针状铁素体管线钢的组织控制与细化工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代钢铁材料的发展趋势是如何在现有材料的基础上,通过冶炼、浇铸、热加工过程的控制,降低材料的有害元素的含量、减小偏析、细化组织,使材料的综合力学显著提高,从而提高材料的使用寿命。对长距离油气管线用钢,高强韧性要求是保证管线安全、降低运营成本的关键。而X80级别针状铁素体管线钢是未来20内最有可能大量应用的高性能管线钢。本文以X60钢为基础成分的洁净钢为研究对象,通过对洁净低碳微合金管线钢的相变动力学的系统研究,确定如何鉴别管线钢中的针状铁素体以及针状铁素体管线钢的组织控制和细化工艺方法,探索提高针状铁素体管线钢的性能的关键工艺技术。
    测定低碳微合金管线钢过冷奥氏体连续冷却转变曲线及等温转变动力学曲线。在低碳微合金钢的TTT曲线中含有三条独立的“C”曲线,即多边形铁素体“C”曲线;块状铁素体“C”曲线;贝氏体“C”曲线。块状转变“C”曲线与铁素体、贝氏体相互重叠,转变区的大小与钢中含碳量和合金元素含量有关。碳含量降低,块状铁素体转变区增加。Mo降低碳活度,增加块状铁素体转变的孕育期。
    根据低碳微合金管线钢的相变动力学及轧板的组织分析,确定管线钢中针状铁素体组织为连续冷却条件下形成的块状铁素体、粒状铁素体和贝氏体铁素体的混合组织,并含有一定量岛状组织。其组织特征呈为无明显铁素体边界,不规则非等轴状的铁素体块,在状铁素体块内部含有无规则排列或有方向性排列的岛状组织。其形成的冷却速度范围介于多边形铁素体与贝氏体铁素体转变的冷却速度之间。提出了针状铁素体组织的鉴别和定量方法
    在Gleeble-2000和Gleeble-3500型热模型试验机上,研究了B钢和E钢的热变形行为及变形后等温过程中的静态再结晶和应变诱导碳化物的析出,计算出试验用钢的动态再结晶激活能和静态再结晶激活能,并绘制了应变诱导碳化物析出曲线(PTT曲线)。
    测定了不同变形条件试验用钢的动态相变动力学曲线,结果表明,热变形显著加速针状铁素体和多边形铁素体相变,使针状铁素体开始相变温度显著提高。对针状铁素体相变开始温度的影响主要取决非再结晶区的变形量和变形温度。在两相区变形,B钢有应变诱导铁素体转变,使针状铁素体组织开始温度下降。
    通过在Gleeble-3500热模拟试验机上热模拟轧制工艺对组织及细化作用的影响表明,对针状铁素体组织采用热加工过程的全过程控制的方法,即精确控制再加热温度、初轧、精轧和冷却工艺参数,能获得最佳的组织细化效果。
    实验室轧机模拟轧制的钢板组织、性能分析结果表明,通过热加工过程控制的全程控制,获得了细化的针状铁素体组织,使以X60钢为基础成分的洁净钢钢板的力学性能达到X80级别管线钢的强度和韧性的水平,试验钢板的韧脆转变温度低于-160 ℃。
    
    对比针状铁素体与超细铁素体的抗硫化氢应力腐蚀性能,结果表明,针状铁素体具有更高的抗硫化氢应力腐蚀性能。
    根据针状铁素体管线钢的组控制和细化的工艺技术方法,在1700 mm轧机上,轧制出符合西气东输要求的14.7×1550 mm的X70级别针状铁素体管线钢钢卷。钢卷的性能为:(s=560 MPa;(b=678 MPa;CVN=284 J(-20 ℃);韧脆转变温度低于-80 ℃。
The development trend of modern iron & steel materials is focused on how to improve the mechanical properties and raise the service life, based on the currently available material, by the ways of controlling the melting processes to reduce the content of harmful elements, controlling the processes of casting to reduce the segregation, and controlling the processes of hot-working to refine the microstructure. The pipeline steels with good match of strength and toughness for long distance oil and gas transportation is a key to ensure the security and reduce the operation cost, for which the X80 grade acicular ferrite pipeline steel will be extensively applied in the future. In this thesis, the discrimination method for acicular ferrite in pipeline steel, control and refinement acicular ferrite microstructure for clean steels that were developed based on the chemical composition of the commercial X60 grade pipeline steels bas been investigated by study on the phase transformation kinetics. The aim is to explore the key technology for improvement of mechanical properties of acicular ferrite pipeline steels.
    The continuous cooling phase transition kinetics and isothermal phase transition kinetics for low-carbon microalled steels have been constructed. There are three independent “C” curves in the TTT diagrams for low-carbon microallyed steel, polygonal ferrites/pearlite “C” curve, the mass ferrite “C” curve and the bainitic “C” curve, respectively. The mass ferritic “C” curve is overlapped with “C” curves of polygonal ferrite and bainite. The width of transformation region for mass ferrite is related with amount of carbon and alloying elements. The transformation region of mass ferrite increases with reduction of the amount of carbon in steels. Mo reduces the carbon activity, which results in increase of incubation period of mass ferrite.
