新型羧酸配体和金属—有机框架物的设计合成及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属-有机框架物(Metal-Organic Frameworks,MOFs),又名金属-有机配位聚合物,是一类利用金属离子的几何配位构型与有机配体的配位能力,借助于共价键或离子键相互联接构筑的具有规则周期性网络结构或孔道结构的晶态材料。有机配体是构筑金属-有机框架物的主要组分,其常见的合成方法主要分为以下两种:一是原位合成,另一个是传统的有机合成。前者通常是在“一锅”反应条件下进行的,是指前躯物原位转化成有机配体后,直接与金属离子桥联形成配位聚合物。原位反应一般会涉及水解,脱羧,烷基取代,羟基化等多种反应。传统的有机合成主要是指前驱物通过一步一步的有机反应得到目标配体,然后将合成的有机配体用于MOF材料的自组装。
     由于有机配体对金属-有机框架物的最终结构有着重要的影响。本论文设计合成了一系列不同结构的大骨架芳香性羧酸类配体(H3L3, H3L4, L5, H2L6, H2L7, L8,H4L9,H4L10)M通过配位键与金属离子Zn2+,Cd2+和Cu2+组装合成了8个具有新颖结构的金属-有机框架物,并通过X-射线单晶衍射、元素分析、热重分析、X射线粉末衍射、荧光分析和气体吸附等对它们进行了结构表征和性能测试。本论文的主要内容如下:
     一、利用含氰基配体L,通过原位反应得到了配合物1,2,3,在1和2中,前躯体L中氰基通过原位反应生成四唑型配体L2并参与配位,而在配合物3中由于盐酸的加入导致L的氰基水解成羧基参与配位。通过对三种配合物结构分析,我们发现最终导致配合物1和2结构相异的原因主要是配体采取了不同的配位模式:在配合物1中,采取顺-顺配位模式的部分L2配体将单核的SBU连接构筑成双核的分子结构,然后通过顺-反配位的配体将双核的分子结构扩展成一个二维层状结构;在配合物2中由于配体L2只采取了双齿螯合的一种配位模式,从而将-0轴向的两个配位点留给了可参与配位的溶剂水分子,阻止了进一步在空间上的延伸,形成了零维结构。配合物1的层与层之间存在着强烈的氢键作用,将二维层连接形成了三维超分子结构;而在2中,氢键发生在配位的水分子和四唑N原子间,零维的分子簇沿a,b两个方向延伸形成结构稳定的二维层状超分子结构。
     二、配合物6具有自穿插的拓扑结构,结构中的最小回路是12元环。这些最小回路相互交织穿插在一起形成一个完整的三维网络拓扑结构。由于结构中所有的边具有相同的属性,因此不能通过破坏某一个化学键,将整体结构拆分成全新的独立的二维格子或者三维网。这一点不同于以往报道的具有自穿插结构的MOF,我们称之为强自穿插。配合物6具有较高的拓扑密度,TD10=3245;由RSCR数据库可知配合物6是目前已知的最高拓扑密度的(3,4)-连接的自穿插网络结构。
     三、我们合成了五个基于硅烷结构的配体(配体3,4,6-8),并利用这5个有机配体与金属离子自组装合成了五个具有新颖结构的金属-有机框架物。其中配合物4和5是利用相同的金属离子和有机配体在不同溶剂中自组装形成的两个不同结构的配合物。配合物4是一个二重穿插的结构,而配合物5是一个笼状结构。配合物7和8由于选择不同长度的有机配体使得结构从非穿插的变为二维穿插的微孔框架物。
Metal-organic frameworks (MOFs), also known as coordination polymers, are crystalline coordination-based compounds in which metal centres are bridged via organic multitopic ligands to form multi-dimensional networks. The synthesis of MOF always begins with selection of the two maininteracting components-:the metal centres or the metal clusters and the bridging organic ligands. Nowdays, non-conventional in situ synthesis and conventional organic synthesis are the common ways of designing and preparing organic ligands. In the former ligand precursors are modified in situ to give organic ligands which are subsequently linked to the metal centres. This procedure may involve hydroxylation, decarboxylation, alkylation and hydrolysis, among others. In conventional synthesis the organic ligands are prepared, step-by-step, from organic precursors and the resulting compounds are later employed in the self-assembly of MOFs.
     After theoretical study on the influence of the ligand on the synthesis of metal-organic frameworks, we designed and synthesized a series of nonplanar aromatic multi-carboxylate ligands with a big rigid structure (H3L3, H3L4, L5, H2L6, H2L7, L8, H4L9, H4L10). Eight novel MOFs were obtained through the assembly reactions between the synthesized ligands and Zn2+, Cd2+, Cu2+. All complexes have been characterized by single-crystal X-ray diffraction, elemental analysis, thermal analysis, XPRD analysis, fluorescence spectroscopy, and gas adsorption. The contents of this dissertation are as follows:
     1. Three new metal organic coordination compounds,[Cd (L2)2]·4.5H2O (1),[Zn(L2)2·(H2O)2]·0.5H2O (2) and Cu(L1)2(3),(L2=3-chloro-2-(5H-tetrazol-5-yl)pyridine; L1=3-chloropicolinic acid), have been hydrothermally synthesized, in which, L2and HL1were synthesized via in situ reaction. MOF-(1-3) shows diverse structures by changing from a zero-dimensional cluster to1D chain to2D44layer. The changes in structure result from the different bridging abilities of tetrazolate ligands. Weak interactions, such as hydrogen bonds and halogen bonds, play important role in the construction of metal-organic frameworks.In addition, three complexes display modest thermal stability and compound1and2show strong solid-state fluorescent emissions.
     2. A3D (12)4(12)3coordination network with high topological density and extremely tight self-catenation of12-rings has been obtained based on [Cu2(COO)4] paddlewheel SBUs and a tripodal carboxylate linker. The self-catenation is " strong" i.e., the network cannot be transformed into an array of interpenetrating nets by breaking any chemical bond. To the best of our knowledge, MOF-6has the highest topological density among all known3,4-coordinated nets.
     4. Five different silicon-based ligands have been designed and synthesized. We synthesize and characterize five different novel metal-organic frameworks. The solvent system plays an important role in modulating the final structures. Complex5and8present3D double-interpenetrating network. Complexes4and7show the noninterpenetrated frameworks.
引文
[1]Bowman-James K. Alfred Werner revisited:The coordination chemistry of anions[J]. Accounts of Chemical Research.2005,38(8):671-678.
    [2]Cook TR, Zheng Y-R, Stang PJ. Metal-Organic Frameworks and Self-Assembled Supramolecular Coordination Complexes:Comparing and Contrasting the Design, Synthesis, and Functionality of Metal-Organic Materials [J]. Chemical Reviews.2013,113(1):734-777.
    [3]James SL. Metal-organic frameworks [J]. Chemical Society Reviews. 2003,32(5):276-288.
    [4]Natarajan S, Mahata P. Metal-organic framework structures-how closely are they related to classical inorganic structures?[J]. Chemical Society Reviews. 2009,38(8):2304-2318.
    [5]Yaghi OM, O'Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J. Reticular synthesis and the design of new materials[J]. Nature.2003,423(6941):705-714.
    [6]Batten SR, Champness NR, Chen X-M, Garcia-Martinez J, Kitagawa S, Ohrstrom L, O'Keeffe M, Suh MP, Reedijk J. Coordination polymers, metal-organic frameworks and the need for terminology guidelines [J]. Crystengcomm. 2012,14(9):3001-3004.
    [7]戴昉纳.基于多羧酸配体的新型金属—有机超分子的合成、结构及性能研究[博士]:山东大学;2011.
    [8]Hoskins BF, Robson R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4',4",4'"-tetracyanotetraphenylmethane]BF4.xC6H5NO2[J]. Journal of the American Chemical Society.1990,112(4):1546-1554.
    [9]Bein T. Supramolecular Architecture:American Chemical Society; 1992.460 p.
    [10]Almeida Paz FA, Klinowski J, Vilela SMF, Tome JPC, Cavaleiro JAS, Rocha J. Ligand design for functional metal-organic frameworks [J]. Chemical Society Reviews.2012,41(3):1088-1110.
    [11]Yaghi OM, Li HL, Davis C, Richardson D, Groy TL. Synthetic strategies, structure patterns, and emerging properties in the chemistry of modular porous solids[J]. Accounts of Chemical Research.1998,31(8):474-484.
    [12]Eddaoudi M, Moler DB, Li H, Chen B, Reineke TM, O'Keeffe M, Yaghi OM. Modular Chemistry:Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks [J]. Accounts of Chemical Research.2001,34(4):319-330.
