Mg-Gd-Y-Nd-Zn(Zr)系变形合金组织与力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着材料减重、降低能耗和环境保护意识的增强,镁合金逐渐成为高技术和民用工业领域的理想替代材料。而变形镁合金的开发与应用也正在受到越来越多的重视。稀土元素是镁合金的主要合金化元素之一,添加稀土元素不仅可以细化镁合金的组织,还能提高镁合金的抗氧化性和抗蠕变性能,因此能够明显增加镁合金的使用温度范围。而且稀土元素会影响镁合金在变形加工过程中的再结晶行为及织构的演变,产生对合金织构的弱化作用,这对改善变形镁合金塑性的各向异性,提高其综合性能具有重要意义。本论文以Mg–Gd–Y–Nd–Zn(Zr)系合金为研究对象,对其进行了热挤压、轧制和自由锻造等变形加工,研究了不同变形加工参数对合金微观组织、织构和力学性能,以及时效硬化行为的影响作用,并讨论了稀土元素及其化合物对合金组织和力学性能的作用机制。
     首先,采用挤压变形技术制备了Mg–8Gd–2Y–1Nd–0.3Zn–0.6Zr合金板材和棒材,发现该合金的成形性能良好。合金在挤压加工过程中发生了完全的再结晶,组织得到明显细化,且挤压合金在不同加工平面上的组织分布比较均匀。对挤压合金在200℃至300℃进行了时效热处理,合金表现出了明显的时效硬化行为。通过对峰时效态合金的TEM分析发现合金基体中生成了大量的β′析出相,这些析出相沿α-Mg基体的{1120}棱柱面析出,具有正交晶体(bco)结构,并且与α-Mg基体保持半共格的位相关系,能够有效阻碍基面位错的滑移。拉伸测试表明,β′析出相能够明显提高峰时效态合金的室温和高温强度。对挤压合金的织构分析显示,合金的基面呈现平行于挤压方向分布的特征,这导致挤压态和峰时效态合金在室温下沿挤压方向上的压缩屈服强度/拉伸屈服强度的比值均低于1。但随着温度的升高,织构的影响作用减弱,合金的压缩屈服强度和拉伸屈服强度的相对大小发生了逆转,压缩屈服强度/拉伸屈服强度的比值升高并大于1,这主要是受合金显微组织(即β′第二相或溶质原子气团)的影响。而且位错与β′相和溶质原子气团之间不同的相互作用导致了挤压态和峰时效态合金在高温下压缩屈服强度/拉伸屈服强度的比值的偏离。
     其次,对Mg–8Gd–2Y–1Nd–0.3Zn–0.6Zr合金进行了自由锻造加工。结果表明,锻造加工明显细化了合金的晶粒,且锻造合金平行于拔长方向和垂直于拔长方向平面上的晶粒尺寸差别不大。拉伸测试显示,锻造合金在平行于拔长方向上的强度要高于垂直拔长方向上的强度,但垂直拔长方向的拉伸曲线在屈服之后,表现出了较高的应变硬化效果,而且具有较高的延伸率。
     此外,研究了Mg–8Gd–2Y–1Nd–0.3Zn–0.6Zr合金高温热压缩过程中的孪生变形和动态析出行为。结果表明,在热压缩过程中孪生变形是协调合金塑性变形的主要增补机制,尤其是{1011}-{1012}型双孪生变形。而且合金中发生了大量的动态析出,这种动态析出阻碍并最终抑制了动态再结晶的发生。该合金在热压缩过程中动态析出的矩形片状β′相与经过T6热处理析出的β′相形貌完全不同,主要原因是由于弹性应变能的降低,但它们与镁基体的位相关系仍然保持不变。
     对Mg6.5Gd1.3Nd0.7Y0.3Zn合金进行了挤压和轧制加工,制备出了厚度分别为2mm、8mm的挤压板和3mm的轧制板材,合金的成形性能良好。经过变形加工,合金的晶粒明显细化,而且粗大的第二相被破碎为小颗粒,在2mm和8mm挤压板材合金中,这些颗粒呈现平行于挤压方向的带状分布特征,在轧制合金中这种带状分布特征明显减弱。通过对变形合金的织构分析显示,挤压和轧制合金均呈现出较弱的<1010>ED纤维织构特征,且{0001}基面极图以板材的法线方向为轴朝板材垂直方向劈开形成两个弱的峰值组元。变形合金这种弱化的织构与固溶态的稀土元素和Mg–RE化合物对合金在变形加工过程中动态再结晶的影响作用有关。拉伸测试表明,挤压和轧制合金在板材ED/RD方向和TD方向存在不同的拉伸各向异性,这主要是受合金织构和第二相颗粒分布的共同影响。
     通过对合金微观组织的分析,讨论了Mg–Gd–Y–Nd–Zn(Zr)系合金中稀土元素和变形加工对合金力学性能的主要强化机制。稀土元素对提高合金力学性能的主要作用机制包括固溶强化、细晶强化和时效析出强化,其中析出强化的作用效果最好。经过挤压、锻造和轧制等变形加工,进一步提高了合金的细晶强化作用,而且还增加了形变强化作用。
Recently,due to the emphasis on material light design, reducing energy consumptionand environment protection, Mg alloys are becoming the ideal substitute materials in thehigh-technology fields and civil producing industries. Meanwhile, the research anddevelopment of wrought Mg alloys are attracting more and more attentions. Rare earth (RE)elements are one of the vigorous alloying elements in Mg alloys. The addition of RE elementsin Mg can refine the structure, and can improve the oxidation resistance and creep resistanceas well that expands the service temperature range of Mg applications. Moreover, RE alloyingelements can produce weaker textures in wrought Mg alloys by changing the recrystallizationkinetics during thermo-mechanical processing, which is benefit to reduce the plasticanisotropy and enhance the comprehensive properties of wrought Mg alloys. In thisdissertation, the Mg–Gd–Y–Nd–Zn(Zr) alloy system was chosen as research object, andprocessed by hot extrusion, hot rolling and free forging technologies. The influences ofdifferent processing parameters on the microstructure, texture, mechanical properties andage-hardening behavior of the wrought alloys were systematically investigated. And theaction mechanisms of RE alloying elements and Mg–RE compounds on the microstructureand mechanical properties of these alloys were discussed.
