用户名: 密码: 验证码:
飞机机翼的流—固—热多物理场耦合计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单一物理场的研究与模拟分析己不能满足工程技术日趋复杂化、集成化的需要。传统计算方法常把飞机当做刚体来考虑,然而流场与结构场的相互作用对飞机力学、热学等性能有着直接影响。气动力、惯性力、弹性力和热应力之间相互作用导致了飞机的气动热弹性问题。飞机机翼在流场-结构场-温度场耦合作用下会对材料性能产生显著影响,因此对飞机机翼在多物理场下的材料服役行为预测显得十分重要。
     近年来,人们常采用计算流体动力学(CFD)来分析飞机空气动力学特性,采用计算结构动力学(CSD)来分析飞机结构的力学特性与振动特性。同时使用Navier-Stokes方程的CFD计算技术与CSD计算技术进行耦合计算,可以对飞机的气动热弹性响应进行初步的预测。
     本文利用一种全新的基于网格的并行代码耦合接口软件(MpCCI)对飞机机翼的流-固-热多物理场问题进行了分析研究。主要工作有以下三个方面:
     1、实现了基于MpCCI的CSD与CFD软件协同计算迭代耦合求解,高效、便捷地搭建了二维三维的飞机机翼的流-固-热多物理场耦合平台。详细阐述了基于MpCCI多物理场耦合计算的实现过程,利用MpCCI软件处理流场与结构场网格信息的交换问题。同时利用MpCCI软件与多种商业分析软件的兼容性,可以灵活、方便地搭建适应不同维度、不同物理问题的多物理场耦合平台。
     2、建立了NACA0012翼型飞机机翼的二维三维结构场、流场的数值模型。分析了该机翼二维三维的结构场-流场-温度场定常耦合计算结果,对比未耦合计算结果以及不同飞行速度下的计算结果,验证了基于MpCCI多物理场耦合计算合理性与收敛性。
     3、对比了不同网格类型与尺寸对耦合结果的影响,讨论了耦合面非匹配网格在选用的不同插值算法时计算结果的差别。优化动网格设置,实现结构场较大位移形变下的流场动网格重新生成,解决了流场网格因位移过大导致的计算中止问题。
With the integration and complication of engineering technology, the analysis of singlephysical field couldn't match the demand of technology. In traditional calculating methods,airfoil are often treated as rigid body, but the interaction between airflow and airfoil structuremay directly affect the mechanical,thermal and others properties of the airfoil. Aerodynamicforce, inertia force, elastic force and thermal stress must be considered in theaerothermoelasticity analysis of airfoil. In some case, these may have a significant influenceon material performance; therefore, it is important to predict material performance of airfoil inthe coupled physical field to confirm the safe flight condition.
     Recent years, Current research has turned towards the application of computational fluiddynamics (CFD) models to solve the aeroelastic and using computational structure dynamics(CSD) models to analyze mechanical and vibration characteristics of airfoil. By using anunsteady Euler or Navier-Stokes (N-S) CFD algorithm coupled with CSD solver, the completeaeroelastic response of the structure can be preliminary predicted.
     1. By using MpCCI, a CSD/CFD co-simulation method is presented, which is used forputting up a multi-physics coupled platform to solve the aerothermoelasticity problem of2Dand3D airfoil model with high efficiency and flexibility. The calculating process of coupledfields is described, and attention has been focused on the transfer of information betweenfluid and structure grids. MpCCI enables a direct communication between the coupled codesby providing adapters for a growing number of commercial codes. This technique allowsputting up a coupled platform to different dimensions and multi-physics problems.
     2.2D/3D fluid and structure models of NACA0012airfoil are created, which arecalculated on steady fluid-solid-heat coupling simulation. Comparing the coupled results withthe uncoupled results and results under different flight velocity, the rationality andconvergency of the co-simulation method using MpCCI are verified.