    [13]Tranchemontagne DJ, Ni Z, O'Keeffe M, Yaghi OM. Reticular Chemistry of Metal-Organic Polyhedra[J]. Angewandte Chemie International Edition. 2008,47(28):5136-5147.
    [14]Chen X-M, Tong M-L. Solvothermal in situ metal/ligand reactions:A new bridge between coordination chemistry and organic synthetic chemistry[J]. Accounts of Chemical Research.2007,40(2):162-170.
    [15]Lee Y-G, Moon HR, Cheon YE, Suh MP. A comparison of the H-2 sorption capacities of isostructural metal-organic frameworks with and without accessible metal sites:{Zn-2(abtc)(DMF)(2)}(3) and{Cu-2(abtc)(dMf)(2)}(3) versus {Cu-2(abtc)}(3)[J]. Angewandte Chemie-International Edition. 2008,47(40):7741-7745.
    [16]Cheon YE, Park J, Suh MP. Selective gas adsorption in a magnesium-based metal-organic framework[J]. Chemical Communications.2009(36):5436-5438.
    [17]Park HJ, Suh MP. Stepwise and hysteretic sorption of N-2, O-2, CO2, and H-2 gases in a porous metal-organic framework Zn-2(BPnDC)(2)(bpy)[J]. Chemical Communications.2010,46(4):610-612.
    [18]Kim TK, Suh MP. Selective CO2 adsorption in a flexible non-interpenetrated metal-organic framework[J]. Chemical Communications. 2011,47(14):4258-4260.
    [19]Moon HR, Kobayashi N, Suh MP. Porous metal-organic framework with coordinatively unsaturated Mn-II sites:Sorption properties for various gases[J]. Inorganic Chemistry.2006,45(21):8672-8676.
    [20]Park HJ, Cheon YE, Suh MP. Post-Synthetic Reversible Incorporation of Organic Linkers into Porous Metal-Organic Frameworks through Single-Crystal-to-Single-Crystal Transformations and Modification of Gas-Sorption Properties [J]. Chemistry-a European Journal. 2010,16(38):11662-11669.
    [21]Corma A, Garcia H, Llabres i Xamena FXLI. Engineering Metal Organic Frameworks for Heterogeneous Catalysis[J]. Chemical Reviews. 2010,110(8):4606-4655.
    [22]Lan A, Li K, Wu H, Olson DH, Emge TJ, Ki W, Hong M, Li J. A Luminescent Microporous Metal-Organic Framework for the Fast and Reversible Detection of High Explosives [J]. Angewandte Chemie-International Edition. 2009,48(13):2334-2338.
    [23]Liu J, Sun F, Zhang F, Wang Z, Zhang R, Wang C, Qiu S. In situ growth of continuous thin metal-organic framework film for capacitive humidity sensing [J]. Journal of Materials Chemistry.2011,21(11):3775-3778.
    [24]Weber IT, Geber de Melo AJ, de Melo Lucena MA, Rodrigues MO, Alves Junior S. High Photoluminescent Metal-Organic Frameworks as Optical Markers for the Identification of Gunshot Residues [J]. Analytical Chemistry. 2011,83(12):4720-4723.
    [25]Horcajada P, Serre C, Grosso D, Boissiere C, Perruchas S, Sanchez C, Ferey G. Colloidal Route for Preparing Optical Thin Films of Nanoporous Metal-Organic Frameworks[J]. Advanced Materials.2009,21(19):1931-1935.
    [26]Ferey G. Hybrid porous solids:past, present, future[J]. Chemical Society Reviews.2008,37(1):191-214.
    [27]Stock N, Biswas S. Synthesis of Metal-Organic Frameworks (MOFs):Routes to Various MOF Topologies, Morphologies, and Composites[J]. Chemical Reviews. 2012,112(2):933-969.
    [28]Forster PM, Thomas PM, Cheetham AK. Biphasic solvothermal synthesis:A new approach for hybrid inorganic-organic materials[J]. Chemistry of Materials. 2002,14(1):17-22.
    [29]Zhao X-L, Sun D, Hu T-P, Yuan S, Gu L-C, Cong H-J, He H-Y, Sun D-F. Phase transfer catalyst supported, room-temperature biphasic synthesis:a facile approach to the synthesis of coordination polymers[J]. Dalton Transactions. 2012,41(15):4320-4323.
    [30]O'Keeffe M, Delgado-Friedrichs O. Crystal nets as graphs:Terminology and definitions[J]. Journal of Solid State Chemistry.2005,178(8):2480-2485.
    [31]Bowes CL, Ozin GA. Self-Assembling Frameworks:Beyond microporous oxides[J]. Advanced Materials.1996,8(1):13-28.
    [32]Li M, Li D, O'Keeffe M, Yaghi OM. Topological Analysis of Metal-Organic Frameworks with Polytopic Linkers and/or Multiple Building Units and the Minimal Transitivity Principle[J]. Chemical Reviews.2013,114(2):1343-1370.
    [33]Delgado Friedrichs O, Huson DH.4-Regular Vertex-Transitive Tilings of E 3[J]. Discrete Comput Geom.2000,24(2-3):279-292.
    [34]Delgado-Friedrichs O, O'Keeffe M, Yaghi OM. Three-periodic nets and tilings: edge-transitive binodal structures[J]. Acta Crystallographica Section A. 2006,62(5):350-355.
    [35]Delgado-Friedrichs O, O'Keeffe M. Three-periodic tilings and nets: face-transitive tilings and edge-transitive nets re visited [J]. Acta Crystallographica Section A.2007,63(4):344-347.
    [36]Delgado-Friedrichs O, O'Keeffe M. Edge-transitive lattice nets[J]. Acta Crystallographica Section A.2009,65(5):360-363.
    [37]Ma S, Sun D, Ambrogio M, Fillinger JA, Parkin S, Zhou H-C. Framework-catenation isomerism in metal-organic frameworks and its impact on hydrogen uptake [J]. Journal of the American Chemical Society. 2007,129(7):1858-1865.
    [38]Yang J, Grzech A, Mulder FM, Dingemans TJ. The hydrogen storage capacity of mono-substituted MOF-5 derivatives:An experimental and computational approach[J]. Microporous and Mesoporous Materials.2013,171:65-71.
    [39]Rowsell JLC, Yaghi OM. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks [J]. Journal of the American Chemical Society.2006,128(4):1304-1315.
    [40]Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'Keeffe M, Yaghi OM. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science.2002,295(5554):469-472.
    [41]Sun DF, Ma SQ, Ke YX, Collins DJ, Zhou HC. An interweaving MOF with high hydrogen uptake[J]. Journal of the American Chemical Society. 2006,128(12):3896-3897.
    [42]Li H, Eddaoudi M, O'Keeffe M, Yaghi OM. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature. 1999,402(6759):276-279.
    [43]Wang X-S, Ma S, Sun D, Parkin S, Zhou H-C. A mesoporous metal-organic framework with permanent porosity [J]. Journal of the American Chemical Society.2006,128(51):16474-16475.
    [44]Chui SSY, Lo SMF, Charmant JPH, Orpen AG, Williams ID. A chemically functionalizable nanoporous material Cu-3(TMA)(2)(H2O)(3) (n)[J]. Science. 1999,283(5405):1148-1150.
    [45]Nouar F, Eubank JF, Bousquet T, Wojtas L, Zaworotko MJ, Eddaoudi M. Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metal-organic frameworks[J]. Journal of the American Chemical Society. 2008,130(6):1833-1835.
    [46]Zhao X, Wang X, Wang S, Dou J, Cui P, Chen Z, Sun D, Wang X, Sun D. Novel Metal-Organic Framework Based on Cubic and Trisoctahedral Supermolecular Building Blocks:Topological Analysis and Photoluminescent Property [J]. Crystal Growth & Design.2012,12(6):2736-2739.
    [47]Schoedel A, Cairns AJ, Belmabkhout Y, Wojtas L, Mohamed M, Zhang Z, Proserpio DM, Eddaoudi M, Zaworotko MJ. The asc Trinodal Platform: Two-Step Assembly of Triangular, Tetrahedral, and Trigonal-Prismatic Molecular Building Blocks[J]. Angewandte Chemie-International Edition. 2013,52(10):2902-2905.
    [48]Lian T-T, Chen S-M, Wang F, Zhang J. Metal-organic framework architecture with polyhedron-in-polyhedron and further polyhedral assembly [J]. Crystengcomm.2013,15(6):1036-1038.