     Firstly, the Mg–8Gd–2Y–1Nd–0.3Zn–0.6Zr alloy was processed by hot extrusiontechnology, and the extruded alloy sheets and bars were produced, respectively. Resultsshowed that this alloy possesses good formability. During thermal-mechanical processing,dynamic recrystallization took place and the structure of wrought alloys was greatly refined.The grain size distributions on different planes of extruded alloy sheets and bars were uniform.The extruded alloy exhibited remarkable age-hardening response from200℃to300℃. TEMobservation of the peak-aged alloy indicated that there are plenty of β′precipitates in α-Mgmatrix. The β′phase precipitated on the {1120} prismatic planes, which has a bco structureand exhibits semi-coherent structure with α-Mg matrix, could effectively block the basal dislocation slip. The results of tensile tests showed that these β′precipitates played animportant role in the improvement of room temperature and high temperature strengthes ofthe peak-aged alloy. Texture analysis of the extruded alloy revealed that the basal planes ofmost grains are distributed parallel to the extrusion direction. Due to the effect of texture, theas-extruded and peak-aged alloys exhibited almost equivalent asymmetry ratios with theCYS/TYS along extrusion direction both lower than1at room temperature. With increasingtemperature, the influence of texture reduced. The relative magnitude between CYS and TYSreversed, and the ratio of CYS/TYS increased higher than1. This was attributed to the effectof microstructure (i.e. β′secondary phase or solute atom clusters) of the alloy. Meanwhile,different interactions between the dislocations and β′secondary phase or solute atom clustersled to the different asymmetry ratios of the as-extruded and peak-aged alloys.
     Secondly, the Mg–8Gd–2Y–1Nd–0.3Zn–0.6Zr alloy was processed by free forgingtechnology. Results showed that grains of the as-forged alloy were greatly refined and thegrain size distributions were similar on the planes parallel and vertical to the drawingdirection. The results of tensile tests revealed that strengths of the alloy specimens along thedrawing direction were higher than those of the alloy specimens vertical to the drawingdirection; while, the tensile stress–strain curves of the alloy specimens vertical to the drawingdirection exhibited remarkable strain hardening after yielding and possessed higherelongations.
     Furthermore, twinning and dynamic precipitation upon hot compression of theMg–8Gd–2Y–1Nd–0.3Zn–0.6Zr alloy was systematically investigated. Results revealed thatdeformation twinning was an important supplementary deformation mechanism to——accommodate plastic strain of the alloy, especially the {1011}-{1012} double twinning.Dynamic precipitation occurred extensively during hot compression, which hindered or evensuppressed dynamic recrystallization of the alloy. The morphology of β′precipitates obtainedby dynamic precipitation differed from that of the same phase produced by T6heat treatment.But their orientation relation ship with Mg matrix did not change.
     The Mg6.5Gd1.3Nd0.7Y0.3Zn alloy was processed by hot extrusion and rollingtechnologies. Extruded alloy sheets with thicknesses of2mm,8mm, and rolled alloy sheetwith a thickness of3mm were produced, respectively. Results showed that this alloypossesses good formability. All alloy sheets exhibited fine equiaxed grains, and coarsesecondary phases in the matrix had been crushed into small particles. In the extruded alloysheets, the crushed particles showed a banded structure along extrusion direction; while in therolled alloy sheet, the distribution of crushed particles was more dispersive. Texture analysis revealed that both the extruded and rolled alloy sheets showed a weak <1010>ED fiber texture,and the {0001} basal poles were split in the transverse direction of the sheet, exhibitingtwo-peak intensity maxima. The RE elements both in Mg solid solution and Mg–REcompounds contributed to the texture weakening of alloy sheets by affecting dynamicrecrystallization behavior during thermal-mechanical processing. The results of tensile testsindicated that the extruded and rolled alloy sheets exhibited different tensile planaranisotropies along the ED/RD and TD. It was influenced by both the texture and thedistribution of secondary phase particles.
     By means of microstructural analysis, the influences of RE alloying elements andthermo-mechanical processing on the strengthening of mechanical properties ofMg–Gd–Y–Nd–Zn(Zr) alloy system were discussed. Solid-solution strengthening,grain-refining strengthening and precipitation strengthening were considered to be the mainstrengthening mechanisms for the RE alloying elements, and among them the precipitationstrengthening took the greatest strengthening effect. After hot extrusion, free forging or hotrolling processing, the grain-refining strengthening was enhanced, and the deformationstrengthening emerged as well.