    According to the phase transformation kinetics of low-carbon microallyed pipeline steels and the microstructure analysis of rolling plate, the acicular ferrite in pipeline steels has been defined as the mixted microstructure, under a continuous cooling condition, with mass ferrite, granular ferrite and bainite ferrite, in which some islands structure is contained. The microstructure characteristic of acicular ferrite in pipeline steels is the unregular and non equiaxed ferrite masses which are without clear ferrite grain boundary and some of which contain random arranged or regularly islands.
    The hot deformation behavior, static recrystallization and strain induced carbide precipitation for two test steels, steel B and steel E, have been studied by using Gleeble-2000 and Gleeble-3500 thermal simulation tests. The dynamic recrystallization activation energy and
    
    
    the static recrystallizational activation energy have been determined, respectively. The strain induced carbide precipitation curves (PTT curves) have also been determined.
    The dynamic phase transformation kinetics curves of the test steels on different deformation conditions have been constructed. The results show that the acicular ferrite phase transformation and polygonal ferrite phase transformation are accelerated observably, and the beginning point of phase transformation for acicular ferrite is raised notablely. The effect on acicular ferrite phase transformation point depends mainly on the amount of deformation and deformation temperature in the noncrystallization region. For deformation in the dual phase region deforming, the ferrite is observed at austenite grain boundary in steel B, which makes the acicular ferrite phase transformation point decrease.
    The influence of rolling parameters on microstructure and refinement has been studied by using Gleeble-3500 thermal simulation test. the results show that the best effect of controlling and refinement for acicular ferrite microstructure could be achieved by all controlling hot working processes, namely, accurate controlling the parameters of reheat temperature, rough rolling, finish rolling and cooling rate.
    The clean steel based on the chemical c
引文
杨本安. 我国原油天然气输送用管发展展望. 焊管, 1998, 21(4): 31-34
    高慧临. 管线钢组织、性能、焊接行为. 西安: 陕西科学技术出版社, 1995: 1-8
    潘家华. 我国管道钢管的发展方向. 焊管, 1998, 21(4): 16-20
    Moriyasu. Nagae, Shigeru Endo, Noritsugu Mifune, et al.. Development of X-100 UOE Line Pipe. NKK Technical Review, 1992, 66: 1-17
    王仪康. 高压输送天然气管线用钢和焊接钢管. 焊管, 1998, 21(4): 21-27
    李鹤林. 天然气输送钢管研究与应用中的几个热点问题. 焊管, 2000, 23(3): 43-61
    T. Hashimoto et al. Recent Development of Large Diameter Lipepipe of Grades X80 and X100. Proceeding OMAE Conference, Houston Texas, Feb. 7-12, 1988: 179-185
    H. Hillenbrand, A. Liessem, G. Knauf, et al.. Development of Large-Diameter Pipe in Grade X-100. Pipeline Technology, Brugge, Belgium, May 21-24, 2000, Vol. 1: 469
    Y. Wang, K. Yang, Y. Shan, M. Zhao, B. Qian. The research and Development of High Strength Linepipe in China. Proceeding of the International Pipe Dreamer’s Conference, Yokohama, Japan, 7-8 Nov., 2002: 53-84
    Alan Glover. Application of Grade 550(X80) and Grade 690(X100) in Arctic Climates. Proceeding of the International Pipe Dreamer’s Conference, Yokohama, Japan, 7-8 Nov., 2002: 33-51
    Jang Y. Yoo and Jong S. Woo. Mechanical Properties and HIC Resistance of API X70 Grade C-Mn-Cu-Ni-Mo Linepipe Steel. Proceeding of the International Pipe Dreamer’s Conference, Yokohama, Japan, 7-8 Nov., 2002: 441-456
    Kotobu Nagai. State-of-the-art of 800MPa Steel Project in Japan. The Chinese Society for Metals. NG Steel’2001, China Beijing, 13-16 Nov., 2001: 8-15