    [49]Kitaura R, Iwahori F, Matsuda R, Kitagawa S, Kubota Y, Takata M, Kobayashi TC. Rational design and crystal structure determination of a 3-D metal-organic jungle-gym-like open framework[J]. Inorganic Chemistry. 2004,43(21):6522-6524.
    [50]Chen Z, Xiang S, Zhao D, Chen B. Reversible Two-Dimensional-Three Dimensional Framework Transformation within a Prototype Metal-Organic Framework[J]. Crystal Growth & Design.2009,9(12):5293-5296.
    [51]Sun J, Zhou Y, Fang Q, Chen Z, Weng L, Zhu G, Qiu S, Zhao D. Construction of 3D layer-pillared homoligand coordination polymers from a 2D layered precursor[J]. Inorganic Chemistry.2006,45(21):8677-8684.
    [52]Tranchemontagne DJ, Mendoza-Cortes JL, O'Keeffe M, Yaghi OM. Secondary building units, nets and bonding in the chemistry of metal-organic frameworks [J]. Chemical Society Reviews.2009,38(5):1257-1283.
    [53]Burnett BJ, Barron PM, Hu C, Choe W. Stepwise Synthesis of Metal-Organic Frameworks:Replacement of Structural Organic Linkers[J]. Journal of the American Chemical Society.2011,133(26):9984-9987.
    [54]Kim M, Cahill JF, Su Y, Prather KA, Cohen SM. Postsynthetic ligand exchange as a route to functionalization of 'inert' metal-organic frameworks [J]. Chemical Science.2012,3(1):126-130.
    [55]Chen B, Xiang S, Qian G. Metal-Organic Frameworks with Functional Pores for Recognition of Small Molecules[J]. Accounts of Chemical Research. 2010,43(8):1115-1124.
    [56]Eddaoudi M, Kim J, Vodak D, Sudik A, Wachter J, O'Keeffe M, Yaghi OM. Geometric requirements and examples of important structures in the assembly of square building blocks[J]. Proceedings of the National Academy of Sciences of the United States of America.2002,99(8):4900-4904.
    [57]Kanoo P, Gurunatha KL, Maji TK. Versatile functionalities in MOFs assembled from the same building units:interplay of structural flexibility, rigidity and regularity [J]. Journal of Materials Chemistry.2010,20(7):1322-1331.
    [58]Deng H, Doonan CJ, Furukawa H, Ferreira RB, Towne J, Knobler CB, Wang B, Yaghi OM. Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks[J]. Science.2010,327(5967):846-850.
    [59]Jia C, Yuan X, Ma Z. Metal-Organic Frameworks (MOFs) as Hydrogen Storage Materials[J]. Progress in Chemistry.2009,21(9):1954-1962.
    [60]Kuc A, Enyashin A, Seifert G. Metal-organic frameworks:Structural, energetic, electronic, and mechanical properties [J]. Journal of Physical Chemistry B. 2007,111(28):8179-8186.
    [61]Yildirim T, Hartman MR. Direct observation of hydrogen adsorption sites and nanocage formation in metal-organic frameworks [J]. Physical Review Letters. 2005,95(21):215504/215501-215504.
    [62]Carlucci L, Ciani G, Proserpio DM. Polycatenation, polythreading and poly knotting in coordination network chemistry [J]. Coordination Chemistry Reviews.2003,246(1-2):247-289.
    [63]Bu XH, Tong ML, Chang HC, Kitagawa S, Batten SR. A neutral 3D copper coordination polymer showing 1D open channels and the first interpenetrating NbO-type network[J]. Angewandte Chemie-International Edition. 2004,43(2):192-195.
    [64]Batten SR, Robson R. Interpenetrating nets:Ordered, periodic entanglement[J]. Angewandte Chemie-International Edition.1998,37(11):1460-1494.
    [65]Batten SR. Topology of interpenetration[J]. Crystengcomm.2001(18).
    [66]Carlucci L, Ciani G, Proserpio DM, Rizzato S. New polymeric networks from the self-assembly of silver(I) salts and the flexible ligand 1,3-bis(4-pyridyl)propane (bpp). A systematic investigation of the effects of the counterions and a survey of the coordination polymers base on bpp[J]. Crystengcomm.2002(22):121-129.
    [67]Wang X-L, Qin C, Wang E-B, Su Z-M, Li Y-G, Xu L. Self-assembly of nanometer-scale Cu24I10L12 (14+) cages and ball-shaped Keggin clusters into a (4,12)-connected 3D framework with photoluminescent and electrochemical properties [J]. Angewandte Chemie-International Edition. 2006,45(44):7411-7414.
    [68]Fujita M, Nagao S, Ogura K. Guest-induced organization of a 3-dimensional palladium(Ⅱ) cage-like complex-a prototype for induced-fit molecular recognition[J]. Journal of the American Chemical Society. 1995,117(5):1649-1650.
    [69]Hoskins BF, Robson R, Slizys DA. An Infinite 2D Polyrotaxane Network in Ag2(bix)3(NO3)2 (bix=1,4-Bis(imidazol-1-ylmethyl)benzene)[J]. Journal of the American Chemical Society.1997,119(12):2952-2953.
    [70]Aoyama Y, Endo K, Anzai T, Yamaguchi Y, Sawaki T, Kobayashi K, Kanehisa N, Hashimoto H, Kai Y, Masuda H. Crystal Engineering of Stacked Aromatic Columns. Three-Dimensional Control of the Alignment of Orthogonal Aromatic Triads and Guest Quinones via Self-Assembly of Hydrogen-Bonded Networks[J]. Journal of the American Chemical Society.1996,118(24):5562-5571.
    [71]Whang D, Kim K. Polycatenated Two-Dimensional Polyrotaxane Net[J]. Journal of the American Chemical Society.1997,119(2):451-452.
    [72]Carlucci L, Ciani G, Proserpio DM, Sironi A.1-,2-, and 3-Dimensional Polymeric Frames in the Coordination Chemistry of AgBF4 with Pyrazine. The First Example of Three Interpenetrating 3-Dimensional Triconnected Nets[J]. Journal of the American Chemical Society.1995,117(16):4562-4569.
    [73]Yaghi OM, Li H. T-Shaped Molecular Building Units in the Porous Structure of Ag(4,4'-bpy)·NO3[J]. Journal of the American Chemical Society. 1996,118(1):295-296.
    [74]Gardner GB, Venkataraman D, Moore JS, Lee S. Spontaneous assembly of a hinged coordination network[J]. Nature.1995,374(6525):792-795.
    [75]Gardner GB, Kiang YH, Lee S, Asgaonkar A, Venkataraman D. Exchange Properties of the Three-Dimensional Coordination Compound 1,3,5-Tris(4-ethynylbenzonitrile)benzene-AgO3SCF3[J]. Journal of the American Chemical Society.1996,118(29):6946-6953.
    [76]Shekhah O, Wang H, Paradinas M, Ocal C, Schuepbach B, Terfort A, Zacher D, Fischer RA, Woell C. Controlling interpenetration in metal-organic frameworks by liquid-phase epitaxy[J]. Nature Materials.2009,8(6):481-484.
    [77]Ma L, Lin W. Chirality-controlled and solvent-templated catenation isomerism in metal-organic frameworks[J]. Journal of the American Chemical Society. 2008,130(42):13834-13835.
    [78]Wang Q, Zhang J, Zhuang C-F, Tang Y, Su C-Y. Guest Inclusion and Interpenetration Tuning of Cd(II)/Mn(II) Coordination Grid Networks Assembled from a Rigid Linear Diimidazole Schiff Base Ligand[J]. Inorganic Chemistry.2009,48(1):287-295.
    [79]Rosi NL, Kim J, Eddaoudi M, Chen BL, O'Keeffe M, Yaghi OM. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units[J]. Journal of the American Chemical Society.2005,127(5):1504-1518.
    [80]Zhang J, Wojtas L, Larsen RW, Eddaoudi M, Zaworotko MJ. Temperature and Concentration Control over Interpenetration in a Metal-Organic Material[J]. Journal of the American Chemical Society.2009,131(47):17040-17045.
    [81]Long DL, Hill RJ, Blake AJ, Champness NR, Hubberstey P, Wilson C, Schroder M. Anion control over interpenetration and framework topology in coordination networks based on homoleptic six-connected scandium nodes[J]. Chemistry-a European Journal.2005,11(5):1384-1391.
    [82]He H, Yuan D, Ma H, Sun D, Zhang G, Zhou H-C. Control over Interpenetration in Lanthanide-Organic Frameworks:Synthetic Strategy and Gas-Adsorption Properties[J]. Inorganic Chemistry.2010,49(17):7605-7607.