引文
[1] Kainer K U. Magnesium-alloys and technology [M]. Weinheim: Cambridge,2003.
    [2] Kaneko T, Suzuki M. Automotive Applications of Magnesium Alloys [J]. MaterialsScience Forum,2003,419-422:67–72.
    [3] Fores F H, Eliezer D, Aghion E. The science, technology, and application ofMagnesium [J]. Journal of the Minerals Metals&Materials Society,1998,50(9):30–34.
    [4] Mordike B L, Ebert T. Magnesium properties-application-potential [J]. MaterialsScience and Engineering A,2001,302:37–45.
    [5] Polmear I J. Magnesium alloys and applications [J]. Materials Science andTechnology,1994,10:116.
    [6] Cahn R W, Shi C X, Ke J. Structure and Properties of Nonferrous Alloys [M].Beijing: Science Press,1999.
    [7]陈振华,严红革,陈吉华等,镁合金[M].北京:化学工业出版社,2004, p.29.
    [8] Cavaliere P, Marco P P de. Fatigue behaviour of friction stir processed AZ91magnesium alloy produced by high pressure die casting [J]. MaterialsCharacterization,2007,3:226232.
    [9] Suman C. SAE Technical Paper No.910416[C]. Warrendale, PA, Society ofAutomotive Engineers,1991.
    [10] Luo A A. Magnesium Technology2004[C]. TMS, Warrendale, PA,2004, p.329.
    [11] Lyon P, King J F, Nuttall. Proc.3rd Int. Magnesium Conf [M]. London: G.W.Lorimer Pub.1996, p.99.
    [12] Bronfin B, Aghion E. Magnesium Technology [M]. Warrendale: J.N. HrynPub.2001, p.127.
    [13] Yamashita A, Horita Z, Langdon T G. Improving the mechanical properties ofmagnesium and a magnesium alloy through severe plastic deformation [J].Materials Science and Engineering A,2001,300:142–147.
    [14] Agnew S R, Liu K C. Magnesium Technology [C]. Warrendale:TMS,PA,2000,p.285.
    [15] Yang Z, Li J P, Zhang J X, Lorimer G W, Robson J. Review on research anddevelopment of magnesium alloys [J]. Acta Metallurgica Sinica,2008,21:313–328.
    [16] Bronfin B, Aghion E, Buch F von, Schumann S, Katzir M. US Patent No.7041179[P].May9,2006.
    [17] Hollrigl-Rosta F,Just E. Magnesium in the Volkswagen [J]. Light Metals Age1980,8:22–23.
    [18] Powell B R, Rezhets V, Luo A A. US Patent No.6,264,763[P]. July24,2001.
    [19] Luo A A. Recent magnesium alloy development for elevated temperature applications [J].International Materials Reviews,2004,1:13–30.
    [20] Pekguleryuz M O, Barai E. Magnesium Technology [C]. TMS, Warrendale, PA,2001,p.119.
    [21] Sakamoto K, Yamanoto Y, Sakate N. European Patent EP0799901A1[P]. Aug.10,1997.
    [22] Bakke P, Pettersen K, Westengen H. Magnesium, Proc.6th Int. Conf. on MagnesiumAlloys and their Applications [M]. Stuttgart: K.U. Kainer Pub.2003, p.140.
    [23] Brofin B, Aghion E. US Patent No.6,139,651[P]. Oct.31,2000.
    [24] Luo A A, Shinoda T. SAE Technical Paper No.980086[J]. Sep.10,2004.
    [25] Anyanwu I A. Heat Resistance of Mg-Zn-Al-Ca Alloy Castings [J]. Materials ScienceForum,2000,350–351:73–78.
    [26] Kamado S.4th Pacific Rim Int. Conf. On Advanced Materials and Processing (PRICM4)
    [C]. Japan: S. Hanado and Z. Zhong Pub. JIM,2001, p.1175.
    [27] Sasaki T T, Oh-ishi K, Ohkubo T, Hono K. Enhanced age hardening response by theaddition ofZn in Mg–Sn alloys [J]. Scripta Materialia,2006,55:251–254.
    [28] Grobner J, Schmid-Fetzer R. Selection of promising quaternary candidates fromMg–Mn–(Sc, Gd, Y, Zr) for development of creep-resistant magnesium alloys [J].Journal of Alloys and Compounds,2001,320:296–301.
    [29] Drits M E, Sviderskaya Z A, Rokhlin L L, Nikitina N I. Effect of alloying on theproperties of Mg Gd alloys [J]. Metal Science and Heat Treatment,1979,21:887–889.
    [30] Aikawa K, Taketani K. US Patent No.5304260[P]. Apr.19,1994.
    [31] Yuan G, Sun Y, Ding W. Effects of Sb addition on the microstructure and mechanicalproperties of AZ91magnesium alloy [J]. Scripta Materialia,2000,43:1009–1013.
    [32] Yang Z, Li J P, Li G H, Yang J M. Effect of antimony and Ce-rich mischmetal additionson as-cast microstructure and mechanical properties of AZ91alloy [J]. Materials ScienceForum,2005,488–489:219–222.
    [33] Rokhlin L L. Magnesium Alloys Containing Rare Earth Metals-Structure and Properties
    [M]. Moscow: Taylor&Francis Pub.2003, p.197.
