微通道内单相液体流动与传热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着目前电子芯片的集成度越来越高,传统的散热方式已经逐渐开始无法适应小空间和高热流密度下的散热需求,微通道散热作为一种新型高效的散热方式,目前在国际上具有很高的关注度。
     本文利用商业软件Ansys-CFX用数值模拟的方法,系统地研究了不同截面尺寸、不同加热功率和不同的入口Re下微通道中液体单相流动和换热特性,热入口段中温度边界层较薄,因而对流换热强度较高,对于微通道中液体流动的入口段分析对于后面微通道的设计具有十分重要的意义。文中重点分析了不同的宽高比、入口Re和加热功率下的流动及热入口段的当量长度
     根据对200μm*700μm、200μm*500μm和200μm*200μm的矩形截面长直微通道中水的流动及热入口段的分析,设计了由这三种微通道结构组成的组合型微通道,通道宽度逐级缩小,一方面由于在通道联接处采用通道错位布置的方式,能够使得流体在经过每个通道联接处时破坏边界层,使流动重新发展,充分利用入口效应有效地增大对流换热系数,同时由于沿流动方向上对流换热面积也在逐级增大,因而能有效地改善通道底面上沿流动方向的温度分布不均现象;另一方面虽然由于错位以及流动的入口段所占比例增大会使流动的压降增大,但是由于通道中有较大当量直径的通道,因此系统整体的压降相对较小。
     设计并搭建了实验台,对三种矩形长直微通道和组合型微通道的流动和传热特性进行了实验研究,分析了入口Re数,加热功率对压降、摩擦阻力系数、对流换热系数、Nu数和固体壁面温度的影响。发现在相同的入口Re数和加热功率下,组合型微通道的换热系数略低于200μm*200μm的矩形长直微通道,但是压降却远远低于长直通道。
With the development of IC, it's very hard for the traditional cooling technology to cool down the element with high heat flux density in narrow space. As a new cooling technology, heat transfer in microchannels gets more international attention.
     Ansys-CFX is used to simulate the single-phase liquid flow and heat transfer in microchannels with different aspect ratio in the condition of same Rein and heat flux. Because the thermal boundary layer is very thin in the thermal entrance region, the heat transfer coefficient is very high in this region. So the investigation of entrance region is significant. The length of flow and thermal entrance region is investigated in different conditions in this paper.
     According to the result of entrance region of200μm*700μm,200μm*500μm and200μm*200μm rectangular microchannels, a new structure microchannel which combines three rectangular microchannels is designed. Staggered microchannels destroy the thermal boundary layer and the heat transfer area increase along the flow direction. So the heat transfer is enhanced and the temperature on the heating surface is more uniform. Although the pressure drop is larger in flow entrance region which is longer in this combined microchannel, the total pressure drop is smaller than200μm*200μm rectangular microchannel.
     The effects of Rein and heat flux on pressure drop, frictional factor, heat transfer coefficient, Nu and the temperature on the heating surface are experimental investigated. The combined microchannel gets very high heat transfer coefficient which is similar to that of200μm*200μm rectangular microchannel with smaller pressure drop.
引文
[1]岳挺.微电子器件冷却技术概说与进展[J].中国科技博览,2009,(19):22-23.
    [2]过增元.国际传热研究前沿-微细尺度传热[J].力学进展,2000,30(1):1-6.
    [3]田长青,徐洪波等.高功率固体激光器冷却技术[J].中国激光,2009,36(7):1686-1692.
    [4]http://zh.wikipedia.org/wiki/%E6%91%A9%E5%B0%94%E5%AE%9A%E5%BE%8B.
    [5]Dickey JT. Microelectronic substrate active thermal cooling wick[P]. US Patent: 6070656. 2000.
    [6]李腾,刘静.芯片冷却技术的最新研究进展及其评价[J].制冷学报,2004,(3):22-32.
    [7]张亚平,冯全科等.微热管在电子器件冷却中的应用[J].国外电子元器件,2006,(9):11-15.
    [8]Tanase Dobre, et al. Characterization of cooling systems based on heat pipe principle to control operation temperature of high-tech electronic components [J]. Applied Thermal Engineering, 2010,30(16):2435-2441.
    [9]朱高涛,刘卫华.微型热管技术的研究现状与发展[J].制冷与空调,2006,6(2):9-14.
    [10]Mali Mahalingam. Thermal Management in Semiconductor Device Packaging [J]. Proceedings of the IEEE,1985,73(9).1396-1404.
    [11]http://www.enet.com.cn/article/2006/0925/A20060925211373.shtml.