    [83]Tao J, Tong M-L, Chen X-M. Hydrothermal synthesis and crystal structures of three-dimensional co-ordination frameworks constructed with mixed terephthalate (tp) and 4,4 [prime or minute]-bipyridine (4,4[prime or minute]-bipy) ligands:[M(tp)(4,4[prime or minute]-bipy)] (M= CoII, CdII or ZnII)[J]. Journal of the Chemical Society, Dalton Transactions. 2000(20):3669-3674.
    [84]Liang C, Mislow K. On Borromean links[J]. J Math Chem.1994,16(1):27-35.
    [85]Forgan RS, Sauvage J-P, Stoddart JF. Chemical Topology:Complex Molecular Knots, Links, and Entanglements [J]. Chemical Reviews. 2011,111(9):5434-5464.
    [86]Carlucci L, Ciani G, Proserpio DM. Polycatenation, polythreading and poly knotting in coordination network chemistry [J]. Coordination Chemistry Reviews.2003,246(1-2):247-289.
    [87]Janiak C. Functional Organic Analogues of Zeolites Based on Metal-Organic Coordination Frameworks [J]. Angewandte Chemie International Edition in English.1997,36(13-14):1431-1434.
    [88]Matsuda R, Kitaura R, Kitagawa S, Kubota Y, Kobayashi TC, Horike S, Takata M. Guest shape-responsive fitting of porous coordination polymer with shrinkable framework[J]. Journal of the American Chemical Society. 2004,126(43):14063-14070.
    [89]Sailaja S, Rajasekharan MV. One-dimensional coordination polymers of silver(1) with aminomethylpyridines. Example of a triple helical infinite chain[J]. Inorganic Chemistry.2000,39(20):4586-4590.
    [90]Grosshans P, Jouaiti A, Bulach V, Planeix JM, Hosseini MW, Nicoud JF. Molecular tectonics:from enantiomerically pure sugars to enantiomerically pure triple stranded helical coordination network[J]. Chemical Communications. 2003(12):1336-1337.
    [91]Luan XJ, Wang YY, Li DS, Liu P, Hu HM, Shi QZ, Peng SM. Self-assembly of an interlaced triple-stranded molecular braid with an unprecedented topology through hydrogen-bonding interactions[J]. Angewandte Chemie-International Edition.2005,44(25):3864-3867.
    [92]Luan X-J, Cai X-H, Wang Y-Y, Li D-S, Wang C-J, Liu P, Hu H-M, Shi Q-Z, Peng S-M. An investigation of the self-assembly of neutral, interlaced, triple-stranded molecular braids[J]. Chemistry-a European Journal. 2006,12(24):6281-6289.
    [93]L. DM, Grachvogel DA, Williams DJ. A New Type of Metal-Organic Large-Pore Zeotype[J]. Angewandte Chemie International Edition. 1999,38(1-2):153-156.
    [94]Xiao D-R, Li Y-G, Wang E-B, Fan L-L, An H-Y, Su Z-M, Xu L. Exceptional self-penetrating networks containing unprecedented quintuple-stranded molecular braid,9-fold meso helices, and 17-fold interwoven helices[J]. Inorganic Chemistry.2007,46(10):4158-4166.
    [95]Morris W, Doonan CJ, Yaghi OM. Postsynthetic Modification of a Metal-Organic Framework for Stabilization of a Hemiaminal and Ammonia Uptake[J]. Inorganic Chemistry.2011,50(15):6853-6855.
    [96]Cohen SM. Postsynthetic Methods for the Functionalization of Metal-Organic Frameworks[J]. Chemical Reviews.2012,112(2):970-1000.
    [97]Zheng B, Bai J, Duan J, Wojtas L, Zaworotko MJ. Enhanced CO2 Binding Affinity of a High-Uptake rht-Type Metal-Organic Framework Decorated with Acylamide Groups[J]. Journal of the American Chemical Society. 2011,133(4):748-751.
    [98]Li B, Zhang Z, Li Y, Yao K, Zhu Y, Deng Z, Yang F, Zhou X, Li G, Wu H, Nijem N, Chabal YJ, Lai Z, Han Y, Shi Z, Feng S, Li J. Enhanced Binding Affinity, Remarkable Selectivity, and High Capacity of CO2 by Dual Functionalization of a rht-Type Metal-Organic Framework[J]. Angewandte Chemie-International Edition.2012,51(6):1412-1415.
    [99]Zhao X, Sun D, Yuan S, Feng S, Cao R, Yuan D, Wang S, Dou J, Sun D. Comparison of the Effect of Functional Groups on Gas-Uptake Capacities by Fixing the Volumes of Cages A and B and Modifying the Inner Wall of Cage C in rht-Type MOFs[J]. Inorganic Chemistry.2012,51(19):10350-10355.
    [100]Bloch ED, Queen WL, Krishna R, Zadrozny JM, Brown CM, Long JR. Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) Coordination Sites[J]. Science.2012,335(6076):1606-1610.
    [101]Cho W, Lee HJ, Oh M. Growth-Controlled Formation of Porous Coordination Polymer Particles[J]. Journal of the American Chemical Society. 2008,130(50):16943-16946.
    [102]Umemura A, Diring S, Furukawa S, Uehara H, Tsuruoka T, Kitagawa S. Morphology Design of Porous Coordination Polymer Crystals by Coordination Modulation[J]. Journal of the American Chemical Society. 2011,133(39):15506-15513.
    [103]Cravillon J, Nayuk R, Springer S, Feldhoff A, Huber K, Wiebcke M. Controlling Zeolitic Imidazolate Framework Nano-and Microcrystal Formation: Insight into Crystal Growth by Time-Resolved In Situ Static Light Scattering[J]. Chemistry of Materials.2011,23(8):2130-2141.
    [104]Yanai N, Sindoro M, Yan J, Granick S. Electric Field-Induced Assembly of Monodisperse Polyhedral Metal-Organic Framework Crystals[J]. Journal of the American Chemical Society.2013,135(1):34-37.
    [105]Tsuruoka T, Furukawa S, Takashima Y, Yoshida K, Isoda S, Kitagawa S. Nanoporous Nanorods Fabricated by Coordination Modulation and Oriented Attachment Growth[J]. Angewandte Chemie-International Edition. 2009,48(26):4739-4743.
    [106]Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT. Metal-Organic Framework Materials as Chemical Sensors[J]. Chemical Reviews. 2012,112(2):1105-1125.
    [107]Wu Y-n, Li F, Zhu W, Cui J, Tao C-a, Lin C, Hannam PM, Li G. Metal-Organic Frameworks with a Three-Dimensional Ordered Macroporous Structure:Dynamic Photonic Materials[J]. Angewandte Chemie International Edition.2011,50(52):12518-12522.
    [108]Carne-Sanchez A, Imaz I, Cano-Sarabia M, Maspoch D. A spray-drying strategy for synthesis of nano scale metal-organic frameworks and their assembly into hollow superstructures [J]. Nature Chemistry.2013,5(3):203-211.
    [109]Ferey G, Millange F, Morcrette M, Serre C, Doublet M-L, Greneche J-M, Tarascon J-M. Mixed-valence Li/Fe-based metal-organic frameworks with both reversible redox and sorption properties[J]. Angewandte Chemie-International Edition.2007,46(18):3259-3263.
    [110]Saravanan K, Nagarathinam M, Balaya P, Vittal JJ. Lithium storage in a metal organic framework with diamondoid topology-a case study on metal formates[J]. Journal of Materials Chemistry.2010,20(38):8329-8335.
    [111]Kobayashi Y, Jacobs B, Allendorf MD, Long JR. Conductivity, Doping, and Redox Chemistry of a Microporous Dithiolene-Based Metal-Organic Framework[J]. Chemistry of Materials.2010,22(14):4120-4122.
    [112]Behera JN, D'Alessandro DM, Soheilnia N, Long JR. Synthesis and Characterization of Ruthenium and Iron-Ruthenium Prussian Blue Analogues[J]. Chemistry of Materials.2009,21(9):1922-1926.
    [113]Tran-Van P, Barthelet K, Morcrette M, Herlem M, Tarascon JM, Cheetham AK, Ferey G. Reactivity of lithium with a microporous phosphate [J]. Journal of New Materials for Electrochemical Systems.2003,6(1):29-31.
    [114]Li X, Cheng F, Zhang S, Chen J. Shape-controlled synthesis and lithium-storage study of metal-organic frameworks Zn4O(1,3,5-benzenetribenzoate)(2)[J]. Journal of Power Sources.2006,160(1):542-547.