    [34] King J F, Magnesium Alloys and Their Applications [M]. Frankfuet:B.L. Mordike and F.Hehmann Pub.1998, p.37.
    [35] Ping D H, Hono K, Nie J F. Atom probe characterization of plate-like precipitates in aMg–RE–Zn–Zr casting alloy [J]. Scripta Materialia,2003,48:1017–1022.
    [36] Apps P J, Karimzadeh H, King J F, Lorimer G W. Phase compositions in magnesium-rareearth alloys containing yttrium, gadolinium or dysprosium [J]. Scripta Materialia,2003,48:475–481.
    [37] Nie J F, Muddle B C. Characterizations of strengthening precipitate phases in a Mg-Y-Ndalloy[J]. Acta Materialia2000,48:1691–1703.
    [38] Apps P J, Karimzadeh H, King J F, Lorimer G W. Precipitation reactions inMagnesium-rare earth alloys containing Yttrium, Gadolinium or Dysprosium [J]. ScriptaMaterialia,2003,48:1023–1028.
    [39] Yang Z, Li J P and Guo Y C. Plastic deformation and dynamic recrystallizationbehaviors of Mg–5Gd–4Y–0.5Zn–0.5Zr alloy [J]. Materials Science and Engineering A,2008,485:487–491.
    [40] Kettner M, Pravdic F, Fragner W, Kainer K U. Magnesium Technology [C]. Warrendale:TMS, PA,2006, p.133.
    [41] Bettles C J, Gibson M A. Current wrought magnesium alloys: Strengths and weaknesses[J]. JOM2005,57:46–49.
    [42] Davies C, Barnett M. Expanding the Extrusion Limits of Wrought Magnesium Alloys [J].JOM2004,56:22–24.
    [43] Letzig D, Swiostek J, Bohlen J, Kainer K U. Magnesium wrought alloy properties of theAZ-Series [J]. Magnesium alloys and technology,2005,67:55–60.
    [44] Luo A A, Sachdev A K. Development of a New WroughtMagnesium-Aluminum-Manganese Alloy AM30[J]. Metallurgical and MaterialsTransaction A,2007,6:1184–1192.
    [45] Gonzalez-Martinez R, G oken J, Letzig D, Timmerberg J, Steinho K, Kainer K U.Influence of heat treatment on damping behaviour of the magnesium wrought alloyAZ61[J]. Acta Metallurgica Sinica,2007,20:235–240.
    [46] Skubisz P, Sinczak J, Bednarek S J. Forgeability of Mg–Al–Zn magnesium alloys in hotand warm closed die forging [J]. Journal of Materials Processing Technology,2006,177:210–213.
    [47] Bohlen J S, Jacek B, Heinz-Gunter L, Dietmar K, Karl U. Magnesium Technology [C].Warrendale: TMS, PA,2006, p.213.
    [48] Galiyev A, Kaibyshev R,Gottetein G. Correlation of plastic deformation and dynamicrecrystallization in magnesium alloy ZK60[J]. Acta Materialia,2001,49:1199–1207.
    [49] Huang Z W,Yoshida Y. Microstructures and Tensile Properties of Wrought MagnesiumAlloys Processed by ECAE [J]. Materials Science Forum,2003,419–422:243–248.
    [50] Itoh G, Iseno Y,Mothashi Y [J]. Materials Science Forum,2003,419–422:355–358.
    [51] Fatemi-Varzaneh S M, Zarei-Hanzaki A, Beladi H. Dynamic recrystallization in AZ31magnesium alloy [J]. Materials Science and Engineering A,2007,456:52–57.
    [52] Mueller K,Mueller S. Severe plastic deformation of the magnesium alloy AZ31[J].Journal of Materials Processing Technology,2006,187-188:775–779.
    [53] Yasumasa C, Hajime I,Mamoru M.Stretch formability of AZ31Mg alloy sheets atdifferent testing temperatures [J]. Materials Science and Engineering A,2007,466:90–95.
    [54] He S M, Zeng X Q, Peng L M. Microstructure and strengthening mechanism of highstrength Mg–10Gd–2Y–0.5Zr alloy [J]. Journal of Alloys and Compounds,2007,427:316–323.
    [55] Yang Z, Li J P and Guo Y C. Precipitation process and effect on mechanical properties ofMg–9Gd–3Y–0.6Zn–0.5Zr alloy [J]. Materials Science and Engineering A,2007,454–455:274–280.
    [56] Li J P, Yang Z, Liu T. Microstructures of extruded Mg-12Gd-lZn-0.5Zr andMg-12Gd-4Y-lZn-0.5Zr alloys [J]. Scripta Materialia,2007,56:137–140.
    [57] Kawamura Y, Hayashi K, Inoue A. Rapidly solidified powder metallurgy Mg97Zn1Y2alloys with excellent tensile yield strength above600MPa [J]. Materials Transaction,2001,42:1172–1176.
    [58] Inoue A, Kawamura Y, Matsushita M. Novel hexagonal structure and ultrahigh strengthof magnesium solid solution in the Mg–Zn–Y system [J]. Journal of Materials Research,2001,16:1894–1900.
    [59] Abe E, Kawamura Y, Hayashi K, Inoue A. Long-period ordered structure in ahigh-strength nanocrystalline Mg-1at%Zn-2at%Y alloy studied by atomic-resolutionZ-contrast STEM [J]. Acta Materialia,2002,50:3845–3857.
