内燃机整机振动激振力实验识别技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内燃机振动控制是内燃机设计、应用中的热点问题。对内燃机进行动力学分析确定其激振力,是内燃机振动控制和隔振设计的基础和重要环节。目前,获得内燃机的激振力可以采用理论计算和实验识别两种方法。工程应用中内燃机的实际激振力往往和理论计算值具有一定偏差,因此用实验方法确定内燃机激振力更能符合实际情况,具有直接的工程应用价值。
     本课题围绕内燃机整机振动激振力的识别问题,结合国内首次采用的动力包双层隔振系统设计项目,主要进行了以下研究分析工作:
     (1)从理论上对动车的内燃机进行激励源分析,确定了该内燃机的主要激励源为3.0谐次倾倒力矩和6.0谐次倾倒力矩,其往复惯性力(矩)和旋转惯性力(矩)在理论上为零。
     (2)应用内燃机整机振动激振力识别的测振法原理,编写了激振力识别计算程序。
     (3)通过实测和查询文献资料,确定了各系统参数的可能波动范围。定量分析了系统参数(惯量参数、刚度、阻尼、质心位置)误差对内燃机整机振动激振力识别精度的影响。
     (4)最后进行了柴油发电机组的多工况、多测点的整机振动激振力识别实验,并对实验数据进行了时频域分析。在初步掌握了该柴油发电机组的整机振动特性后,进行了整机振动激振力的实验识别计算,探索了多工况、多测点情况下整机振动激振力识别计算方法,并进行了识别精度验证。
     (5)通过对该柴油发电机组的整机振动激振力实验识别技术的研究,提出如下指导意见和建议:如缺乏对柴油发电机组隔振系统振动特性的了解并且设备条件允许,可以进行大量测点的整机振动测试,然后运用本文提出的统计的直方图法进行激振力识别。如已掌握了柴油发电机组隔振系统的振动特性或者测点有限的情况下,可以用本文提出的布置原则,有选择地布置3-4个测点。另外,在测量过程中,为满足激振力识别的刚体假设条件,建议把内燃机安装在坚固的大质量台架上,测点也可选在大质量大刚度的台架上,即可减少因局部振动过大、结构共振等干扰造成的信号异常现象。
     综上所述,因测量误差、测点位置差异、机组结构的复杂性等因素的存在,不同的测点组合会得出不同的激振力识别结果。为了提高激振力识别精度,针对大量测点的整机振动激振力识别实验,本文提出的运用统计直方图法来识别计算往复式机械整机振动激振力的方法是一个大胆的创新,以后可将此方法进行推广,并在实践中得以不断完善。
Control of vibration in internal combustion engine is a hot issue among internal combustion engine design and application. Dynamic analysis and vibration force verification on internal combustion engine both are key segments and bases for vibration control and vibration isolation design in internal combustion engine field. Though, two methods, theoretical computation and experimental strategy, for vibration source acquisition about internal combustion engine are applicable, deviations between them always emerges, however, experimental method is thought to be closer to practical situations and possess direct engineering application value.
     This subject aims at the recognition of exciting force from the body vibration of an internal combustion engine. With the domestic first use of dual-layer vibration isolation system, the main researches done are as the following:
     (1) The main vibration sources are verified through theoretical analyses to be3order and6order overturn torque. Reciprocating inertia force (torque) and rotational inertia force (torque) are zero theoretically.
     (2) A program for vibration force source recognition has been designed according to the theory for exciting force extraction from the body vibration of an internal combustion engine.
     (3) The deviation of each systematic parameter has been verified through measurements and references. The influence of systematic parameters'(inertia parameters, stiffness, damping, coordinates of center of mass) errors on the accuracy of recognition has been assessed.
     (4) At last, exciting forcesrecognizing test of has been done over multi-working conditions and multi-test points on a diesel gen set, and the data has been analysed on both time-domain and frequency-domain.Moreover, computations on the recognition of vibration forces from the body vibration test has been accomplished and the investigation of the computation method about vibration force source recognition over multi-working conditions and multi-test points has been investigated, in addition, the verification of the recognizing accuracy has been conducted.