    [115]Barthelet K, Marrot J, Riou D, Ferey G. A breathing hybrid organic-inorganic solid with very large pores and high magnetic characteristics[J]. Angewandte Chemie-International Edition.2002,41(2):281-286.
    [116]Wang C, Xie Z, deKrafft KE, Lin W. Doping Metal-Organic Frameworks for Water Oxidation, Carbon Dioxide Reduction, and Organic Photocatalysis[J]. Journal of the American Chemical Society.2011,133(34):13445-13454.
    [117]Combelles C, Yahia MB, Pedesseau L, Doublet ML. Design of Electrode Materials for Lithium-Ion Batteries:The Example of Metal-Organic Frameworks[J]. The Journal of Physical Chemistry C.2010,114(20):9518-9527.
    [118]Combelles C, Ben Yahia M, Pedesseau L, Doublet ML. Fe-II/Fe-III mixed-valence state induced by Li-insertion into the metal-organic-framework Mi153(Fe):A DFT+U study[J]. Journal of Power Sources. 2011,196(7):3426-3432.
    [119]Blake AJ, Champness NR, Easun TL, Allan DR, No well H, George MW, Jia J, Sun X-Z. Photoreactivity examined through incorporation in metal-organic frameworks[J]. Nature Chemistry.2010,2(8):688-694.
    [120]Yamaguchi T, Fujita M. Highly selective photomediated 1,4-radical addition to o-quinones controlled by a self-assembled cage[J]. Angewandte Chemie-International Edition.2008,47(11):2067-2069.
    [121]Murase T, Horiuchi S, Fujita M. Naphthalene Diels-Alder in a Self-Assembled Molecular Flask[J]. Journal of the American Chemical Society. 2010,132(9):2866-2871.
    [122]Brown CJ, Bergman RG, Raymond KN. Enantioselective Catalysis of the Aza-Cope Rearrangement by a Chiral Supramolecular Assembly [J]. Journal of the American Chemical Society.2009,131(48):17530-17531.
    [123]Pluth MD, Bergman RG, Raymond KN. Proton-Mediated Chemistry and Catalysis in a Self-Assembled Supramolecular Host[J]. Accounts of Chemical Research.2009,42(10):1650-1659.
    [124]Murray LJ, Dinca M, Long JR. Hydrogen storage in metal-organic frameworks [J]. Chemical Society Reviews.2009,38(5):1294-1314.
    [125]Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT. Metal-organic framework materials as catalysts[J]. Chemical Society Reviews. 2009,38(5):1450-1459.
    [1]dos Santos CMG, Harte AJ, Quinn SJ, Gunnlaugsson T. Recent developments in the field of supramolecular lanthanide luminescent sensors and self-assemblies[J]. Coordination Chemistry Reviews.2008,252(23-24):2512-2527.
    [2]Wang P, Ma J-P, Dong Y-B, Huang R-Q. Tunable luminescent lanthanide coordination polymers based on reversible solid-state ion-exchange monitored by ion-dependent photoinduced emission spectra[J]. Journal of the American Chemical Society.2007,129(35):10620-10624.
    [3]Thallapally PK, Tian J, Kishan MR, Fernandez CA, Dalgarno SJ, McGrail PB, Warren JE, Atwood JL. Flexible (Breathing) Interpenetrated Metal-Organic Frameworks for CO2 Separation Applications[J]. Journal of the American Chemical Society.2008,130(50):16842-16845.
    [4]Lebduskova P, Hermann P, Helm L, Toth E, Kotek J, Binnemans K, Rudovsky J, Lukes I, Merbach AE. Gadolinium(Ⅲ) complexes of mono-and diethyl esters of monophosphonic acid analogue of DOTA as potential MRI contrast agents: solution structures and relaxometric studies[J]. Dalton Transactions. 2007(4):493-501.
    [5]Moulton B, Zaworotko MJ. From molecules to crystal engineering: Supramolecular isomerism and polymorphism in network solids[J]. Chemical Reviews.2001,101(6):1629-1658.
    [6]Chen X-Y, Bretonniere Y, Pecaut J, Imbert D, Buenzli J-C, Mazzanti M. Selective self-assembly of hexameric homo-and heteropolymetallic lanthanide wheels: Synthesis, structure, and photophysical studies[J]. Inorganic Chemistry. 2007,46(3):625-637.
    [7]Zhao B, Cheng P, Chen XY, Cheng C, Shi W, Liao DZ, Yan SP, Jiang ZH. Design and synthesis of 3d-4f metal-based zeolite-type materials with a 3D nanotubular structure encapsulated "water" pipe[J]. Journal of the American Chemical Society.2004,126(10):3012-3013.
    [8]Fernandez CA, Thallapally PK, Motkuri RK, Nune SK, Sumrak JC, Tian J, Liu J. Gas-Induced Expansion and Contraction of a Fluorinated Metal-Organic Framework[J]. Crystal Growth & Design.2010,10(3):1037-1039.
    [9]Kishan MR, Tian J, Thallapally PK, Fernandez CA, Dalgarno SJ, Warren JE, McGrail BP, Atwood JL. Flexible metal-organic supramolecular isomers for gas separation[J]. Chemical Communications.2010,46(4):538-540.
    [10]Yaghi OM, Li HL, Davis C, Richardson D, Groy TL. Synthetic strategies, structure patterns, and emerging properties in the chemistry of modular porous solids[J]. Accounts of Chemical Research.1998,31(8):474-484.
    [11]Tranchemontagne DJL, Ni Z, O'Keeffe M, Yaghi OM. Reticular chemistry of metal-organic polyhedra[J]. Angewandte Chemie-International Edition. 2008,47(28):5136-5147.
    [12]Plabst M, Bein T.1,4-Phenylenebis(methylidyne)tetrakis(phosphonic acid):A New Building Block in Metal Organic Framework Synthesis[J]. Inorganic Chemistry.2009,48(10):4331-4341.
    [13]Seo JS, Whang D, Lee H, Jun SI, Oh J, Jeon YJ, Kim K. A homochiral metal-organic porous material for enantioselective separation and catalysis[J]. Nature.2000,404(6781):982-986.
    [14]Noro S, Kitagawa S, Kondo M, Seki K. A new, methane adsorbent, porous coordination polymer{CuSiF6(4,4'-bipyridine)(2)}(n)[J]. Angewandte Chemie-International Edition.2000,39(12):2082-2084.
    [15]Liu Z-F, Wu M-F, Zheng F-K, Wang S-H, Zhang M-J, Chen J, Xiao Y, Guo G-C, Wu AQ. Zinc(II) coordination compounds based on in situ generated 3-(5H-tetrazol)benzaldehyde with diverse modes:hydrothermal syntheses, crystal structures and photoluminescent properties[J]. Crystengcomm. 2013,15(35):7038-7047.
    [16]Wu T, Yi BH, Li D. Two novel nanoporous supramolecular architectures based on copper(I) coordination polymers with uniform (8,3) and (8(2)10) nets:In situ formation of tetrazolate ligands[J]. Inorganic Chemistry. 2005,44(12):4130-4132.
    [17]Wu T, Zhou R, Li D. Effect of substituted groups of ligand on construction of topological networks:In situ generated silver(I) tetrazolate coordination polymersfJ]. Inorganic Chemistry Communications.2006,9(3):341-345.
    [18]Zhang X-M, Zhao Y-F, Wu H-S, Batten SR, Ng SW. Syntheses and structures of metal tetrazole coordination polymers[J]. Dalton Transactions. 2006(26):3170-3178.
    [19]Hou J-J, Hao Z-M, Zhang X-M. Double salts of copper(I) chloride incorporated hydroxylpyrimidine and tetrazole ligands[J]. Inorganica Chimica Acta. 2007,360(1):14-20.
    [20]Tao J, Ma ZJ, Huang RB, Zheng LS. Synthesis and characterization of a tetrazolate-bridged coordination framework encapsulating D-2h-symmetric cyclic (H2O)(4) cluster arrays[J]. Inorganic Chemistry.2004,43(20):6133-6135.
    [21]He X, Lu C-Z, Yuan D-Q. Two 3D porous cadmium tetrazolate frameworks with hexagonal tunnels[J]. Inorganic Chemistry.2006,45(15):5760-5766.
    [22]Wei W, Wu M, Gao Q, Zhang Q, Huang Y, Jiang F, Hong M. A Novel Supramolecular Tetrahedron Assembled from Tetranuclear Copper(I) Cluster Molecules via Aryl Embrace Interactions [J]. Inorganic Chemistry. 2009,48(2):420-422.
