智能控制的薄壁铝合金铸件真空差压铸造工艺与理论
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近无余量、高精度、高性能、复杂薄壁有色合金铸件是21世纪铸造业的发展趋势之一,在航空航天、国防、汽车工业等基础产业具有重要的地位和广阔的应用前景,但现有的精密成形工艺尚不能完全满足质量要求高的复杂薄壁有色合金铸件的生产要求。本研究针对复杂薄壁铝合金铸件的特点,在吸收了真空吸铸、低压铸造、差压铸造工艺优点的基础上,提出了一种在真空条件下低压充型,高压下结晶的新型差压铸造精密成形工艺——真空差压铸造,并探讨了真空差压铸造工艺和理论,开发了具有使用价值的基于智能控制的真空差压铸造设备,解决了国防和民用工业中小批量、铸件质量要求高的复杂薄壁铝合金铸件精密成形问题。
     本研究提出了真空差压铸造原理及工艺,其采用真空条件下低压充型,高压下结晶的原理,工艺分为抽真空、充型、升压、保压和卸压五个阶段,充型和结晶可在不同压力下进行,具有优越的充型流体力学和凝固的力学条件,解决了一般的反重力铸造工艺在铸造复杂薄壁铸件方面存在的气体反压力和充型等问题,并自行设计和研制了一套VCPC-1型真空差压铸造设备,为真空差压铸造工艺的理论研究和生产应用打下了良好的基础。
     本文系统地研究了真空差压铸造的智能控制系统,采用MATLAB对真空差压铸造数字PID控制和模糊控制算法进行了仿真分析,在此基础上,确定了真空差压铸造智能控制系统采用模糊控制算法;采用Delphi语言开发了真空差压铸造智能控制的可视化界面,界面以视窗形式弹出,功能齐全,简单实用,具有良好的人-机对话功能;采用串行通信技术,真空差压铸造智能控制系统实现了下位机的近程控制和上位机的远程控制。下位机采用单片机控制,主要便于在现场实时监测整个工艺过程;上位机采用PC机控制,主要用于传输、保存和打印数据,显示和再现整个工艺过程,可以在500m的范围进行控制操作。试验结果表明,研制的真空差压铸造智能控制系统高效可靠,运行良好,完全能够满足工艺要求。
     系统研究了真空差压铸造工艺的充型理论,自行研制了一套智能化的电极触点法流动形态测试系统,在此基础上,测试了不同壁厚铝合金铸件和不同充型速度下真空差压铸造工艺的充型流动形态,探讨了真空差压铸造铝合金薄壁铸件的充型规律,提出了“临界加压速度”或“临界充型速度”的概念,同时建立了真空差压铸造工艺的“正向充填”和“反向充填”理论,并探讨了金属液的流动形态与铸件质量的关系,为真空差压铸造充型工艺的优化提供了理论依据。
     系统研究了真空差压铸造工艺的凝固补缩理论,探讨了不同结晶凝固压力下真空差压铸造铝合金试样的致密度和显微组织变化规律,建立了真空差压铸造工艺凝固补缩过程的数学模型,得出晶间不同部位(X处)的补缩速度公式为:指出晶间X处的补缩速度主要取决于结晶凝固时保压压力P保的大小,保压压力P保越大,晶间X处的补缩速度就越快。在此基础上,提出了真空差压铸造工艺的枝晶挤滤渗流补缩理论,并得到金属液的挤滤渗流能力公式为:
     指出挤滤渗流作用的大小主要取决于保压压力P保,保压压力P保越大,挤滤渗流作用就越强,金属液就能够更顺利的通过凝固枝晶间的狭窄通道向补缩区流动,从而更有利于对固-液界面的凝固补缩。凝固补缩理论的研究为真空差压铸造复杂薄壁铝合金致密铸件提供了理论基础。
     建立了真空差压铸造工艺参数包括真空度、充型速度、充型压差、升压速度、结晶压力和保压时间等的确定原则,并成功地小批量铸造了最小壁厚0.8mm,最大重量20kg的复杂薄壁铝合金壳体和箱体军品铸件,为航空企业开发了VCPC-2型真空差压铸造系统,表明真空差压铸造技术已具备生产1mm以下的近无余量、薄壁复杂铸件的能力,并适用于熔模精铸型、砂型、金属型、石膏型等多种铸型生产,为我国真空差压铸造技术的推广应用打下了良好的基础,具有广阔的应用前景。
Near net shape,high accuracy,high performance,complicated and thin-wall nonferrous alloy castings is one of developing trend of foundry industry in the 21st century,and have important status and broad application prospect in basic industries such as aviation,airsPace,national defense,car and automobile industry fields. But existing processes have not satisfied producing demand of high-qulity,complicated and thin-wall nonferrous alloy castings completely. In the Paper,according to the characteristics of complicated and thin-wall aluminum alloy castings,a new counter-pressure casting process named vacuum counter-pressure casting was presented on the basis of suction casting,low-pressure casting and counter-pressure casting process,which adopted to low-pressure fill mould under the condition of vacuum and crystallize under high pressure. Meanwhile,its principle and theory were investigated,and its equipment based on intelligent control was developed,which solved middle or short run,high-qulity, complicated and thin-wall aluminum alloy castings forming accurately in national defense and civilian industries.