    Wung-Yong Choo. Present Developing Status of High Performance Steel in Korea (HIPERS-21 Project). The Chinese Society for Metals. NG Steel’2001, China Beijing, 13-16 Nov., 2001: 8-15
    Yuqing Weng. Developmemt of Ultrafine Grained Steel in China. The Chinese Society for Metals. NG Steel’2001, China Beijing, 13-16 Nov., 2001: 8-15
    焦百泉. 管线钢性能的发展. 焊管, 1999, 22(4): 1-7
    高惠临,董玉华,周好斌. 管线钢的发展趋势和展望. 焊管, 1999, 22(3): 4-8
    辛稀贤. 管线钢的焊接. 西安: 陕西科学技术出版社, 1997: 1-6
    黄志潜. 国外管道技术的发展现状和几点建议. 焊管, 2000, 23(3): 1-21
    Hiroshi Tamehiro, Toshiro Yoshino, Nippon Nakasugi and Mitsuo Abe. Recent Progress in
    
    
    High-Strength Low-Ally Line pipe. Pan Jiahua. Proceedings of the International Symposium On Structural Technique of Pipeline Engineering, Beijing, China, April 15-20,1992, Beijing: China Building Industry Press, 1992: 9-14
    J. Malclm Gray. Modern pipeline technology-specification trends and production experience. Liu Guoquan et al.. HSLS Steels’2000, Xi’an, china, 30 Oct.-2 Nov., 2000, Beijing: Metallurgical Industry Press, 2000: 71-79
    W.B. morrison. Past and Future Development of HSLA Steels. Liu Guoquan et al.. HSLS Steels’2000, Xi’an, china, 30 Oct.-2 Nov., 2000, Beijing: Metallurgical Industry Press, 2000: 11-19
    M. Graef, J. Schroeder, V. Schwinn and K. Hulka. Production of large Diameter Pipes Grade X70 with High Toughness Using Acicular Ferrite Microstructures. Proceeding of the International Pipe Dreamer’s Conference, 7-8 November, 2002, Yokohama, Japan, 2002: 323-338
    V Schwinn, P. Fluess and J. Bauer. Production and Progress Work on Plates for Pipes with Strength Level of X80 and Above. Proceeding of the International Pipe Dreamer’s Conference, 7-8 November, 2002, Yokohama, Japan, 2002: 339-354
    A. P. Coldren, J. L. Mihelich. Acicular Ferrite HSLA Steels for Line Pipe. Metal Science and Heat Treatment (English translation of Metallovedenie i Termicheskaya Obrabotka Metallov) 1977, 19(7-8): 559-572
    Y. E. Smith, A. P. Coldren and R. L. Cryderman. Toward Improved Ductility and Toughness, Tokyo, Climax Molybdennum Company (Japan) Ltd., 1972: 119-142
    Y. Smith, A. Coldren, R. Cryderman. High-Strength, Ductile Mn EM Dash Mo EM Dash Nb Steels With a Structure of Acicular Ferrite. Metal Science and Heat Treatment (English translation of Metallovedenie i Termicheskaya Obrabotka Metallov), 1976, 18(1-2): 59-65
    M. Civallero, C. Parrini. Heavy Wall X70 Pipe for Arctic Applications. Pipeline and Gas Journal, 1974, 201(8): 35-38
    G. Tither. Molybdenum Improves Properties of Linepipe Steels. Molybdenum Mosaic, 1976, 1(3): 2-9
    Liu Xiaodong, Zhang Wenjie and Dong Tao. Microstucture and Mechanical Properties of Controlled Rolling and Controlled Cooling Ultra Low carbon Steel. Pan Jiahua. Proceedings of the International Symposium On Structural Technique of Pipeline Engineering, Beijing, China, 15-20 April, 1992, Beijing: China Building Industry Press, 1992: 48-56
    H.K.D.H. Bhadeshia, P.H. Scholes. Steel Technology International. Stering, London, 1989:
    
    
    213
    J.R. Yang, C.Y. Huang and C.S. Chiou. The Influnce of Plastic Deformation and Cooling Rates on the Microstructure Constituents of an Utra-low Carbon Bainiteic Steel. ISIJ International, 1995, 35(8): 1013-1019
    J. Malcolm Gray & W.J. Fazackerley. Technical Challenges and Metallurgical Aspects of High Strength Line Pipe. 37th Annual Conference of Metallurgists, 16~19, August 1998: 125-131
    L. Barsanti, R. Bruschi and E. Donati. From X80 to X100: Know-how Reached by ENI Group on High Strength Steel. Proceeding of the International Pipe Dreamer’s Conference, Yokohama, Japan, 7-8 November, 2002: 231-244
    S. Endo, N. Ishikawa, J. Kodo, N. Suzuki and K. Omata. Advance in high Performance Linepipe with Respect to Strength and Deformability. Proceeding of the International Pipe Dreamer’s Conference, Yokohama, Japan, 7-8 November, 2002: 273-288