    [23]Wu J-Y, Huang S-M, Huang Y-C, Lu K-L. Hydrogen bond-organized two-fold interpenetrating homochiral pcu net[J]. Crystengcomm.2012,14(4):1189-1192.
    [24]Chang C-C, Huang Y-C, Huang S-M, Wu J-Y, Liu Y-H, Lu K-L. Presynthesized and In-Situ Generated Tetrazolate Ligand in the Design of Chiral Cadmium Coordination Polymer[J]. Crystal Growth& Design.2012,12(8):3825-3828.
    [25]Demko ZP, Sharpless KB. Preparation of 5-substituted 1H-tetrazoles from nitriles in water [J]. Journal of Organic Chemistry.2001,66(24):7945-7950.
    [26]Demko ZP, Sharpless KB. An intramolecular 2+3 cycloaddition route to fused 5-heterosubstituted tetrazoles[J]. Organic Letters.2001,3(25):4091-4094.
    [27]Demko ZP, Sharpless KB. An expedient route to the tetrazole analogues of alpha-amino acids[J]. Organic Letters.2002,4(15):2525-2527.
    [28]Hu T, Bi W, Hu X, Zhao X, Sun D. Construction of Metal-Organic Frameworks with Novel{Zn8O13} SBU or Chiral Channels through in Situ Ligand Reaction[J]. Crystal Growth & Design.2010,10(8):3324-3326.
    [29]Himo F, Demko ZP, Noodleman L, Sharpless KB. Mechanisms of tetrazole formation by addition of azide to nitriles[J]. Journal of the American Chemical Society.2002,124(41):12210-12216.
    [30]Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. OLEX2:a complete structure solution, refinement and analysis program[J]. Journal of Applied Crystallography.2009,42:339-341.
    [31]Zhang L, Liu F, Guo Y, Wang X, Guo J, Wei Y, Chen Z, Sun D. Crystal Structure Diversities Based on 4,4 '-(2,3,6,7-Tetramethoxyanthracene-9,10-diyl)dibenzoic Acid:From 2D Layer to 3D Net Framework[J]. Crystal Growth & Design.2012,12(12):6215-6222.
    [32]Zhu H-B, Yang W-N, Hu J. Metal-directed self-assembly of M3L2 (M=Zn, Cd) metal-organic architectures with a tripodal tris-bidentate chelator[J]. Journal of Coordination Chemistry.2013,66(16):2775-2787.
    [33]Kumar DK, Jose DA, Das A, Dastidar P. From diamondoid network to (4,4) net: Effect of ligand topology on the supramolecular structural diversity [J]. Inorganic Chemistry.2005,44(20):6933-6935.
    [34]Mohapatra S, Sato H, Matsuda R, Kitagawa S, Maji TK. Highly rigid and stable porous Cu(I) metal-organic framework with reversible single-crystal-to-single-crystal structural transformation[J]. Crystengcomm. 2012,14(12):4153-4156.
    [35]Yam VWW, Lo KKW. Luminescent polynuclear d(10) metal complexes[J]. Chemical Society Reviews.1999,28(5):323-334.
    [36]Wen L, Lu Z, Lin J, Tian Z, Zhu H, Meng Q. Syntheses, structures, and physical properties of three novel metal-organic frameworks constructed from aromatic polycarboxylate acids and flexible imidazole-based synthons[J]. Crystal Growth & Design.2007,7(1):93-99.
    [37]Lin J-G, Zang S-Q, Tian Z-F, Li Y-Z, Xu Y-Y, Zhu H-Z, Meng Q-J. Metal-organic frameworks constructed from mixed-ligand 1,2,3,4-tetra-(4-pyridyl)-butane and benzene-polycarboxylate acids:syntheses, structures and physical properties[J]. Crystengcomm.2007,9(10):915-921.
    [38]Wen LL, Li YZ, Lu ZD, Lin JG, Duan CY, Meng QJ. Syntheses and structures of four d(10) metal-organic frameworks assembled with aromatic poly carboxy late and bix bix=1,4-bis(imidazol-1-ylmethyl)benzene[J]. Crystal Growth & Design. 2006,6(2):530-537.
    [39]Ji C-C, Qin L, Li Y-Z, Guo Z-J, Zheng H-G. Effect of Different Imidazole Ancillary Ligands on Supramolecular Architectures of a Series of Zn(II) and Cd(II) Complexes with a Bent Dicarboxylate Ligand[J]. Crystal Growth & Design.2011,11(2):480-487.
    [40]Wang YB, Liu DS, Pan TH, Liang Q, Huang XH, Wu ST, Huang CC. Structural variation from 1D to 3D:effect of metal centers on the construction of metal-organic coordination polymers with N-(1H-tetrazol-5-yl)benzamide ligand[J]. Crystengcomm.2010,12(11):3886-3893.
    [41]Zhao X, Wang X, Wang S, Dou J, Cui P, Chen Z, Sun D, Wang X, Sun D. Novel Metal-Organic Framework Based on Cubic and Trisoctahedral Supermolecular Building Blocks:Topological Analysis and Photoluminescent Property [J]. Crystal Growth & Design.2012,12(6):2736-2739.
    [1]Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O'Keeffe M, Yaghi OM. Hydrogen storage in microporous metal-organic frameworks [J]. Science. 2003,300(5622):1127-1129.
    [2]Wood CD, Tan B, Trewin A, Su F, Rosseinsky MJ, Bradshaw D, Sun Y, Zhou L, Cooper AI. Microporous organic polymers for methane storage [J]. Advanced Materials.2008,20(10):1916-1920.
    [3]Murray LJ, Dinca M, Long JR. Hydrogen storage in metal-organic frameworks [J]. Chemical Society Reviews.2009,38(5):1294-1314.
    [4]Chen B, Wang L, Xiao Y, Fronczek FR, Xue M, Cui Y, Qian G. A Luminescent Metal-Organic Framework with Lewis Basic Pyridyl Sites for the Sensing of Metal Ions[J]. Angewandte Chemie-Interational Edition.2009,48(3):500-503.
    [5]Shimomura S, Higuchi M, Matsuda R, Yoneda K, Hijikata Y, Kubota Y, Mita Y, Kim J, Takata M, Kitagawa S. Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer[J]. Nature Chemistry. 2010,2(8):633-637.
    [6]He Y, Xiang S, Chen B. A Microporous Hydrogen-Bonded Organic Framework for Highly Selective C2H2/C2H4 Separation at Ambient Temperature [J]. Journal of the American Chemical Society.2011,133(37):14570-14573.
    [7]Zhao B, Chen XY, Cheng P, Liao DZ, Yan SP, Jiang ZH. Coordination polymers containing 1D channels as selective luminescent probes [J]. Journal of the American Chemical Society.2004,126(47):15394-15395.
    [8]Braunschweig AB, Senesi AJ, Mirkin CA. Redox-Activating Dip-Pen Nanolithography (RA-DPN)[J]. Journal of the American Chemical Society. 2009,131(3):922-923.
    [9]Nicolaou KC, Ellery SP, Chen JS. Samarium Diiodide Mediated Reactions in Total Synthesis[J]. Angewandte Chemie-International Edition. 2009,48(39):7140-7165.
    [10]Wu CD, Hu A, Zhang L, Lin WB. Homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis [J]. Journal of the American Chemical Society.2005,127(25):8940-8941.
    [11]Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT. Metal-organic framework materials as catalysts[J]. Chemical Society Reviews. 2009,38(5):1450-1459.
    [12]Ma L, Abney C, Lin W. Enantioselective catalysis with homochiral metal-organic frameworks [J]. Chemical Society Reviews. 2009,38(5):1248-1256.
    [13]Song F, Wang C, Falkowski JM, Ma L, Lin W. Isoreticular Chiral Metal-Organic Frameworks for Asymmetric Alkene Epoxidation:Tuning Catalytic Activity by Controlling Framework Catenation and Varying Open Channel Sizes[J]. Journal of the American Chemical Society.2010,132(43):15390-15398.
    [14]Cheng X-N, Zhang W-X, Chen X-M. Single crystal-to-single crystal transformation from ferromagnetic discrete molecules to a spin-canting antiferromagnetic layer[J]. Journal of the American Chemical Society. 2007,129(51):15738-15740.
    [15]Nihei M, Han L, Oshio H. Magnetic bistability and single-crystal-to-single-crystal transformation induced by guest desorption[J]. Journal of the American Chemical Society.2007,129(17):5312-5314.
    [16]Rieter WJ, Pott KM, Taylor KML, Lin W. Nanoscale coordination polymers for platinum-based anticancer drug delivery [J]. Journal of the American Chemical Society.2008,130(35):11584-11590.