     First of all,vacuum counter-pressure casting process and principle were presented,and its technology principle adopted to low-pressure fill mould under the condition of vacuum and crystallize under high pressure. Meanwhile,its process wsa divided into five stages:vacuumizing,filling mould,rising pressure,keeping pressure and releasing pressure,additionally,filling mould and crystallization could carry on at different pressure. So it had predominant filling hydrodynamics and solidification mechanics condition,and it solved the problem of gas counter pressure and filling mould which existed in general counter-gravity casting complicated and thin-wall aluminum alloy castings. meanwhile,a set of VCPC-1 vacuum counter-pressure casting equipment was designed and developed by oneself,which had laid a good foundation for theory research and producing application of vacuum counter-pressure casting process.
     Intelligent control systems of vacuum counter-pressure casting were studied systemically. Through simulation analyses of vacuum counter-pressure casting digital PID control and fuzzy control algorithm based on MATLAB,its intelligent control systems were comfirmed to adopte fuzzy control algorithm. Meanwhile,visual interface of its intelligent control systems was developed by using Delphi language,which appeared in the form of window,and its functions was multiple,simple and practical,moreover , it had good persons-machine dialogue functions. Through serial communication technique,intelligent control systems of vacuum counter-pressure casting realized short range control of hypogynous machine and long-distance control of epigynous machine. Hypogynous machine adopted the single-chip computer to control,which was convenient to monitor the whole process course real-time at the scene. Additionally,epigynous machine adopted PC computer to control,which was used mainly to transmit,save and print data,and show and reproduce the whole process course,moreover,it could control on the range of 500m. Results indicated Intelligent control systems of vacuum counter-pressure casting developed were high efficient and reliable,and run well. Morover,they could meet process demand completely.
     Filling mould theory of vacuum counter-pressure casting process was studied systemically. Through a set of testing systems of intelligent electrode contacting method developed by oneself,filling mould flow morphology of vacuum counter-pressure casting aluminum alloy was tested under condition of different thick castings and filling velocity. Meanwhile,its filling regulation was investigated,and the concept of critical pressurizing velocity and filling velocity was presented. Additionally,obverse and inverse filling mould theory of vacuum counter-pressure casting process was established,and relation of flow morphology and castings quality was discussed,which had provided theoretical foundation for filling process of vacuum counter-pressure casting.
     Solidification feeding theory of vacuum counter-pressure casting process was studied systemically,and changing regulation of the density and microstructure of vacuum counter-pressure casting aluminum alloy sample under different crystallization and solidification pressure was investigated. Meanwhile,mathematical model of its solidification feeding course was established,and feeding velocity equation of X location between dendrite was obtained and shown below:
     It was pointed that feeding velocity equation of X location between dendrite depended on magnitude of keeping pressure Pk mainly,moreover,the higher keeping pressure Pk was,the quicker its feeding velocity was. On this basis,dendrite extrusion and infiltration feeding theory of vacuum counter-pressure casting process was presented,and extrusion and infiltration ability equation of molten metal was obtained and shown below:
     It was pointed that extrusion and infiltration effect depended on magnitude of keeping pressure Pk mainly too,moreover,the higher keeping pressure Pk was,the stronger its effect was,which could make molten metal Pass through narrow Passage between solidification dendrite to flow toward feeding area successfully. Therefore,it benefited from solidification feeding for interface between solid and liquid. Study of solidification feeding theory provided theoretical foundation for vacuum counter-pressure casting complicated,thin-wall and sound aluminum alloy castings.