    [60] Jones H. A perspective on the development of rapid solidification and nonequilibriumprocessing and its future [J]. Materials Science and Engineering A,2001,304–306:11–19.
    [61] Luo A, Pekguleryue M O. Cast magnesium alloys for elevated temperature applications[J]. Journal of Materials Science,1994,29:5259–5271.
    [62] Bach F W, Schaper M, Jaschik C. Influence of Lithium on hcp Magnesium Alloys [J].Materials Science Forum,2003,419–422:1037–1042.
    [63] Wang C Y, Wang X J, Chang H, Wu K, Zheng M Y. Processing maps for hot working ofZK60magnesium alloy [J]. Materials Science and Engineering A,2007,464:52–58.
    [64] Yu K, Li W X, Wang R C. Effects of heat treatment on microstructures and mechanicalproperties of ZK60magnesium alloy [J]. Transactions of Nonferrous Metals Society ofChina,2007,17:188–190.
    [65] Somekawa H, Mukai T. Fracture Toughness in an Extruded ZK60Magnesium Alloy [J].Materials Transaction,2006,47:995–998.
    [66] Zhao Z D, Shan W W, Luo S J. Microstructure evolution of magnesium alloy ZK60-REmade by liquidus forging during semi-solid isothermal heat treatment [J]. MaterialsScience and Technology,2007,15:59–63.
    [67] Shan W W, Luo S J. Mechanical behavior and microstructure during compression ofsemi-solid ZK60-RE magnesium alloy at high solid content [J]. Materials Science andEngineering A,2007,465:247–254.
    [68] Luo S J, Shan W W. Steady state Theological behavior of semi-solid ZK60-REmagnesium alloy during compression [J]. Transactions of Nonferrous Metals Society ofChina,2007,17:974–980.
    [69] Lee J Y, Kim D H, Lim H K, Kim D H. Effects of Zn/Y ratio on microstructure andmechanical properties of Mg-Zn-Y alloys [J]. Materials Letters,2005,59:3801–3805.
    [70] Homma T, Ohkubo T, Kamado S, Hono K. Effect of Zn additions on the age-hardeningof Mg–2.0Gd–1.2Y–0.2Zr alloys [J]. Acta Materialia,2007,55:4137–4150.
    [71] von Buch F, Lietzau J, Mordike B L, Pisch A, Schmid-Fetzer R. Development ofMg–Sc–Mn alloys [J]. Materials Science and Engineering A,1999,263:1–7.
    [72] Payne R J M, Bailey N. Improvement of the age-hardening properties ofmagnesium-rare-earth alloys by addition of silver [J]. Journal Institute of Metals,1960,88:417–427.
    [73] Mackzie L W F, Humphrey F J, Lorimer G W. Proc.6th Int. Conf. Magnesium Alloysand Their Applications [M]. Florida: K.U. Kainer Pub.2003, p.158.
    [74] Iwasawa S, Negishi Y, Kamado S, Kojima Y, Ninomiy R. Age hardening characteristicsand high temperature tensile properties of Mg-Gd and Mg-Dy alloys [J]. Journal of JapanInstitute of Light Metals,1994,44:3–8.
    [75] Negishi Y, Nishimura T, Kiryuu M, Kamado S, Kojima Y, Ninomiya R. Phase diagramsof Mg-rich portion, aging characteristics and tensile properties of Mg-Heavy rare earthmetal alloys [J]. Journal of Japan Institute of Light Metals,1994,45:57–63.
    [76] Stulíková I, Smola B, Buch F von, Mordike B L. Development of creep resistantMg-Gd-Sc alloys with low Sc content [J]. Materialwissenschaft und Werkstofftechnik,2001,32:20–24.
    [77] Vostry P, Smola B, Stulikova I, Buch F von, Mordike B L. Microstructure Evolution inIsochronally Heat Treated Mg-Gd Alloys [J]. Physica Status Solidi (a),1999,175:491–500.
    [78] Antion C, Donnadieu P, Perrard F, Deschamps A, Tassin C, Pisch A. Hardeningprecipitation in a Mg–4Y–3RE alloy [J]. Acta Materialia2003,51:5335–5348.
    [79] Zhu S M, Nie J F. Serrated flow and tensile properties of Mg-Y-Nd alloy [J]. ScriptaMaterialia,2004,50:51–55.
    [80] Stanford N, Barnett M R. The origion of “rare earth” texture development in extrudedMg-Based alloys and its effect on tensile ductility [J]. Materials Science and EngineeringA,2008;496:399–408.
    [81] Mishra R K, Gupta A K, Rao P R, Sachdev A K, Kumar A M, Luo A A. Influence ofcerium on the texture and ductility of magnesium extrusions [J]. Scripta Materialia,2008,59:562–565.
    [82] Hantzsche K, Bohlen J, Wendt J, Kainer K U, Yi S B, Letzig D. Effect of rare earthadditions on microstructure and texture development of magnesium alloys sheets [J].Scripta Materialia,2010,63:725–730.
    [83] Mackenzie L W F, Pekguleryuz M O. The recrystallization and texture ofmagnesium-zinc-cerium alloys [J]. Scripta Materialia,2008,59:665–668.
    [84] Ball E A, Prangnell P B. Tensile-compressive yield asymmetries in high strengthwrought magnesium alloys [J]. Scripta Metallurgica,1994,31:111–116.
