-2(1):31-39.
    [119]Li X., Lee W. S., Li M., Ehsani R., Mishra A. R., Yang C. Comparison of different detection methods for citrus greening disease based on airborne multispectral and hyperspectral imagery. Proceedings of 2011 ASABE, Paper No.1110570. St. Joseph. Mich.:AS ABE,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700