     Finally , determinate principle of vacuum counter-pressure casting process Parameters such as vacuum degree,filling velocity,filling pressure difference,rising pressure velocity,crystallization pressure and keeping pressure time were established. Meanwhile,short run complicated and thin-wall shell and box body aluminum alloy military castings which the smallest wall was 0.8mm and the biggest weight was 20kg had been produced successfully,and VCPC-2 vacuum counter-pressure casting systems had been developed for aviation enterprise. Results indicated vacuum counter-pressure casting technology had possessed ability of producing near net shape,thin-wall and complicated castings under 1mm,and was suitable for many kinds of moulds such as investment casting,sand mould,permanent mould and gypsum mould,which had laid a good foundation for popularizing application of vacuum counter-pressure casting technology,and has broad application prospects.
引文
[1] 黄乃瑜,罗吉荣. 第九届国际铸造博览会(GIFA'99)综述. 特种铸造及有色合金,1999,19(5):48~52
    [2] Ann Marie. Green sand molding technology advances in a near net shape era. Modern Casting,1987,77(9):44~48
    [3] George N.B. Foundry technology in the 1990s. Modern Casting,1989,79(12):15~18
    [4] 藤田忠勇. Near net shape かち net shape へ. 鑄鍛造と熱处理,1989,52(6):33~37
    [5] Murray Patz. Net shapes,new shape:expanding casting markets through EPC. Modern Casting,1988,78(9):40~41
    [6] 竹本義明. 生型铸物にぉける near net shape 化技术. 铸物,1991,48(3): 258~270
    [7] Paul M.B. Near net molding methods shape foundries’ futures. Modern Casting, 1987,77(4):41~46
    [8] 陈超英.特种铸造技术的发展与我们的对策.成飞情报,2001(3):45~48
    [9] 杨立勇. 发展我国汽车铸造业之对策. 铸造,1998,47(2):43~45
    [10] 邱庆荣,孙宝德. 铝合金铸件在汽车上的应用. 铸造,1998,47(1):46~49
    [11] Alhetke. Let the product drive the process-PartⅡ. Foundry,1994,10:12~14
    [12] 李慎言. 铸造技术的发展趋势.铸造设备研究,1991(5):1~11
    [13] 叶荣茂,王惠光,田竞,等. 有色合金薄壁精密铸件铸造工艺的发展和特点. 特种铸造及有色合金,1995,15(2):33~34
    [14] 陈金城,竺仁监,陆培德等. 真空压铸. 北京:国防工业出版社,1986
    [15] Wolodkowicz A. Vacuum die casting:its benefits and guideline. Transactions of 16th International Die Casting Congress and Exposition,Detroit Michigan,USA,North American Die Casting Association,Sep.30~Oct.3,1991:1~3
    [16] 吕宜振,尉胤红等. 镁合金铸造成形技术的发展. 铸造,2000,49(7):383~387
    [17] 王英杰,贾泮江,于桂林. 铝合金真空吸铸加压凝固技术研究. 铸造技术,2000,21(6): 11~13
    [18] 曾建民,周尧和. 航空铸件成形新技术—调压精铸法. 航空精密制造技术,1997,33(6):30~31
    [19] 陈立亮,刘瑞祥,林汉同. 我国铸造行业计算机应用的回顾与展望. 铸造:2002,51(2):63~67
    [20] 范晓明,廖刚军,潘耿生,等. 薄壁高强灰铸铁缸体缸盖材质的研究. 铸造设备研究. 1997(5):1~4
    [21] 林家骝,姜军. 超薄壁铝合金铸件移动磁场铸造的研究. 铸造,1996,45(3):18~20
    [22] A Staff. High volume production of thin-walled aluminium castings. Foundryman,1999,29(3):69~70
    [23] 曾建民,周尧和. 薄壁铸件及其反重力成形技术. 航空精密制造技术,1999,35(3):23~24
    [24] H.M.卡尔金著,王乐仪译. 轻合金铸件浇注系统. 北京:国防工业出版社,1982
    [25] 吴金信. 薄壁铝件压铸工艺的控制. 铸造技术,1996,17(6):25~27