    [85] Wendt J, Kainer K U, Arruebarrena G, Hantzsche K, Bohlen J, Letzig D. In: Nyberg A,Agnew SR, Neelameggham R, Pekguleryuz O, editors. Magnesium Technology [M].San Francisco: TMS,2009.
    [86] Cottam R, Robson J, Lorimer G, Davis B. Dynamic recrystallization of Mg and Mg–Yalloys:Crystallographic texture development [J]. Mater Sci. Eng. A2008,485:375–382
    [87] Peng Q M, Wang J L, Wu Y M, Wang L M. Microstructures and tensile properties ofMg-8Gd-0.6Zr-xNd-yY (x+y=3mass%) alloys [J]. Materials Science and Engineering A,2006,433:133–138.
    [88] Emley E G. Principles of Magnesium Technology [M]. Perganmon, London,1966, p.300–350.
    [89] Mabuchi M, Ameyama K, Iwasaki H, Higashi K. Low temperature superplasticity ofAZ91magnesium alloy with non-equilibrium grain boundaries [J]. Acta Materialia,1999,47:2047–2057.
    [90] Kamado S, Ashie T, Yamada H, Sanbun K, Kojima Y. Improvement of tensile propertiesof wrought magnesium alloys by grain refining [J]. Materials Science Forum,2000,350:65–72.
    [91] Agnew S R, Stoica G M, Chen L J, Lillo T M, Macheret J, Liaw P K. Equal channelangular processing of magnesium alloys [M]. TMS Annual Meeting,2002, p.643–652.
    [92] Kamado S, Iwasawa S, Ohuchi K, Kojima Y, Ninomiya R. Age hardening characteristicsand high temperature strength of Mg-Gd and Mg-Tb alloys [J]. Journal of Japan Instituteof Light Metals,1992,42:727–733.
    [93] Negishi Y, Iwasawa S, Kamado S, Kojima Y, Ninomiya R. Effect of yttrium andneodymium additions on aging characteristics and high temperature tensile properties ofMg-10mass%Gd and Mg-10mass%Dy alloys [J]. Journal of Japan Institute of LightMetals,1994,44:549–554.
    [94] Anyanwu I A, Kamado S, Kojima Y. Aging characteristics and high temperature tensileproperties of Mg-Gd-Y-Zr alloys [J]. Materials Transaction,2001,42:1206–1211.
    [95] Anyanwu I A, Kamado S, Kojima Y. Creep properties of Mg-Gd-Y-Zr alloys [J].Materials Transaction,2001,42:1212–1218.
    [96] Gao X, He S M, Zeng X Q, Peng L M, Ding W J, Nie J F. Microstructure evolution in aMg-15Gd-0.5Zr (wt.%) alloy during isothermal aging at250℃[J]. Materials Scienceand Engineering A,2006,431:322–327.
    [97] Liu X B, Chen R S, Han E H. Effects of ageing treatment on microstructures andproperties of Mg-Gd-Y-Zr alloys with and without Zn additions [J]. Journal of Alloysand Compounds,2008,465:232–238.
    [98] Yi S, Bohlen J, Heinemann F, Letzig D. Mechanical anisotropy and deep drawingbehaviour of AZ31and ZE10magnesium alloy sheets [J]. Acta Materialia,2010,58:592605.
    [99] Zheng K Y, Dong J, Zeng X Q, Ding W J. Effect of precipitation aging on the fracturebehavior of Mg-11Gd-2Nd-0.4Zr cast alloy [J]. Materials Characterization,2008,59:857–862.
    [100] Bettles C J, Gibson M A. Microstructural design for enhanced elevated temperatureproperties in sand-castable magnesium alloys [J]. Advanced Engineering Materials,2003,5:859–865.
    [101] Ma C J, Liu M P, Wu G H, Ding W J, Zhu Y P. Tensile properties of extruded ZK60-REalloys [J]. Materials Science and Engineering A,2003,349:207–212
    [102] Nie J F, Muddle B C. Magnesium Alloys and Their Applications [M]. Eds: B.L.Mordike, K.U. Kainer,1998, p.229–234.
    [103] Yi S B, Bohlen J, Heinemann F, Letzig D. Mechanical anisotropy and deep drawingbehavior of AZ31and ZE10magnesium alloy sheets [J]. Acta Materialia,2010,58:592605.
    [104] Chino Y, Kimura K, Hakamada M, Mabuchi M. Mechanical anisotropy due to twinningin an extruded AZ31Mg alloy [J]. Materials Science and Engineering A,2008,485:311317.
    [105] Koike J, Kobayashi T, Mukai T, Watanabe H, Suzuki M, Maruyama K. The activity ofnon-basal slip systems and dynamic recovery at room temperature in fine-grainedAZ31B magnesium alloys [J]. Acta Materialia,2003,51:20552065.
    [106] Hou X L, Peng Q M, Cao Z Y, Xu S W, Kamado S, Wang L D, Wu Y M, Wang L M.Structure and mechanical properties of extruded Mg-Gd based alloy sheet [J]. MaterialsScience and Engineering A,2009,520:162167.
    [107] Homma T, Kunito N, Kamado S. Fabrication of extraordinary high-strength magnesiumalloy by hot extrusion [J]. Scripta Materialia,2009,61:644647.
    [108] J ger A, Luká P, G rtnerová V, Bohlen J, Kainer K U. Tensile properties of hot rolledAZ31Mg alloy sheets at elevated temperatures [J]. Journal of Alloys and Compounds,2004,378:184187.