     (5) Through this research on the experimental recognition technology of the exciting force extraction from the body vibration of an internal combustion engine, the following suggestions have been proposed:multiple test points are applicable in body vibration test given the lack of acknowledge about the vibration isolation system of the diesel gen set and sufficient equipment provision, and the statistical method proposed in this article can be adopted on vibration force recognition, otherwise, the principle of test points arrangement introduced by this article, i.e. arrange3-4points selectively. In addition, it is suggested that the internal combustion engine should be mounted on a solid test rig with huge mass to fulfill rigid body assumption as more as possible, also, test points are suggest to be mounted on the position with greater rigidity so as to avoid interferences such as local vibration and resonance which is responsible for abnormal signals.
     In conclusion, different combinations would yield different recognition outcomes owing to measurement error, coordinate errors of test points and the complicity of the gen set. To improve the accuracy of recognition when encountering massive test points condition, histogram statistical method has been introduced and this is an extraordinary innovation. The author believed that this method could be adopted and improved in the future practices.
引文
[1]余成怀,何怀波,石晓辉.内燃机振动控制及应用[M].北京市:国防工业出版社,1996
    [2]孙国春,郭辉.汽车动力总成振动控制研究[J].长春工业大学学报(自然科学版).2009(2)
    [3]刘欣.摩托车发动机动态激振力识别的实验技术研究[D].重庆大学,2008
    [4]林水秋.振源识别及基于功率流的隔振系统优化设计研究[J].山东科技大学学报(自然科学版).2008(5)
    [5]李德葆.振动模态分析及其应用[M].北京市:宇航出版社,1989
    [6]刘金玲.柴油机动力学特性研究[D].浙江大学,2010
    [7]李双虎,樊文欣,程人杰,等.基于MATLAB和ADAMS的V8发动机振源分析[J].柴油机设计与制造.2009(3)
    [8]张海波.发动机冲击激励源的识别、仿真与工程应用[D].山东大学,2000
    [9]徐传燕.发动机惯性参数和激励力的振动识别方法研究[D].华南理工大学,2012
    [10]马万福.基于有限元法的内燃机机体振动分析与噪声预测研究[D].天津大学,2005
    [11]段晓霞,苏铁熊.WP7柴油机曲轴系的多体动力学分析[J].柴油机.2011(1)
    [12]王辉.直列四缸发动机的振源分析与仿真[J].机械工程与自动化.2009(5)
    [13]李双虎,樊文欣,赵艳涛,等.用两种软件对比分析四缸发动机振源[J].噪声与振动控制.2010(1)
    [14]Cooley J W, Tukey J W. An Algorithm for the Machine Calculation of Complex Fourier Series[J]. Mathematics of Computation.1965, Vol.19(No.90):297-301
    [15]王峰.汽车动力总成悬置系统振动分析及优化设计[D].上海交通大学,2008
    [16]Paul C. Kinematics and dynamics of planar machinery [M]. Prentice-Hall,1979
    [17]J.S.Tao,G.R.Liu,K.Y.Lam.Design optimization of marine engine-mount system[J]. Journal of Sound and Vibration.2000,235(3):477
    [18]刘会兵,袁先伦,鲁嘉,等.基于CompactRIO的柴油机整机振动测试与分析[J].内燃机与动力装置.2010(5)
    [19]关涛,刘胜吉,李志丹.通用小型汽油机平衡计算与振动激振力分析[J].小型内燃机与摩托车.2011(6)
    [20]J.Verhoeven. Excitation force identification of rotating machines using operational rotor/stat or amplitude data and analytical synthesized transfer function[J] Journal of Vibration,Acoustics,Stress,and Reliability in design,1988,110:307-314