     3. The influence of different grid type and size on co-simulation is compared, and thedifference of using various data exchange methods is discussed. A three-dimensional movinggrid approach is presented to remesh the fluid grid when the airfoil structure is highlydeformed, to avoid bad mesh quality and calculation aborting.
引文
[1]刁元胜,姚仰新.数学物理方法.广州:华南理工大学出版社,2004,2-3.
    [2] Cook R D, Malkus D S, Plesha M E, et al.有限元分析的概念与应用.西安:西安交通大学出版社,2007,9-10.
    [3]郭崇志,肖乐.换热器流固传热边界数值模拟温度场的顺序耦合方法.化工进展,2010(9):1615-1619.
    [4]纽春萍,陈德桂,刘颖异,等.交流接触器温度场仿真及影响因素的分析.电工技术学报,2007,22(5):71-77.
    [5]杨万里,许敏,辛军,等.发动机缸盖耦合热应力分析.内燃机工程,2007,28(2):47-50.
    [6] Zhang W, Domaszewski M. Efficient sensitivity analysis and optimization ofshell structures by the ABAQUS code. Structural and MultidisciplinaryOptimization,1999,18(2):173-182.
    [7]丁斌,杨宁,王志萍.基于ANSYS耦合场分析的电器装置温度场仿真.低压电器,2010(2):9-12.
    [8]于胜春,赵汝岩,许涛,等.固体火箭发动机快速升压过程的流固耦合分析.固体火箭技术,2008,31(3):232-235.
    [9]张伟伟.超音速,高超音速非线性气动弹性问题研究:西北工业大学;2004:3-4.
    [10]郑军超,顾致平,刘永寿.某型飞机风挡热应力有限元分析.西安工业大学学报,2007,27(4):385-388.
    [11]王亚幂.多场耦合系统设计技术与应用研究:华中科技大学;2006:2-3.
    [12] Garrick I E, Center N L R. Propulsion of a flapping and oscillating airfoil. NewYork: National Advisory Committee for Aeronautics,1937.
    [13]郝继光,姜毅,刘琦.导弹头部气动加热的流固耦合数值模拟.弹箭与制导学报,2007,26(4):230-232.
    [14]卢晓杨,陆志良.高超音速流场与结构温度场耦合计算.江苏航空,2008,1:32-33.
    [15] Wieting A R, Holden M S. Experimental study of shock wave interferenceheating on a cylindrical leading edge at Mach6and8. AIAA journal,1987,1.
    [16] Wieting A R, Holden M S. Experimental shock-wave interference heating on acylinder at Mach6and8. AIAA journal,1989,27(11):1557-1565.
    [17] Dechaumphai P, Wieting A R, Thornton E A. Flow-thermal-structural study ofaerodynamically heated leading edges. Journal of Spacecraft and Rockets,1988,26(4):201-209.
    [18]黄唐,毛国良,姜贵庆,等.二维流场,热,结构一体化数值模拟.空气动力学学报,2000,18(1):115-119.
    [19]耿湘人,张涵信,沈清,等.高速飞行器流场和固体结构温度场一体化计算新方法的初步研究.空气动力学学报,2002,20(4):422-427.
    [20] Scherrer R, Center N A R. Comparison of theoretical and experimentalheat-transfer characteristics of bodies of revolution at supersonic speeds:National Advisory Committee for Aeronautics,1951.
    [21] Swenson B L, Edsinger L E. Preliminary analysis of remote infrared imagery ofshuttle during entry: An aerothermodynamic flight experiment. NASASTI/Recon Technical Report N,1977,77:31439.
    [22]黎作武,张涵信.高超声速航天飞行器气动热特性的数值模拟.高等学校工程热物理第十六届全国学术会议.长沙:2000,108.
    [23]Brown J L. Turbulence model validation for hypersonic flows. AIAA paper,2002,3308(8).
    [24]吕建伟,王强.飞行器表面三维流场与固壁温度场的耦合分析.北京航空航天大学学报,2009,35(8):938-941.