    G. Demofonti, D. Harris, H.G. Hillenbrand and L. Barsanti. Fracture Behavior of X100 Gas Pipeline by Full Scale Tests. Proceeding of the International Pipe Dreamer’s Conference, Yokohama, Japan, 7-8 November, 2002: 345-262
    M. Okatsu, T. Hoshino, K. Amano, K. Ihara, T. Makina and F. Kawabata. Metallurgical and Mechanical Features of X100 Linepipe Steel. Proceeding of the International Pipe Dreamer’s Conference, okohama, Japan, 7-8 November, 2002: 363-272
    B.N. 波戈尔热耳斯基著. 王有铭, 鹿守理, 韦兴译. 控制轧制. 北京: 机械工业出版社, 1982: 1-10
    K. Hulka, B. Bergmen, A. Steibelberger and F. Heisterkamp. Development Trends in High Strength Structural Steel. A.J. DeArdo. Proc. Int. Conf. On Processing, Microstructure and Properties of Microalloyed and other Moldern High Strength Low Alloyed Steels, Warredale, PA, Iron and Society, 1991: 177-187
    K. Kunishige, et al.. 中国石油天然气总公司石油管材研究中心. 石油专用管(油、气输送管译文集). 1991: 16
    A.J. DeArdo. Accelerated Cooling: A Physical Metallurgy Perspective. Canadian Metallurgical Quarterly, 1988, 27(2): 141-152
    T. Hashimoto et al. Recent Development of Large Diameter Lipepipe of Grades X80 and X100. Proceeding OMAE Conference, Houston Texas, Feb. 7-12, 1988: 179-185
    F. Kawabata et al. Metallugical and mechanical Features of X100 linepipe Steel., Proceedings of Pipeline Technology Conference, Ootende, Belgium, Sept. 11-14, Pipeline Technology Vol. II, 1995: 102-108
    
    Yang-zeng Zheng, A.J. DeArdo, F.M. Fix, G. Fitzsimons. Achieving Grain Refinemnent Through Recrystallization Controlled Rolling and Contrlled Cooling in V-Ti-N Microalloyed Steels. ASM, 1984: 85-94
    Stanislaw ZaJac, Tadeusz Siwchi, Bevis Hutchson. Recrystallization Controlled Rolling and Accelerated Cooling for High Strength and Toughness in V-Ti-N Steels. Metall. Trans. A, 1991, 22A: 2681-2694
    S.W. Thompson D.J. Colvin and G. Krauss. Austenit Decompsition During Continuous Cooling of HLSA-80 Plate Steel. Mettal. Mater. Trans. A, 1996, 27A: 1557-1571
    G.E. Speich and C.M. Scoonover. In Processing, Microstructure and Properties of HSLA Steels, ed. by A.J. DeArdo, TMS Warrendale, PA, 1988: 263-286
    Jye-Long Lee, Shyi-Chin Wang and Gwo-Hwa Cheng. Transformation Processing and Products for C-Mn Steels During Continuous Cooling. Mater. Sci. & Techn., 1989, 5: 674-681
    H. Chino, et al.. Low-Carbon Microalloyed Steels for Gas Pipe-line. Pipe Technology Conf., Oostende, Belgim, , Part A, Session4, 1990: 1-6
    H. I. Aaronson. The Mechanism of Phase Transformations in Crystalline Solids. The Inst. Met, London, 1969:270
    W. T. Reynolds, H. I. Aaronson and G. spanos. Summary of the Present Diffusion Views on Bainite. Mater.Trans., JIM, 1991, 32(8): 137-746
    L. J. Habraken and M.Economopoulos. Transformation and Hardenability in Steel. Climax Molybdenum Co., Ann Arbor, MI, 1967: 69
    Y. Ohmori, H. Ohtani and T. Kunitake. Metallodrphic Observations of Weld Heat-affected Zone of High Strength Steel. Trans. ISU, 1971, 11: 25-32
    H. Ohtani, S. Okaguchi, Y. Fujishiro and Y. Ohnori. Morphology and Properties of Low-Carbon Bainite. Metall. Trans. A. 1990, 21A: 877-888
    B. L. Bramfitt and J. G. Speer. Perspective on the Morphology of Bainite. Metall. Trans. A, 1990, 21A: 817-831
    T. Araki et al.. Atlas for Bainitic Microstructures-Vol. 1. Continuous-Cooled Zw Microstructures of Low-Carbon Steel. ISIJ, Tokyo, 1992: 4-5
    S. W. Thompson, D. J. Colvin and G. Krauss. Continuous Cooling Transformations and Micro- structures in a Low-Carbon, High-Strength Low-Alloy Plate Steel. Metal. Trans. A, 1990, 21A: 1493
    G. Krauss and S. W. Thompson. Ferrite Microstructure in Continuously Cooled Low-and- Ultralow-Carbon Steels. ISIJ International, 1995, 35: 937
    