    [109] Stanford N, Sabirov I, Sha G, Fontaine A La, Ringer S P, Barnett M R. Effect of Al andGd solutes on the strain rate sensitivity of magenesium alloys [J]. Metallurgical andMaterials Transaction A,2010,41:734743.
    [110] Ulacia I, Dudamell N V, Gálvez F, Yi S, Pérez-Prado M T, Hurtado I. Mechanicalbehavior and microstructural evolution of a Mg AZ31sheet at dynamic strain rates [J].Acta Materialia,2010,58:29882998.
    [111] Laser T, Hartig Ch, Nürnberg M R, Letzig D, Bormann R. The influence of calcium andcerium mischmetal on the microstructural evolution of Mg-3Al-1Zn during extrusionand resulting mechanical properties [J]. Acta Materialia,2008,56:27912798.
    [112] Barnett M R, Keshavarz Z, Beer A G, Atwell D. Influence of grain size on thecompressive deformation of wrought Mg-3Al-1Zn [J]. Acta Materialia,2004,52:50935103.
    [113] Beladi H, Barnett M R. Influence of aging pre-treatment on the compressivedeformation of WE54alloy [J]. Materials Science and Engineering A,2007,452(3):306312.
    [114] Shih H C, Ho N J, Huang J C. Precipitation behaviors in Al-Cu-Mg and2024aluminumalloys [J]. Metallurgical and Materials Transaction A,1996,27:24792494.
    [115] H rnqvist M, Karlsson B. Dynamic strain ageing and dynamic precipitation in AA7030during cyclic deformation [J]. Procedia Engineering,2010,2:265273.
    [116] Bettles C J, Gibson M A, Zhu S M. Microstructure and mechanical behaviour of anelevated temperature Mg-rare earth based alloy [J]. Materials Science and EngineeringA,2009,505:612.
    [117] Singh A, Somekawa H, Mukai T. Compressive strength and yield asymmetry inextruded Mg-Zn-Ho alloys containing quasicrystal phase [J]. Scripta Materialia,2007,56:935938.
    [118] Li L, Zhang X M, Tang C P, Deng Y L, Zhou N. Mechanical properties and deepdrawability of Mg-Gd-Y-Zr alloy rolling sheet at elevated temperatures [J]. MaterialsScience and Engineering A,2010,527:12661274.
    [119] Lorimer G W. in: H. Baker (Eds.). Proceedings of London Conference on MagnesiumTechnology [M]. London: Institute of Metals,1986, p.4753.
    [120] Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena (2nded)[M]. UK: Galliard,2004.
    [121]毛卫民,金属的再结晶与晶粒长大[M].冶金工业出版社,1994.
    [122] Xu S W, Kamado S, Matsumoto N, Kojima Y. Recrystallization mechanism of as-castAZ91magnesium alloy during hot compressive deformation [J]. Materials Science andEngineering A,2009,527:5260.
    [123] Lu J Z, Luo K Y, Zhang Y K, Sun G F, Gu Y Y, Zhou J Z, Ren X D, Zhang X C, ZhangL F, Chen K M, Cui C Y, Jiang Y F, Feng A X, Zahng L. Grain refinement mechanismof multiple laser shock processing impacts on ANSI304stainless steel [J]. ActaMaterialia,2010,58:53545362.
    [124] Zurob H S, Brechet Y, Purdy G. A model for the competition of precipitation andrecrystallization in deformed austenite [J]. Acta Materialia,2001,49:41834190.
    [125] Terao N, Sasmal B. Precipitation of M23C6type carbide on twin boundaries inaustenitic stainless steels [J]. Metallography1980,13:117133.
    [126] Jones M J, Humphreys F J. Interaction of recrystallization and precipitation: The effectof Al3Sc on the recrystallization behaviour of deformed aluminium [J]. Acta Materialia,2003,51:21492159.
    [127] Beladi H, Barnett M R. Influence of aging pre-treatment on the compressivedeformation of WE54alloy [J]. Materials Science and Engineering A,2007,452453:306312.
    [128] He S M, Zeng X Q, Peng L M, Gao X, Nie J F, Ding W J. Precipitation in aMg10Gd3Y0.4Zr (wt.%) alloy during isothermal ageing at250℃[J]. Journal ofAlloys and Compounds,2006,421:309313.
    [129] Ando D, Koike J, Sutou Y. Relationship between deformation twinning and surface stepformation in AZ31magnesium alloys [J]. Acta Materialia,2010,58:43164324.
    [130] Martin é, Capolungo L, Jiang L, Jonas J J. Variant selection during secondary twinningin Mg3%Al [J]. Acta Materialia,2010,58:39703983.
    [131] Yoshinaga H, Horiuchi R. Deformation mechanisms in magnesium single crystalscompressed in the direction parallel to hexagonal axis [J]. Materials Transactions JIM,1963,4:18.
    [132] Koike J. Metall. Enhanced deformation mechanisms by anisotropic plasticity inpolycrystalline Mg alloys at room temperature [J]. Metallurgical and MaterialsTransaction A,2005,36:16891696.
    [133] Sandl bes S, Zaefferer S, Schestakow I, Yi S, Gonzalez-Martinez R. On the role ofnon-basal deformation mechanism for the ductility of Mg and Mg Y alloys [J]. ActaMaterialia,2011,59:429439.