    [25]吴丹,许常悦,孙建红.来流马赫数对座舱气动加热影响的数值模拟.南京航空航天大学学报,2011,43(4):464-469.
    [26]夏新林,艾青,任德鹏,等.飞机整体瞬态热状况的数值仿真研究.航空学报,2007,28(3):513-519.
    [27]刘大响.航空发动机设计手册.北京:航空工业出版社,2000.
    [28]黄春生,吴杰,范绪箕.飞行器流场与结构温度场耦合数值分析.力学与实践,2004,26(002):24-26.
    [29]张伟伟,樊则文,叶正寅,等.超音速,高超音速机翼的气动弹性计算方法.西北工业大学学报,2003,21(006):687-691.
    [30]许赟,王晶燕,杨超.基于活塞理论的高超音速翼面颤振计算.全国空气弹性学术交流会论文集.上海:2003,123-124.
    [31]全炜倬,方明霞.超音速飞行器翼—身组合体的颤振研究.噪声与振动控制,2010,30(6):1-4.
    [32]白瑜光,林家浩,孙东科.利用基于二维和三维模型的CFD方法进行结构气动特性分析.中国力学学会学术大会2009论文摘要集.郑州:2009.
    [33]张伟伟,史爱民,王刚,等.结合定常CFD技术的当地流活塞理论.西北工业大学学报,2004,22(5):545-549.
    [34] Bein T, Friedmann P, etal. Hypersonic flutter of a curved shallow panel withaerodynamic heating.34th AIAA/ASME/ASCE/AHS/ASC Structures, StructuralDynamics and Materials Conference. Washington DC:1993,1-15.
    [35] Pidaparti R. Free vibration and flutter of damaged composite panels. Compositestructures,1997,38(1):477-481.
    [36]魏淑贤,沈跃,黄延军.计算流体力学的发展及应用.河北理工学院学报,2005,27(002):115-117.
    [37] PATANKER S. Numerical heat transfer and fluid fluw. London: HemispherePublishing,1980.
    [38] Felippa C A, Park K, Farhat C. Partitioned analysis of coupled mechanicalsystems. Computer methods in applied mechanics and engineering,2001,190(24):3247-3270.
    [39] Matthies H, Steindorf J. Fully coupled fluid-structure interaction using weakcoupling. PAMM,2002,1(1):37.
    [40] Hamei L. An extension of mapping deformation method and new exact solutionfor three coupled nonlinear partial differential equations. Commun Theor Phys(Beijing, China),2003,39:395-400.
    [41]高行山,林胜勇.加强松池法及其在静电一力耦合问题仿真分析中的应用.机械强度,2001,23(4):500-502.
    [42]徐涛一,宋力.真实破裂过程分析软件与多物理场耦合软件结构力学模块对比研究.大连大学学报,2007,28(6).
    [43]石亦平,周玉蓉. ABAQUS有限元分析实例详解.北京:机械工业出版社,2006,3-4.
    [44]周昌玉,贺小华.有限元分析的基本方法及工程应用.北京:化学工业出版社,2006,91-92.
    [45]王勖成.有限单元法.北京:清华大学出版社,2003,576-579.
    [46] Hibbett, Karlsson, Sorensen, et al. ABAQUS/Standard: user's manual.Pennsylvania State University: Hibbitt, Karlsson&Sorensen,1998.
    [47]庄茁. ABAQUS非线性有限元分析与实例.北京:科学出版社,2005,35-37.
    [48]赵玉新. FLUENT帮助手册.长沙:国防科技大学出版社,2003,784-786.
    [49] Ahrem R, Hackenberg M, Post P, et al. MpCCI–Mesh Based Parallel CodeCoupling Interface. Institute for Algorithms and Scientific Computing (SCAI),2000:10-11.
    [50] McCroskey W. A critical assessment of wind tunnel results for the NACA0012
    airfoil: DTIC Document,1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700