    H.K.D.H. Bhadeshia. Alternatives to the Ferrite-Pearlite Microstructures. Mater. Sci. Forum, 1998, 284: 39
    方鸿生, 等. 贝氏体相变. 北京: 科学出版社, 1999: 23-28
    康沫狂. 钢中贝氏体. 上海: 上海科学技术出版社,1990: 181
    B. L. Bramfitt, J. G. Speer. A Perpective on the Morphology of Bainite. Metall. Trans. A, 1990, 21A(4): 817
    P. Cizek, B. P. Wynne, et al. Effect of Composition and Austenite Deformation on the Trans- formation Characteristics of Low-carbon and Altralow-carbon Microalloyed Steels. Metal. Mater. and Trans. A, 2002, 33A: 1331
    Y. Ohmori, H. Ohtani, and T. Kunitake. Relation Between Alloying Elements and the Mechanical Properties of Low-carbon Low-alloy Bainite. Trans. Iron Steel Inst. Jpn., 1972, 58: 1877-1892
    G.M. Reddy, T. Mohandas, K.K. Papukutty. Effect of welding process on the Ballistic Performance of High-Strength Low-Alloy Steel Weldments. Journal of Materials Processing Technology, 1998, 74(1-3): 27-35
    T. Mohandas, G.M. Reddy. A Comparison of Continuous and Pulse Current Gas Tungsten Arc Welds of an Ultrahigh Strength steel. Journal of Materials Processing Technology, 1998, 69(1-3): 222-226
    S.S. Babu and H.K.D.H. Bhadeshia. Stress and the Acicular Ferrite Transformation. Materials Science and Technology, 1992, 156: 1-12
    R.W. Fonda and G. Spanos. The Effect of Industrial Compositon Variation on the Transformation Behavior of Ultralow-Carbon Steels. Metall. and Mater. Trans. A, 2001, 32A: 219-227
    赵明纯, 单以银, 等. 控制控冷工艺对X60管线钢组织和性能的影响, 金属学报, 2001, 37(2): 179
    A.J. Afaganis, K.R. Barmes, G.E. Hanson. R.G. Lessard. Development and Production of Large Diameter, High Toughness Gr.550 (X80) Line Pipe at Stelco. Proceedings of the 1997 39th Mechanical Working and Steel Processing Conference, Indianapolis, IN, USA, Iron & Steel Soc of AIME, 1997: 535-544
    T. Tanaka. Controlled Rolling of Steel. International Metals Reviews, 1981, 4: 185-212
    J. M. Gregg and H.K.D.H. Bhadeshia. Titanium-rich Mineral Phases and the Nucleation of Bainite. Metallurgical and Materials Transactions A, 1994,25(6):1603-1612
    Masakazu Niikura, Sadahiro Yamamoto, Chiaki Ouchi and Isao Kozasu. ISIJ, 1984, 70: 1429
    
    李鹤林, 郭生武, 冯耀荣, 霍春勇, 柴惠芬. 高强度微合金管线钢显微组织分析与鉴别图谱. 北京: 石油工业出版社, 2001: 7-8
    A. Halder, S.K. Tiwary, R.N. Chattopahyay and Amit Chatterjee. Deleopment of Microstructure in Low Carbon Microslloyed Steel under Simulated Hot Strip Rolling Conditions. Liu Guoxun. HSLA Steels’95, Oct. 25-29,1995, Beijing, China, China Science and Technology Press, 1995: 113-119
    B. Minth, 姚泽雄, 等译. 微合金化低碳高强度钢. 北京: 机械工业出版社, 1982: 51
    王仪康, 杨柯. 我国高压输送管线钢的发展. 石油天然气管道建设与技术论坛会. 廊坊: 石油出版社, 2002: 18
    B.C. Muddle, et al. Microstructure in Controlleded-Rolled Low Carbon Microalloyed Steels. Material Science, 1994, 34: 1721
    王仪康, 杨柯, 单以银. 高压输送管线用钢. 焊管, 2002, 25(1): 1
    S. Torizuka, T. Inoue and K. Nagai. Uniform Formation of Fine Grained Ferrite Structure through Multi-directional Deformation. 鉄と鋼, 2000,86(12): 17-22
    Z. Horita, T. Fujinami, M. Nemoto, T. G. Langdon. Improvement of mechanical properties for Alloys Using Equal-Channel Angular Pressing. Journal of Materials Processing Technology, 2001, 117(3): 288-292
    Shin Dong Hyuk, Kim Inyoung, Kim Jongryoul, Park Kyung-Tae. Grain Refinement Mechanism during Equal-Channel Angular Pressing of a Low-Carbon Steel. Acta Materialia, 2001, 49(7): 1285-1292
    宇都宫欲, 齐藤好弘, 左海哲夫. くりf返し重ね结合压延にぉけゐ付加的せん断变形と超微细化. CAMP-ISIJ, 1999, 12: 1142-1145
    D. B. Santos, R. K. Bruzszek, P. C. M. Rodrigues, E. V. Pereloma. Formation of Ultra-Fine Ferrite Microstructure in Warm Rolled and Annealed C–Mn Steel. Materials Science and Engineering A, 2003, A346(1-2): 189-195
    Yinmin Wang, Mingwei Chen Fenghua Zhuo and En Ma. High Tensile Ductility in Nanostructured Metal. Nature, 2002, 419: 912-914