    [17]Horcajada P, Serre C, Maurin G, Ramsahye NA, Balas F, Vallet-Regi M, Sebban M, Taulelle F, Ferey G. Flexible porous metal-organic frameworks for a controlled drug delivery [J]. Journal of the American Chemical Society. 2008,130(21):6774-6780.
    [18]Dong F, Heinbuch S, Xie Y, Bernstein ER, Rocca JJ, Wang Z-C, Ding X-L, He S-G. C=C Bond Cleavage on Neutral VO3(V2O5)(n) Clusters[J]. Journal of the American Chemical Society.2009,131(3):1057-1066.
    [19]Chun H. Low-level self-assembly of open framework based on three different polyhedra:Metal-organic analogue of face-centered cubic dodecaboride[J]. Journal of the American Chemical Society.2008,130(3):800-810.
    [20]Dinca M, Dailly A, Liu Y, Brown CM, Neumann DA, Long JR. Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites [J]. Journal of the American Chemical Society. 2006,128(51):16876-16883.
    [21]Dinca M, Han WS, Liu Y, Dailly A, Brown CM, Long JR. Observation of Cu2+-H-2 interactions in a fully desolvated sodalite-type metal-organic framework[J]. Angewandte Chemie-International Edition. 2007,46(9):1419-1422.
    [22]Zhao D, Timmons DJ, Yuan D, Zhou H-C. Tuning the Topology and Functionality of Metal-Organic Frameworks by Ligand Design[J]. Accounts of Chemical Research.2011,44(2):123-133.
    [23]Zheng S-R, Yang Q-Y, Liu Y-R, Zhang J-Y, Tong Y-X, Zhao C-Y, Su C-Y. Assembly of CdI2-type coordination networks from triangular ligand and octahedral metal center:topological analysis and potential framework porosity[J]. Chemical Communications.2008(3):356-358.
    [24]Cote AP, El-Kaderi HM, Furukawa H, Hunt JR, Yaghi OM. Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks [J]. Journal of the American Chemical Society.2007,129(43):12914-12916.
    [25]Han D, Jiang F-L, Wu M-Y, Chen L, Chen Q-H, Hong M-C. A non-interpenetrated porous metal-organic framework with high gas-uptake capacity [J]. Chemical Communications.2011,47(35):9861-9863.
    [26]Sun DF, Ma SQ, Ke YX, Petersen TM, Zhou HC. Synthesis, characterization, and photoluminescence of isostructural Mn, Co, and Zn MOFs having a diamondoid structure with large tetrahedral cages and high thermal stability[J]. Chemical Communications.2005(21):2663-2665.
    [27]Ma S, Zhou H-C. A metal-organic framework with entatic metal centers exhibiting high gas adsorption affinity [J]. Journal of the American Chemical Society.2006,128(36):11734-11735.
    [28]Zhu HF, Zhang ZH, Sun WY, Okamura T, Ueyama N. Syntheses, structures, and properties of two-dimensional alkaline earth metal complexes with flexible tripodal tricarboxylate ligands[J]. Crystal Growth & Design.2005,5(1):177-182.
    [29]Milios CJ, Manoli M, Rajaraman G, Mishra A, Budd LE, White F, Parsons S, Wernsdorfer W, Christou G, Brechin EK. A family of Mn-6 complexes featuring tripodal ligands[J]. Inorganic Chemistry.2006,45(17):6782-6793.
    [30]Whittington CL, Wojtas L, Larsen RW. Ruthenium(II) Tris(2.2 '-bipyridine)-Templated Zinc(Ⅱ) 1,3,5-Tris(4-carboxyphenyl)benzene Metal Organic Frameworks:Structural Characterization and Photophysical Properties [J]. Inorganic Chemistry.2014,53(1):160-166.
    [31]Zhao X, He H, Dai F, Sun D, Ke Y. Supramolecular Isomerism in Honeycomb Metal-Organic Frameworks Driven by CH center dot center dot center dot pi Interactions:Homochiral Crystallization from an Achiral Ligand through Chiral Inducement[J]. Inorganic Chemistry.2010,49(19):8650-8652.
    [32]Davies RP, Less RJ, Lickiss PD, Robertson K, White AJP. Tetravalent Silicon Connectors MenSi(p-C6H4CO2H)(4-n) (n=0,1,2) for the Construction of Metal-Organic Frameworks[J]. Inorganic Chemistry.2008,47(21):9958-9964.
    [33]Lambert JB, Liu Z, Liu C. Metal-organic frameworks from silicon-and germanium-centered tetrahedral ligands[J]. Organometallics. 2008,27(7):1464-1469.
    [34]Wenzel SE, Fischer M, Hoffmann F, Froeba M. Highly Porous Metal-Organic Framework Containing a Novel Organosilicon Linker-A Promising Material for Hydrogen Storage[J]. Inorganic Chemistry.2009,48(14):6559-6565.
    [35]Zhao X, Zhang L, Ma H, Sun D, Wang D, Feng S, Sun D. Solvent-controlled Cd(II) metal-organic frameworks constructed from a tetrapodal silicon-based linker[J]. Rsc Advances.2012,2(13):5543-5549.
    [36]Blatov VA. Nanocluster analysis of intermetallic structures with the program package TOPOS[J]. Struct Chem.2012,23(4):955-963.
    [37]Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. OLEX2:a complete structure solution, refinement and analysis program[J]. Journal of Applied Crystallography.2009,42:339-341.
    [38]Forgan RS, Sauvage J-P, Stoddart JF. Chemical Topology:Complex Molecular Knots, Links, and Entanglements [J]. Chemical Reviews. 2011,111(9):5434-5464.
    [39]Spek AL. Single-crystal structure validation with the program PLATON[J]. Journal of Applied Crystallography.2003,36:7-13.
    [40]Maji TK, Matsuda R, Kitagawa S. A flexible interpenetrating coordination framework with a bimodal porous functionality [J]. Nature Materials. 2007,6(2):142-148.
    [41]Mulfort KL, Farha OK, Malliakas CD, Kanatzidis MG, Hupp JT. An Interpenetrated Framework Material with Hysteretic CO2 Uptake[J]. Chemistry-a European Journal.2010,16(1):276-281.
    [42]Yang S, Lin X, Lewis W, Suyetin M, Bichoutskaia E, Parker JE, Tang CC, Allan DR, Rizkallah PJ, Hubberstey P, Champness NR, Thomas KM, Blake AJ, Schroeder M. A partially interpenetrated metal-organic framework for selective hysteretic sorption of carbon dioxide[J]. Nature Materials.2012,11(8):710-716.
    [1]Ferey G, Serre C. Large breathing effects in three-dimensional porous hybrid matter:facts, analyses, rules and consequences[J]. Chemical Society Reviews. 2009,38(5):1380-1399.
    [2]Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O'Keeffe M, Yaghi OM. Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks[J]. Accounts of Chemical Research.2010,43(1):58-67.
    [3]O'Keeffe M. Design of MOFs and intellectual content in reticular chemistry:a personal view[J]. Chemical Society Reviews.2009,38(5):1215-1217.
    [4]Farha OK, Hupp JT. Rational Design, Synthesis, Purification, and Activation of Metal-Organic Framework Materials [J]. Accounts of Chemical Research. 2010,43(8):1166-1175.
    [5]Chen B, Xiang S, Qian G. Metal-Organic Frameworks with Functional Pores for Recognition of Small Molecules [J]. Accounts of Chemical Research. 2010,43(8):1115-1124.
    [6]Tanaka D, Henke A, Albrecht K, Moeller M, Nakagawa K, Kitagawa S, Groll J. Rapid preparation of flexible porous coordination polymer nanocrystals with accelerated guest adsorption kinetics[J]. Nature Chemistry.2010,2(5):410-416.
    [7]Yuan D, Zhao D, Sun D, Zhou H-C. An Isoreticular Series of Metal-Organic Frameworks with Dendritic Hexacarboxylate Ligands and Exceptionally High Gas-Uptake Capacity [J]. Angewandte Chemie-International Edition. 2010,49(31):5357-5361.
    [8]Chen S, Zhang J, Wu T, Feng P, Bu X. Multiroute Synthesis of Porous Anionic Frameworks and Size-Tunable Extraframework Organic Cation-Controlled Gas Sorption Properties[J]. Journal of the American Chemical Society. 2009,131(44):16027-16030.
    [9]Zheng S-T, Bu JT, Li Y, Wu T, Zuo F, Feng P, Bu X. Pore Space Partition and Charge Separation in Cage-within-Cage Indium Organic Frameworks with High CO2 Uptake[J]. Journal of the American Chemical Society. 2010,132(48):17062-17064.