    [26] 吴其伟,刘兴福,付道庆. 充氧压铸消除压铸件的气孔. 汽车技术,1989(3):53~57
    [27] Robert Vess J. Pore-free die casting opens new opportunities. Die Casting Engineer,1983,21(3):35~38
    [28] 赖华清,胡沉,徐翔. 汽车铝铸件铸造技术的现状与发展. 湖北汽车,2001(3):21~25
    [29] 吴先敬. 铝合金轮毂的充氧压铸. 有色金属加工,1998,10(2):6~10
    [30] Neiland J. Squeeze cast Parts approach performance of forgings. Modern Metals,1988,16(2):52~60
    [31] Chadwick G A,Yue T M. Principles and applications of squeeze casting. Metals and Materials,1989,15(1):6~12
    [32] C.S.Lim,A.J.Clegg. A comParison of the squeeze casting and investment casting processes for the production of an aluminium alloy MMC. Foundry Trade Journal,1996,28(4):152~155
    [33] 唐靖林,曾大本,常安国. 挤压铸造的发展和应用现状. 中国铸造装备与技术,1998(3):3~6
    [34] 熊艳才,周永江,洪润洲. 薄壁复杂铝合金精铸件真空吸铸工艺研究. 特种铸造及有色合金,2000,20(5):18~19
    [35] 常安国,洪海生. CLA 法真空吸铸工艺. 中国铸造装备与技术,1996(1):10~14
    [36] J.Campbell. Developments in precision sand casting of aluminium alloys. Foundry Trade Journal,1991,23(5):229~233
    [37] P.D.Webster,N.A.Mufti. Pressure sand casting. Foundry Trade Journal,1995,27(4):157~160
    [38] 常安国. 熔模真空吸铸新工艺-CLA 法. 新技术新工艺,1994(6):20~21
    [39] G.D.Chanley. Thin-walled castings by the CLV process. AFS Transactions,1990,23(4):413~416
    [40] 罗庚生编著. 低压铸造. 北京:国防工业出版社,1989
    [41] 山下和秀[日]. 低压铸造法. 铸造工学,1998,70(11):755~763
    [42] 唐多光. 21 世纪低压铸造技术的展望. 特种铸造及有色合金,1998,18(4):28~32
    [43] D.S.Edwards. The Cosworth Process. Foundry Trade Journal,1992,24(7):105~109
    [44] P.A.Smith,P.S.A.Wilkins. Low pressure sand casting:current experience with a new process. AFS Transactions,1986,19(2):181~186
    [45] P.S.A.Wilkins. Further development of the Coswoth aluminum casting process and a complementary alloy. The British Foundryman,1982,2(1):42~58
    [46] 北京北方恒利科技发展有限公司. 恒利科技铸造辉煌(产品说明书),2001
    [47] 毕鉴智,曲万春,王宏伟,等. 差压铸造的应用及发展. 铸造技术,2000,21(2):16~18
    [48] T.L.Sutton. Aluminium castings — a step forward into the next century. Foundryman,1997,51(1):217~226
    [49] 任天庆. 差压铸造液面加压控制系统. 铸造机械,1983(2):11~21
    [50] 大西修嗣. 差压铸造方法. 特开平 5-123851
    [51] 大西修嗣. 差压铸造装置. 特开平 5-285629
    [52] 大西修嗣. 差压铸造方法及ァルミニウム合金制ホィ-ル. 特开平 5- 200524
    [53] I.H.Katzarov , Y.B.Arsov and P.Stoyanov , et al. Porosity formation inasi-symmetric castings produced by counter-pressure casting method. International Journal of Heat and Mass Transfer,2001,44(3):111~119
    [54] 董秀琦,孙立刚,郭海冰. CLP-7 型差压铸造液面加压控制系统. 铸造,2001,50(3):169~172
    [55] Smith Ra. Low pressure sand casting current experience with a new process. AFS Transactions,1986,19(4):785~797
    [56] David P. Changing casting demands shape Ford's new foundry. Modern Casting,1994,84(9):347~350
    [57] G.D.Chandley. Use of Vacuum for Counter-gravity Casting of Metals. Material Reseacher Innovat,1999,31(3):14~23