    R. Z. Valiv, R. K. Islamgaliev and I.V. Alexandrov. Bulk Nanostrutured Materials from Severe Plastic Deformation. Prog. Mater. Sci., 2000, 45: 103-189
    田村今男著. 王国栋, 刘振宇, 熊尚武译. 高强度低合金钢的控制轧制与控制冷却. 北京: 冶金工业出版社, 1992, 104
    V. M. Khlestov, E.V. Konopleva and H.J. Mcqueen. Kinetics of Austenite Transformation during Thermomechanical Processes. Canadian Metallurgical Quarterly, 1998, 37(2):75-89
    I. Tamura, H. Sekine, T. Tanaka and C. Ouchi. Themomechanical Processing of High
    
    
    Strength Low Alloy Steel. Butterworths, 1998: 93
    H. Yada, Y. Matsumra and K. Nakajma. United States Patent 466, No.4,1984:,842
    L.. Du, C. Zhang, H. Ding, X. Liu and G. Wang. Determination of Uper Limit Temperature of Strain-induced Transformation of Low Carbon Steels. ISIJ International, 2002, 42(10): 1119-1124
    杨忠民, 赵燕, 王瑞珍. 低温变形低碳微合金钢超细铁素体的形成. 金属学报, 2000, 36(10): 1061-1064
    P. J. Hurley and P.D. Hodgson. Formation of Ultra-Fine ferrite in Hot Rolled Strip: Potential Mechanisms for Grain Refinement. Materials Science and Engineering A, 2001, A302(2): 206-214
    Han Dong. Deformation Induced ferrite Transformation in Microallyed Steels. The Chinese Society for Metals. NG Steel’2001, Beijing, China,13-16 Nov., 2001: 16-26
    P. Rassoul and Y. Steve. Dynamic transformation of Austenite to Ferrite in Low Carbon Steel. ISIJ International, 1994, 34(2): 270-279
    侯豁然, 宋立秋, 刘清友. 一种低碳微合金钢形变诱导相变过程的组织分析. 中国金属学会.新一代钢铁材料学术研讨会论文集. 北京, 2001: 329-332
    K. Y. Watanable, Y. Terada. Ferrite Grain Refinement by Large Reduction Per-pass in Non-recrystallization temperature Region of Austenite. ISIJ International, 1996, 36(5): 6301-6306
    Seung Chan Hong, Sung Hwan Lim, Hyun Seon Hong, Kyung Jong Lee, Dong Hyuk Shin and Kyung Sub Lee. Effects of Nb on Strain Induced Ferrite Transformation in C-Mn Steel. Materials Science and Engineering A, 2003, 355: 241-248
    Seung Chan Hong, Kyung Sub Lee. Influence of Deformation Induced Ferrite Transformation on Grain Refinement of Dual Phase Steel. Materials Science and Engineering A, 2002, 323: 148-159
    O.A. Kaibyshev. Grain Refinement in Commercial Alloys due to High Plastic Deformations and Phase Transformations. Journal of Materials Processing Technology, 20001, 117: 300-306
    张红梅, 刘相华, 王国栋. 采用累计连续大压下细化铁素体组织. 钢铁研究学报, 2001, 13(1): 36-40
    杨平, 傅云义, 崔凤娥. 形变温度对Q235碳素钢应变诱导相变的影响. 金属学报, 2001, 37: 601-608
    H. K. D. H. Bhadeshia and J. W. Christian. Bainite in Steels. Metall. Trans. A, 1990, 21A: 767
    
    肖福仁,乔桂英,廖波. 86CrMoV7钢热变形奥氏体的TTT图. 钢铁, 2000, 35(5): 51-54
    D. A. Porter, and K. E. Easterling. Phase Transformation in Metals and Alloys. Van Nostrand Reinhold Company, England, 1981: 334-337
    P. H. Shipway and H. K. D. H. Bhadeshia. Mechanical Stabilization of Bainite. Mater. Sci. Technol., 1995, 11: 1116-1128
    王学敏, 尚成嘉, 杨善武, 贺信来. PRC工艺与贝氏体组织细化. 中国金属学会. 新一代钢铁材料学术研讨会论文集, 北京, 2001: 337-340
    尚成嘉, 杨善武, 王学敏, 贺信来, 孙建林. RPC工艺参数对800MPa级钢低合金高强度钢组织和性能的影响. 中国金属学会. 新一代钢铁材料学术研讨会论文集, 北京, 2001: 333-336
    小指军夫著. 李伏桃, 陈岿译. 控制轧制控制冷却-改善材质的轧制技术发展. 北京: 冶金工业出版社, 2002: 106-110
    Ming-Chun Zhao, Yi-Ying Shan, Fu Ren Xiao, Ke Yang, Yu Hai Li. Investigation on the H2S-resistant behaviors of acicular ferrite and ultrafine ferrite. Materials Letters, 2002 57: 141–145
    俞德刚, 郑经纮, 梁振锋, 沈甫法. 低中碳合金钢的中温块状铁素体组织. 金属学报, 1983, 19: A369
    M. Enomoto, N. Nojiri, Y. Sato. Effects of Vanadium and Niobium on the Nucleation Kinetics of Proeutectoid Ferrite at Austenite Grain Boundaries in Fe-C and Fe-C-Mn Alloys. Materials Transactions, JIM, 1994, 35(12): 859-867
    冷松. 18Cr2Ni4WA钢贝氏体转变动力学研究. [西北工业大学硕士学位论文], 1981: 32
    方鸿生, 白秉哲, 郑秀华. 粒状贝氏体和粒状组织德形态与相变. 金属学报, 1986, 22: A283-288
    W. S. Owen, E. A. Wilson. Physical Properties of Martensite and Bainite. Special Report 93, JISI, London and Bradford, 1965: 53