    [12]Kandlikar S G, Grande W J. Evolution of microchannel flow passages-thermohydraulic performance and fabrication technology [J]. Heat Transfer Engineering, 2003,(24):3-17.
    [13]Tuckerman. D.B., Pease. R.F.W.. High-performance heat sinking for VLSI [J]. IEEE Electron Devices Society, 1981,2(5):126-129.
    [14][14] Eringen A. Simple Micro fluids [J]. International Journal of Engineering Science, 1964, 2(2):205-217.
    [15]贾力,方肇洪.高等传热学(第二版)[M].北京:高等教育出版社,2008.
    [16]G..H. Mohamed. The Fluid Mechanics of Microdevices [J]. Journal of Fluids Engineering. 1999, (121):5-33.
    [17]Han-Chieh Chiu, et al. The heat transfer characteristics of liquid cooling heatsink containing microchannels [J]. International Journal of Heat and Mass Transfer, 2011,54(1-3):34-42.
    [18]唐桂华,陶文铨,何雅玲.粗糙度与气体稀薄性对微尺度流动特性的影响[C].中国工程热物理学会第十一届年会.
    [19]布文峰,刘志刚等.微管内部流动粘性耗散的实验研究与数值模拟[J].哈尔滨工业大学学报,2008,40(1):160-163.
    [20]贺建坤,孙立等.粘性耗散对微管内部液体温升影响的实验研究[J].实验流体力学,2008,22(4):53-57.
    [21]Orhan Aydin. Effects of viscous dissipation on the heat transfer in a forced pipe flow. Part 2: Thermally developing flow [J]. Energy Conversion and Management, 2005,46(18-19): 3091-3102.
    [22]Sung-Min Kim, Issam Mudawar. Analytical heat diffusion models for different micro-channel heat sink cross-sectional geometries [J]. International Journal of Heat and Mass Transfer, 2010, 53(19-20):4002-4016.
    [23]Sung-Min Kim, Issam Mudawar. Analytical heat diffusion models for heat sinks with circular micro-channels [J]. International Journal of Heat and Mass Transfer, 2010, 53(21-22):4552-4566.
    [24]P. Gunnasegaran, H.A. Mohammed, N.H. Shuaib, R. Saidur. The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes [J]. International Communications in Heat and Mass Transfer, 2010, 37(8): 1078-1086.
    [25]Yongping Chen, Chengbin Zhang, Mingheng Shi, Jiafeng Wu. Three-dimensional numerical simulation of heat and fluid flow in noncircular microchannel heat sinks [J]. International Communications in Heat and Mass Transfer, 2009, 36(9):917-920.
    [26]John P. McHale, Suresh V. Garimella. Heat transfer in trapezoidal microchannels of various aspect ratios [J]. International Journal of Heat and Mass Transfer, 2010, 53(1-3):365-375.
    [27]Gh. Mohiuddin Mala, Dongqing Li. Flow characteristics of water in microtubes [J]. International Journal of Heat and Fluid Flow, 1999, 20(2):142-148
    [28]Zhi-Xin Li, et al. Experimental Study on Flow Characteristics of Liquid in Circular Microtube [J]. Microscale Thermophysical Engineering, 2003,7(3):253-265
    [29]David Pfund, et al. Pressure Drop Measurements in a Microchannel [J]. AIChE Journal, 2000, 46(8):1496-1507
    [30]Satish G. Kandlikar, et al. EFFECT OF CHANNEL ROUGHNESS ON HEAT TRANSFER AND FLUID FLOW CHARACTERISTICS AT LOW REYNOLDS NUMBERS IN SMALL DIAMETER TUBES [C]. Proceedings of NHTC'01 35th National Heat Transfer Conference.
    [31]李成文.微小槽道内气体流动特性的实验研究[硕士学位论文][D].北京交通大学.2010.
    [32]张雪花,胡钧.固液界面纳米气泡的研究进展[J].化学进展,2004,16(5):673-681.
    [33]霍素斌,于志家等.超疏水表面微通道内水的流动特性[J].化工学报,2007,58(11):2721-2726.
    [34]宋善鹏,于志家等.超疏水表面微通道内水的传热特性[J].化工学报,2008,59(10):2465-2469.
    [35]Chang-Hwan Choi, et al. Apparent slip flows in hydrophilic and hydrophobic microchannels [J]. PHYSICS OF FLUIDS,2003,15(10):2897-2902.
    [36]G.L. Morini. Single-phase convective heat transfer in microchannels: a review of experimental results [J]. Int. J. Therm. Sci, 2004, 43(7):631-651.