    [134] Khachaturyan A G, Semenovskaya S V, Morris J W. Theoretical analysis ofstrain-induced shape changes in cubic precipitates during coarsening[J]. ActaMetallurgica,1988,36:15631572.
    [135] Kato M, Fujii T, Onaka S. Elastic strain energies of sphere, plate and needle inclusions[J]. Materials Science and Engineering A,1996,211:95103.
    [136]陈振华,变形镁合金[M].北京:化学工业出版社,2005.
    [137]吴立鸿,关绍康,王利国,刘俊.锻造镁合金及影响锻造成形的几个关键因素[J].锻压技术,2006,4:7–10.
    [138]吕炎,徐福昌,薛克敏.镁合金上机闸等温精密锻造工艺的研究[J].哈尔滨工业大学学报,2000,32:127–129.
    [139] Lin L, Chen L J, Liu Z. Tensile strength improvement of an Mg-12Gd-3Y(wt.%) alloyprocessed by hot extrusion and free forging [J]. Journal of Materials Science,2008,43:4493–4502.
    [140] Liu K, Zhang J H, Lu H Y, Tang D X, Rokhlin L L, Elkin F M, Meng J. Effect of thelong periodic stacking structure and W-phase on the microstructures and mechanicalproperties of the Mg–8Gd–xZn–0.4Zr alloys [J]. Materials and Design,2010,31:210–219.
    [141] Tabata T, Fujita H, Hiraoka M A, Miyake S. The relationship between flow stress anddislocation behavior in [111] aluminium single [J]. Philosophical Magazine A,1982,46:801–816.
    [142] Callister W D, Jr. Fundamentals of Materials Science and Engineering (fifth ed)[M].Beijing: Chemical Industry Press,2002, p.206–207.
    [143] Xiao W L, Jia S S, Wang J, Wu Y M, Wang L M. Effects of cerium on themicrostructure and mechanical properties of Mg-20Zn-8Al alloy [J]. Materials Scienceand Engineering A,2008,474:317–322.
    [144] Negishi Y, Nishimura T, Iwasawa S, Kiryuu M, Kamado S, Kojima Y, Ninomiya R.Aging characteristics and tensile properties of Mg-Gd-Nd-Zr and Mg-Dy-Nd-Zr alloys[J]. Journal of Japan Institute of Light Metals,1994,44:555561.
    [145] Smola B, Stulíková I, Buch F von, Mordike B L. Structural aspects of high performanceMg alloys design [J]. Materials Science and Engineering A,2002,324:113117.
    [146] Mordike B L. Development of highly creep resistant magnesium alloys [J]. Journal ofMaterials Processing Technology,2001,117:391394.
    [147]张新明,陈健美,邓运来,肖阳,蒋浩,邓桢桢. Mg-Gd-Y-(Mn,Zr)合金的显微组织和力学性能[J].中国有色金属学报,2006,16:219227.
    [148] Senn J W, Agnew S R. Proceedings of Magnesium Technology in the Global Age,Pekguleryuz M O and Mackenzie L W F, eds.[C]. Montreal, Canada,2006, p.115.
    [149] Senn J W, Agnew S R. Magnesium Technology2008, Proc. TMS, Ed. H.I. Kaplan,TMS [C]. Warrendale, PA,2008, p.153.
    [150] Bohlen J, Nürnberg M R, Senn J W, Letzig D, Agnew S R. The texture and anisotropyof magnesium-zinc-rare earth alloy sheets [J]. Acta Materialia,2007,55:21012112.
    [151] Barnett M R. Twinning and the ductility of magnesium alloys: Part I:"Tension" twins[J]. Materials Science and Engineering A,2007,464:17.
    [152] Song X Y, Rettenmayr M. Modeling recrystallization in a material containing fine andcoarse particles [J]. Computational Materials Science,2007,40:234245.
    [153] Goetz R L. Particles stimulated nucleation during dynamic recrystallization using acellular automata model [J]. Scripta Materialia,2005:52:851856.
    [154] Hagihara K, Kinoshita A, Sugino Y, Yamasaki M, Kawamura Y, Yasuda H Y, UmakoshiY. Effect of long-period stacking ordered phase on mechanical properties ofMg97Zn1Y2extruded alloy [J]. Acta Materialia,2010,58:62826293.
    [155] Agnew S R, Yoo M H, Tomé C N. Application of texture simulation to understandingmechanical behavior of Mg and solid solution alloys containing Li or Y [J]. ActaMaterialia,2001,49:42774289.
    [156] Yan H, Chen RS, Han E H. Room-temperature ductility and anisotropy of two rolledMg Zn Gd alloys [J]. Materials Science and Engineering A,2010,527:33173322.
    [157] Hauser F E, Landon P R, Dorn J E. Deformation mechanisms in polycrystallineaggregates of magnesium [J]. Transactions ASM,1956,48:9861002.
    [158] Bohlen J, Yi S, Letzig D, Kainer K U. Effect of rare earth elements on themicrostructure and texture development in magnesium-manganese alloys duringextrusion. Materials Science and Engineering A,2010,527:70927098.
    [159] Xu D K, Liu L, Xu Y B, Han E H. Effect of microstructure and texture on themechanical properties of the as-extruded Mg Zn Y Zr alloys [J]. Materials Scienceand Engineering A,2007,443:248256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700