    俞德刚, 王世道. 贝氏体相变理论. 上海: 上海交通大学出版社, 1998: 397-426
    T. Sakuma, R.W.K. Honeycombe. Mater. Sci. Technol. 1985,1: 351.
    T. Abe, K. Tsukada, I. Kozasu, in: J.M. Gray et al., (Ed.), Proceedings of International Conference on HSLA Steels: Metallurgy and Applications, Beijing, 1985: 103.
    C.M. Sellars. Modelling-An Interdisciplinary Activity. S. Yue. Proc. Int. Conf. on Mathematical Modelling of Hot Rolling of Steel, Hamilton, CIMM, 1990: 1-18
    Jong-Jin Park. Prediction of the Flow Stress and Grain Size of Steel during Thin-Plate Rolling. Journal of Materials Processing Technology, 2001, 113: 581-586
    
    P. Korczak, and H. Dyja. Investigation of Microstrcture Prediction during Experimental Thermo- Mechanical Plate Rolling. Journal of Materials Processing Technology, 2001, 109: 112-119
    M. Pietrzyk. Through-process Modelling of Microstrcture Evolution in Hot Forming of Steels. Journal of Materials Processing Technology, 2002, 125-126: 53-62
    H. S. Zurob, Y. Brechet and G. Purdy. A Model for the Competition of Precipitation and Recrystallization in Deformed Austenite. Acta Mater. 2001, 49: 4183-4190
    Sang-Hyun Cho, Ki-Bong Kang and J.J. Jonas. Mathematical Modeling of the Recrystallization Kinetics of Nb Microalloyed Steels. ISIJ International, 2001, 41(7): 766-773
    A. Laasroui, J.J. Jonas. Prediction of Temperature Distribution, Flow Stress and Microstructure during the Multipass Hot Rolling of steel Plate and Strip. ISIJ International, 1991, 32(3): 95-105
    雍歧龙, 马鸣图, 吴宝榕. 微合金钢-物理和力学冶金. 北京: 机械工业出版社, 1989: 209, 341
    W. P. Sun and E.B. Hawbolt. Comparison Between Static and Metadynamic Recrystallization-An Application to the Hot Rolling of Steels. ISIJ International, 1997, 37(10): 1000-1006
    A. Laasroui, J.J. Jonas. Prediction of Flow Stress at High temperature and Strain Rates. Metall. Trans. A, 1991, 22A: 1545-1558
    C. M. Sellars. Hot Rolling and Forming Processes. London: The Metals Society, 1980: 2-15
    A. Laasroui, J.J. Jonas. Recrytallization of Austenite after Deformation at High temperature and Strain Rates—Analysis and Modeling. Metall. Trans. A, 1991, 22A: 151-160
    A. Bodin, J. Sietsma and S. V. Der Zwaag. Determination of Static Softening after Hot Deformation by Double-hit Compression Experiment. Proceeding of International Conference on Processing & Manufacturing of Advanced Materials, Las Vegas, USA, TMS, 2000: Session C6
    牛济泰. 材料和热加工领域的物理模拟技术. 北京: 国防工业出版社, 1999: 161
    Sang-Hyun Cho, ki-Bong Kang, J. J. Jonas. The Dynamic, Static and Metadynamic Recrystallization of Nb-Microallyed Steel. ISIJ International, 2001 41(1): 63-69
    S. F. Medina and A. Quispe. Improved Model for Static Recrystallization Kinetics of Hot Deformation Austenite in Low Alloy and Nb/V Microalloyed Steels. ISIJ International,
    
    
    2001, 41(7): 774-781
    S. G. Hong, K. B. Kang, C. G. Park. Strain-Induced Precipitation of NbC in Nb and Nb-Ti Microalloyed HSLA Steels. Scipta Materialia, 2002, 46: 163-168
    E. V. Pereloma, B. R. Crawford, P. D. Hodgson. Strain-Induced Precipitation Behaviour in Hot Rolled Strip Steel. Materials Science and Engineering A, 2001, A299: 27-37
    R. Bartolome, D. Jorge-Badiola, J.I. Astiazara′n, I. Gutie′rrez. Flow Stress Behaviour, Static Recrystallisation and Precipitation Kinetics in a Nb-microalloyed Steel after a Strain Reversal. Materials Science and Engineering A, 2003, 344: 340-347
    J. Kliber, I. Schindler. Recrystallization/Precipitation Behaviour in Microalloyed Steels. Journal of Materials Processing Technology, 1996, 60: 597-602