    [58] 董选普,黄乃瑜,樊自田. 真空压差铸造工艺参数的研究. 热加工工艺,2003(5):15~17
    [59] MA Xu-liang,ZHU Zhao-jun,FANG Wen-bin,et al. Counter-pressure casting control system for larger thin-wall aluminum alloy components. Transactions of nonferrous metals society of china,2004,13(S1):102~105
    [60] 任天庆编著. 铸造设备自动控制系统设计. 北京:国防工业出版社,1990
    [61] I.H.Katzarov , Y.B.Arsov. Counter-pressure casting system eases aluminum pouring for high integrity components. Modern Casting,2004,94(1):56
    [62] 陶永华编著. 新型 PID 控制及其应用. 北京:机械工业出版社,1998
    [63] 陈理君编著. 微机模糊控制. 武汉:武汉工业大学出版社,1992
    [64] Youngjin Choi,Wan Kyun Chung. Optimality of PID control. Lecture Notes in Control and Information Sciences,2004,298(1):47~70
    [65] J.H.Kim,S.J.Oh. A fuzzy PID controller for nonlinear and uncertain systems. Soft Computing-A Fusion of Functions,Methodologies and Applications,2003,4(2):123~129
    [66] 邵惠鹤.工业过程高级控制.上海:上海交通大学出版社,1997
    [67] Pal T,Pal N.R,Pal M. Learning Fuzzy Rules for Controllers with Genetic Algorithms. International Journal of Intelligent Systems,2003,18:569~592
    [68] 诸静编著. 模糊控制原理与应用. 北京:机械工业出版社,1998
    [69] M.Jamshidi. Fuzzy control of complex systems. Soft Computing-A Fusion of Functions,Methodologies and Applications,2004,1(1):42~56
    [70] P.B.Petrovic,V.R.Milacic. Adaptive fuzzy control of mechanical behavior for atwo degree-of –freedomrobotic manipulator. Journal Intelligent Manufacturing,2004,9(4):369~375
    [71] K.Hayashi,A.Otsubo. Simulator for evaluating various fuzzy control methods. Fuzzy Theory Systems,1994,6:260~264
    [72] S.G.Cao,N.W.Rees,G.Feng. Analysis and design of fuzzy control systems using dynamic fuzzy global models. Fuzzy Sets and Systems,1995,75:47~62
    [73] K.Hayashi,A.Otsubo. Simulator for studies of fuzzy control methods. Fuzzy Sets and Systems,1998,93:137~144
    [74] 蒙以正编著. MATLAB5.X 应用与技巧. 北京:科学出版社,1999
    [75] Ata.Atef A,Shahin.Ali R,Asfour.Shihab S. Design of an industrial flexible robot controller using MATLAB. Computer & Industrial Engineering,1996,21(1):131~134
    [76] Th.Holzhuler. Simulation of relay control systems using MATLAB/SIMULINK [J]. Control Engineering Practice,1998,100(6):1089~1096
    [77] J.P.Hoffbeck,M.Sarwar,E.J.Rix. Interfacing MATLAB with a Parallel virtual processor for matrix algorithms. Journal of systems and Software,2001,56:77~80
    [78] Faouzi Bouslama. Fuzzy Control Rules and Their Natural Control Laws. Fuzzy Sets and Systems,1992,48:65~86
    [79] 姚锡凡,陈统坚. 差压铸造过程的参数自调整模糊控制.华南理工大学学报(自然科学版),1998,26(1):120~123
    [80] Tmotsu kamigaki. An object-oriented visual model-building and simulation system for FMS control. Simulation,1996,67(6):261~268
    [81] 徐锦林,沈云付. 利用 OpenGL 实现连铸模拟的可视化. 计算机工程与设计,2005,26(11):2942~2948
    [82] 钟登华,张成,宋洋. 基于可视化仿真的水电工程动态信息管理与控制方 法. 中国工程科学,2006,8(2):80~84
    [83] 曹维祥. 利用 Delphi 开发 Windows 控制面板组件. 电脑知识与技术,2006,5:99~101