    [10]Sumida K, Brown CM, Herm ZR, Chavan S, Bordiga S, Long JR. Hydrogen storage properties and neutron scattering studies of Mg-2(dobdc)-a metal-organic framework with open Mg2+ adsorption sites [J]. Chemical Communications. 2011,47(4):1157-1159.
    [11]Liu Y, Kravtsov VC, Eddaoudi M. Template-Directed Assembly of Zeolite-like Metal-Organic Frameworks (ZMOFs):A usf-ZMOF with an Unprecedented Zeolite Topology [J]. Angewandte Chemie-International Edition. 2008,47(44):8446-8449.
    [12]Long DL, Hill RJ, Blake AJ, Champness NR, Hubberstey P, Proserpio DM, Wilson C, Schroder M. Non-natural eight-connected solid-state materials:A new coordination chemistry [J]. Angewandte Chemie-International Edition. 2004,43(14):1851-1854.
    [13]Du L, Wang K-M, Fang R-B, Zhao Q-H. Multidimensional Snowflake-shaped (3,9)-connected Metal-Organic Frameworks Composed of Ni(3)(mu(3)-O) Building Blocks and Symmetry Ligand Pyridine-3,5-dicarboxylic Acid[J]. Z Anorg Allg Chem.2009,635(2):375-378.
    [14]Ahnfeldt T, Guillou N, Gunzelmann D, Margiolaki Ⅰ, Loiseau T, Ferey G, Senker J, Stock N. Al-4(OH)(2)(OCH3)(4)(H2N-bdc)(3) center dot xH(2)O:A 12-Connected Porous Metal-Organic Framework with an Unprecedented Aluminum-Containing Brick[J]. Angewandte Chemie-International Edition. 2009,48(28):5163-5166.
    [15]Zhang Y-B, Zhang W-X, Feng F-Y, Zhang J-P, Chen X-M. A Highly Connected Porous Coordination Polymer with Unusual Channel Structure and Sorption Properties[J]. Angewandte Chemie-International Edition. 2009,48(29):5287-5290.
    [16]Gu X, Lu Z-H, Xu Q. High-connected mesoporous metal-organic frame work [J]. Chemical Communications.2010,46(39):7400-7402.
    [17]Zhang Z, Xiang S, Zheng Q, Rao X, Mondal JU, Arman HD, Qian G, chen B. A Rare Uninodal 9-Connected Metal-Organic Framework with Permanent Porosity[J]. Crystal Growth & Design.2010,10(5):2372-2375.
    [18]Long DL, Blake AJ, Champness NR, Wilson C, Schroder M. Unprecedented seven-and eight-connected lanthanide coordination networks[J]. Angewandte Chemie-International Edition.2001,40(13):2444-2448.
    [19]Clegg W, Harbron DR, Homan CD, Hunt PA, Little IR, Straughan BP. Crystal structures of three basic zinc carboxylates together with infrared and FAB mass spectrometry studies in solution[J]. Inorganica Chimica Acta. 1991,186(1):51-60.
    [20]Yaghi OM, O'Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J. Reticular synthesis and the design of new materials[J]. Nature.2003,423(6941):705-714.
    [21]Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science.2005,309(5743):2040-2042.
    [22]Rowsell JLC, Yaghi OM. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks [J]. Journal of the American Chemical Society.2006,128(4):1304-1315.
    [23]Couck S, Denayer JFM, Baron GV, Remy T, Gascon J, Kapteijn F. An Amine-Functionalized MIL-53 Metal-Organic Framework with Large Separation Power for CO2 and CH4[J]. Journal of the American Chemical Society. 2009,131(18):6326-6330.
    [24]Park T-H, Hickman AJ, Koh K, Martin S, Wong-Foy AG, Sanford MS, Matzger AJ. Highly Dispersed Palladium(Ⅱ) in a Defective Metal-Organic Framework: Application to C-H Activation and Functionalization[J]. Journal of the American Chemical Society.2011,133(50):20138-20141.
    [25]Sun D, Zhang N, Huang R-B, Zheng L-S. Series of Ag(Ⅰ) Coordination Complexes Derived from Aminopyrimidyl Ligands and Dicarboxylates: Syntheses, Crystal Structures, and Properties [J]. Crystal Growth & Design. 2010,10(8):3699-3709.
    [26]Chun H. Low-level self-assembly of open framework based on three different polyhedra:Metal-organic analogue of face-centered cubic dodecaboride[J]. Journal of the American Chemical Society.2008,130(3):800-803.
    [27]Dinca M, Dailly A, Liu Y, Brown CM, Neumann DA, Long JR. Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites[J]. Journal of the American Chemical Society. 2006,128(51):16876-16883.
    [28]Dinca M, Han WS, Liu Y, Dailly A, Brown CM, Long JR. Observation of Cu2+-H-2 interactions in a fully desolvated sodalite-type metal-organic framework[J]. Angewandte Chemie-International Edition. 2007,46(9):1419-1422.
    [29]Zhao D, Timmons DJ, Yuan D, Zhou H-C. Tuning the Topology and Functionality of Metal-Organic Frameworks by Ligand Design[J]. Accounts of Chemical Research.2011,44(2):123-133.
    [30]Zheng S-R, Yang Q-Y, Liu Y-R, Zhang J-Y, Tong Y-X, Zhao C-Y, Su C-Y. Assembly of CdI2-type coordination networks from triangular ligand and octahedral metal center:topological analysis and potential framework porosity [J]. Chemical Communications.2008(3):356-358.
    [31]Cote AP, El-Kaderi HM, Furukawa H, Hunt JR, Yaghi OM. Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks[J]. Journal of the American Chemical Society.2007,129(43):12914-12918.
    [32]Han D, Jiang F-L, Wu M-Y, Chen L, Chen Q-H, Hong M-C. A non-interpenetrated porous metal-organic framework with high gas-uptake capacity[J]. Chemical Communications.2011,47(35):9861-9863.
    [33]Sun DF, Ma SQ, Ke YX, Petersen TM, Zhou HC. Synthesis, characterization, and photoluminescence of isostructural Mn, Co, and Zn MOFs having a diamondoid structure with large tetrahedral cages and high thermal stability [J]. Chemical Communications.2005(21):2663-2665.
    [34]Ma S, Zhou H-C. A metal-organic framework with entatic metal centers exhibiting high gas adsorption affinity [J]. Journal of the American Chemical Society.2006,128(36):11734-11735.
    [35]Zhu HF, Zhang ZH, Sun WY, Okamura T, Ueyama N. Syntheses, structures, and properties of two-dimensional alkaline earth metal complexes with flexible tripodal tricarboxylate ligands[J]. Crystal Growth & Design.2005,5(1):177-182.
    [36]Milios CJ, Manoli M, Rajaraman G, Mishra A, Budd LE, White F, Parsons S, Wernsdorfer W, Christou G, Brechin EK. A family of Mn-6 complexes featuring tripodal ligands[J]. Inorganic Chemistry.2006,45(17):6782-6793.
    [37]Whittington CL, Wojtas L, Larsen RW. Ruthenium(II) Tris(2,2 '-bipyridine)-Templated Zinc(Ⅱ) 1,3,5-Tris(4-carboxyphenyl)benzene Metal Organic Frameworks:Structural Characterization and Photophysical Properties[J]. Inorganic Chemistry.2014,53(1):160-166.
    [38]Barman S, Furukawa H, Blacque O, Venkatesan K, Yaghi OM, Berke H. Azulene based metal-organic frameworks for strong adsorption of H-2[J]. Chemical Communications.2010,46(42):7981-7983.
    [39]Hasegawa J-y, Higuchi M, Hijikata Y, Kitagawa S. Charge-Polarized Coordination Space for H-2 Adsorption [J]. Chemistry of Materials. 2009,21(9):1829-1833.
    [40]Zhang L, Liu F, Guo Y, Wang X, Guo J, Wei Y, Chen Z, Sun D. Crystal Structure Diversities Based on 4,4 '-(2,3,6,7-Tetramethoxyanthracene-9,10-diyl)dibenzoic Acid:From 2D Layer to 3D Net Framework[J]. Crystal Growth & Design.2012,12(12):6215-6222.
    [41]Spek AL. Single-crystal structure validation with the program PLATON[J]. Journal of Applied Crystallography.2003,36:7-13.
    [42]Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. OLEX2:a complete structure solution, refinement and analysis program[J]. Journal of Applied Crystallography.2009,42:339-341.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700