    Kyung Jong Lee. Recrystallization and Precipitation Interaction in Nb-Containing Steels. Scripta Materialia, 1999, 40(7): 837-843
    J. M. Gray. 中厚板和管线钢的近期发展. 章洪涛, 王瑞珍, 庞干云编. 铌钢和铌合金-中国-巴西学术研讨会论文集. 北京: 冶金工业出版社, 2000: 11-38
    W. Garlipp, M. CiLense, S.I. Novaes Gomes. Austenite Decompositon of C-Mn Steel Containing Boron by Continous Cooling. Journal of Materials Processing Technology, 2001, 114: 71-74
    林惠国, 傅代直. 钢的奥氏体转变曲线. 北京: 机械工业出版社, 1988: 1-10
    Ji-Cheng Zhao, Michael R. Notis. Continous Cooling Transformation Kinetics Versus Isothermal Transformation Kinetics of Steel: A Phenomenological Rationalization of Experimental Observations. Materials Science and Engineering R, 1995, R15: 135-108
    Takeshi Iwamoto, Toshio Tsuta. Computational Simulation of the Dependence of the Austenitic Grain Size on the Deformation Behavior of TRIP Steels. International Journal of Plasticity, 2000, 16: 791-804
    J. Zrnyk, T. Kvackaj, A. Pongpaybul, P. Sricharoenchai, J. Vilk,V. Vrchovinsky. Effect of Thermomechanical Processing on the Microstructure and Mechanical Properties of Nb–Ti Microalloyed steel. Materials Science and Engineering A, 2001, A319-321: 321-325
    V. Homolova, J. Janovec, A. Kroupa. Experimental and Thermodynamic Studies of Phase Transformationsin Cr–V Low Alloy Steels. Materials Science and Engineering A, 2002, A335: 290-297
    P. J. Hurley, P. D. Hodgson. Formation of Altra-fine Ferrite in Hot Rolled Strip: Potential Mechanisms for Grain Refinement. Materials Science and Engineering A, 2001, A302: 206-214
    Y. D. Huang, W.Y. Yang, Z. Q Sun. Formation of Ultrfine Grained Ferrite in Low Carbon
    
    
    Steel by Heavy Deformation in Ferrite or Dual Phase Region. Journal of Materials Processing Technology, 2003, 134: 19-25
    O. A. Kaibyshev. Grain Refinement in Commercial Alloys due to High Plastic Deformations and Phase Transformations. Journal of Materials Processing Technology, 2001, 117: 300-306
    Seung Chan Hong, Sung Hwan Lim, Hyun Seon Hong, Kyung Jong Lee, Dong Hyuk Shin, Kyung Sub Lee. Effects of Nb on strain induced ferrite transformation in C-Mn steel. Materials Science and Engineering A, 2003, A355: 241-248
    Z.Q. Sun, W.Y. Yang, J.J. Qi, A.M. Hu. Deformation enhanced transformation and dynamic recrystallization of ferrite in a low carbon steel during multipass hot deformation. Materials Science and Engineering A, 2002, A334: 201–206
    Ming-Chun Zhao, Ke Yang, Yi-Yin Shan. Comparison on strength and toughness behaviors of microalloyed pipeline steels with acicular ferrite and ultrafine ferrite. Materials Letters, 2003, 57: 1496-1500
    Anders From and Rolf Sandstr?m. Influence of Mixed Grain Size Distributions on the Toughness in High and Extra High Strength Steels. Materials Chaeacterization, 1999, 42: 111-122
    T. Tanaka, N. Funakoshi, M. Una, J, Tsuboi, T. Yasuda and C. Utahashi. Ed. by M. Korchynsky. Microalloying 75, New York: Nnion Carbide Corp., 1977: 107
    田村今男. 奥氏体的热变形行为与形变热处理. 钢铁, 1985, 20(3): 63-72
    S. S. Babu and H. K. D. H. Bhadeshia. Mechanism of the Transition from Bainite to Acicular Ferrite. Materials Transaction, JIM, 1991, 32(8): 679-688
    A.M Brass, J. Chene, J. Gonzalez. Tritium Distribution at the Crack Tip of High-Strength Steels Submitted to Stress Corrosion Cracking. Metall. and Mate. Trans. A, 1994, 25(6): 1159
    王燕斌,楮武扬,肖纪美. 氢致解理断裂机理. 中国科学, 1989, 10A: 1065-1073

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700