    [84] 曹国钧编著. 最新 Delphi2.3/3.0 入门、应用实例与多媒体程序设计. 成都:电子科技大学出版社,1997
    [85] Xu Z A,MamPaey F A.Study of Mould Filling for Castings.60th World FoundryCongress,The Hague,1993
    [86] Hwang W.S. Computer Simulation for the Filling of Castings. AFS Transactions,1987,20(5):425~430
    [87] 董秀琦,王冬,王承志等编著. 低压及差压铸造理论与实践. 北京:兵器工业出版社,2000
    [88] 林柏年,魏尊杰编著. 金属液态成形传输原理. 哈尔滨:哈尔滨工业大学出版社,2000
    [89] 郭鸿曾编著. 真空系统设计与计算. 北京:冶金工业出版社,1985
    [90] 刘志明,曲万春等. 低压铸造中液态金属的填充规律及其影响. 特种铸造及有色合金,1999,19(2):17~19
    [91] Samith.T.J. Recent Development in Modelling the Flow and Solidification of Metals.Advanced Casting Technology,1987,30:312~325
    [92] Desai P.V. Computer Simulation for the Filling of castings.AFS Transactions,1987,20(3):447~458
    [93] 王君卿. 铸型充型过程模型化及流动场数值模拟. 铸造,1987,36(12):415~419
    [94] 薛寒松,李华基,王勇勤.薄壁件差压铸造的充型特点及影响因素.重庆大学学报,2002,25(10):20~22
    [95] 李晨曦,吴春京等. 铸造充型过程流场计算机模拟技术述评.铸造,1997,46(2):47~50
    [96] 曾建民,张延威,程功善,等. 流动形态的动力学分析. 高速摄影与光子 学,1991,20(4):423~426
    [97] 曾建民.低压铸造充型动力学的高速摄影观察.光子学报,1992,2l(4):389~393
    [98] 吕衣礼,张启勋,周尧和. 薄壁反重力铸造中的充填流体形态. 特种铸造及有色合金,1994,14(4):1~4
    [99] 吕衣礼,周尧和. 薄壁反重力充型过程中的裹气机理研究. 铸造,1995,44(9):1~5
    [100] 董选普,黄乃瑜,吴树森. 真空压差铸造金属液流动形态的研究. 铸造,2002,51(7):415~419
    [101] Campbell J. Thin Wall Castings. Material Science and Technology,1988,4(3):194~204
    [102] Weng-sing Hwang,Stoehr R A. Molten Metal Flow Pattern Prediction for Complete Solidification. Journal of Materials Science and Technology,1988,4(3):240~250
    [103] 李梅娥,王友序,吕衣礼等. 薄板件反重力充型形态的数值模拟研究. 特种铸造及有色合金,2000,20(2):45~47
    [104] 王冬,李玉海,郭广思等. 铸造过程补缩机理及其数学模型. 铸造,1996,45(2):13~16
    [105] 韩宝刚. 铝合金加压凝固的补缩行为. 铸造,1991,40(12):17~20
    [106] 叶荣茂,张东成,韩宝刚. 铝合金薄壁铸件压力结晶及性能的研究. 航空学报,1989,10(2):107~111
    [107] 李诗久主编. 工程流体力学. 北京:机械工业出版社,1990
    [108] 弗莱米斯主编. 凝固过程. 北京:冶金工业出版社,1981
    [109] K.Kubo , R.Pehlke. Mathematical modelling of porosity formation in solidification. Metallurgical Transactions B,1985,16B:359~363
    [110] Lee Y W. Modeling of feeding behavior of solidifying Al-7Si-0.3Mg alloy plate casting. Metallurgical Transactions B,1990,21B:715~722
    [111] T.S.Pivonka,M.C.Flemings. Pore formation in solidification. Transaction Metal Society AIME,1966,236:1157~1164
    [112] Tynelius K. A Parametric study of microporosity in the A356 casting alloy system. AFS Transactions,1993,26(10):401~413
    [113] Akad A T. Counter-pressure casting:The processes which occur during casting and crystallization. Foundry Trade Journal,1989,21(10):744~750
    [114] R.Kovacheva,G.Bachvarov and R.Dafinova et al..Influence of the Counter Pressure Casting Conditions on the Microstructural Characteristics of AlSi7Mg Castings.Journal of Materials Science and Technology,1996,12(1):42~56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700