    [37]M.E. Steinke, S.G Kandlikar. Review of single-phase liquid heat transfer in microchannels [C]. Proceedings of the Third International Conference on Microchannels and Minichannels, 2005.
    [38]张田田.微通道内气体流动换热的理论与实验研究.[博士学位论文][D].北京交通大学.2011.
    [39]云和明,程林等.光滑矩形微通道液体单相流动和传热的数值研究[J].工程热物理学报,2007,28(增2):33-36.
    [40]魏珍,吴慧英等.水/乙醇混合工质在硅基微通道中的流动与换热[J].化工学报,2008,59(11):2706-2712.
    [41]Tariq Ahmad, Ibrahim Hassan. Experimental Analysis of Microchannel Entrance Length Characteristics Using Microparticle Image Velocimetry [J]. Journal of Fluids Engineering, 2010,(132).
    [42]Jerome Barrau, Daniel Chemisana,et al. An experimental study of a new hybrid jet impingement/micro-channel cooling scheme [J]. Applied Thermal Engineering, 2010, 30(14-15):2058-2066.
    [43]H.A. Mohammed, P. Gunnasegaran, N.H. Shuaib. Numerical simulation of heat transfer enhancement in wavy microchannel heat sink [J]. International Communications in Heat and Mass Transfer, 2011,38(1):63-68.
    [44]Y. Sui, C.J. Teo, P.S. Lee, Y.T. Chew and C. Shu. Fluid flow and heat transfer in wavy microchannels [J]. International Journal of Heat and Mass Transfer, 2010, 53(13-14):2760-2772.
    [45]Fangjun Hong, Ping Cheng. Three dimensional numerical analyses and optimization of offset strip-fin microchannel heat sinks [J]. International Communications in Heat and Mass Transfer, 2009,36(7):651-656.
    [46]L. Chai, et al. Numerical simulation of fluid flow and heat transfer in a microchannel heat sink with offset fan-shaped reentrant cavities in sidewall [J]. Int. Commun. Heat Mass Transf, 2010, 38(5): 577-584.
    [47]Guodong Xia, Lei Chai, Haiyan Wang, Mingzheng Zhou and Zhenzhen Cui. Optimum thermal design of microchannel heat sink with triangular reentrant cavities [J]. Applied Thermal Engineering, 2011,31(6-7):1208-1219.
    [48]Y.J. Cheng. Numerical simulation of stacked microchannel heat sink with mixing-enhanced passive structure [J]. International Communications in Heat and Mass Transfer, 2007, 34(3): 295-303.
    [49]Lan Tang, Yogendra K. Joshi. APPLICATION OF BLOCK-IMPLICIT MULTIGRID APPROACH TO THREE-DIMENSIONAL HEAT TRANSFER PROBLEMS INVOLVING DISCRETE HEATING [J]. Numerical Heat Transfer. Part A: Applications, 1999, 35(7):717-734.
    [50]Jinliang Xu, Yanxi Song, et al. Numerical simulations of interrupted and conventional microchannel heat sinks [J]. International Journal of Heat and Mass Transfer, 2008,51(25-26): 5906-5917.
    [51]J. A. Skidmore, B. L. Freitas, et al. Silicon monolithic microchannel-cooled laser diode array [J]. APPLIED PHYSICS LETTERS,2000,77:10-12
    [52]T.J. John, B. Mathew, H. Hegab. Parametric study on the combined thermal and hydraulic performance of single phase micro pin-fin heat sinks part I: Square and circle geometries [J]. International Journal of Thermal Sciences,2010,49(11):2177-2190.
    [53]F.J. Hong, P. Cheng, H. Ge and Goh Teck Joo. Conjugate heat transfer in fractal-shaped microchannel network heat sink for integrated microelectronic cooling application [J]. International Journal of Heat and Mass Transfer, 2007, 50(25-26):4986-4998.
    [54]邹江.复杂微小流道内流动和传热特性[博士学位论文][D].清华大学.2007.
    [55]Weilin Qu, Issam Mudawar. Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink [J]. International Journal of Heat and Mass Transfer, 2002,45(12):2549-2565.
    [56]陆向迅,徐斌等.矩形微通道内液体流动与传热的数值模拟研究[J].节能技术,2008,26(3):32-37.
    [57]Yunus A. CENGEL. Heat Transfer: a Practical Approach (Second Edition) [M]. New York, WCB/McGraw-Hill Inc.2007.
    [58]S.Kandlikar, S.Garimella, et al. Heat Transfer and Fluid Flow in Minichannels and Microchannels [M].2004:87-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700