    [21]Graham ML,Gladwell.Inverse problem in vibration—Ⅱ[J].Applied Mechanics Reviews,1996,39(7):S25-S34
    [22]C.E.Siekemann,C.J.Radcliffe and E.D.Goodman.Optimal design and simulation of vibration isolation systems[J].Journal of Mechanisms,Transmissions,and Automation in Design,1985,107:271-276
    [23]李德葆.机械结构的动特性设计(五)——响应预测和激振力的识别[J].机械强度.1990(4)
    [24]van der Linden P J G,Fun J K. Using mechanical-a-coustic reciprocity for diagnosis of structure bornesound in vehicles[C]. SAE Technical Paper Series,Paper Number931340.USA,Michigan,1993
    [25]J.W.Verheij,Inverse and reciprocity methods for machinery noise source characterization and sound path quantification[J].Part 2:transmission paths,International Journal of Acoustics and Vibration.1997,2(3):103-112
    [26]Tetsuya Otsukaa,Takeshi Okadab,Tetsuro IKenob.Force identification of an outboard engine by experimental means of linear structural modeling and equivalent force transformation[J].2007,308:541-547
    [27]M.H.A.JANSSENS,J.W.VERHEIJ.The use of an equaivalent forces menthod for the experimental sound transmission in ships[J].Journal of Sound and vibration,1999,226(2):305-328
    [28]J.S.Tao,G.R.Liu,K.Y.Lam.Excitation force identification of an engine with velocity data at mounting points[J]. Journal of Sound and Vibration,2001,242(2):321-331
    [29]van der Linden P J G,Varet Ph. Experimental deter-mination of low frequency noise contribution of interi-or vehicle body panels in normal operation[C].SAETechnical Paper Series,Paper Number 960194.USA,Michigan,1996
    [30]杨志坚.离散频谱校正理论研究及其在发动机振动分析中的应用[D].华南理工大学,2009
    [31]杨志坚,丁康,徐传燕.基于离散频谱校正的发动机激励力识别方法仿真研究[J].振动工程学报.2010(6)
    [32]陆耀祖.内燃机构造与原理[M].北京市:中国建材工业出版社,2004
    [33]胡以怀,应启光.船舶柴油机振动、噪声及废气排放[M].大连市:大连海事大学出版社,2003
    [34]白鹏飞.摩托车发动机振动特性分析与研究[D].河南科技大学,2007
    [35]付素芳,张学铭,万秀颖,等.往复式发动机振动特性建模与分析[J].河南科技学院学报(自然科学版).2008(2)
    [36]张少波.曲柄连杆机构参数偏差对发动机整机振动影响研究[D].广西大学,2009
    [37]孙孟庆.改善内燃机真实平衡性能的方法研究[D].北京交通大学,2000.
    [38]秦萍,阎兵,谭达明.功率不均衡状况下评价和改善内燃机轴系扭振性能的研究[J].内燃机工程.2001(2)
    [39]谭达明.内燃机振动控制[M].成都市:西南交通大学出版社,1993
    [40]敬照亮.MATLAB教程与应用[M].北京市:北京交通大学出版社,2011
    [41]潘延亮.发动机隔振系统优化设计研究[D].西南交通大学,2012
    [42]嵇绍岭,张亮,杜海平,等.内燃机机体振动信号时域识别方法研究[J].内燃机工程.2003(3)
    [43]Liu X, Randall R B, Antoni J M. Blind separation of internal combustion engine vibration signals by a deflation method[J]. Mechanical Systems and Signal Processing. 2008,22(5):1082-1091
    [44]王保贵,张洪伟,赵阳.质心测量平台实现方法及精度分析[J].测试技术学报.2008,22(3)
    [45]钟江,赵章风,乔欣,等.基于三点支撑的质心测量系统及误差分析[J].中国机械工程.2010(12)
    [46]穆继亮.转动惯量测量若干关键技术研究[D].中北大学,2009
    [47]吴波,于明进,程勇,等.内燃机转动惯量试验推算方法的研究[J].内燃机学报.2000(4)
    [48]杨清梅,孙建民.传感器与测试技术[M].哈尔滨市:哈尔滨工程大学出版社,2004
    [49]周硕琳,董大伟,闫兵.4100柴油机气体简谐力矩特性试验研究[J].内燃机.2011(4)
    [50]杨绳祖,叶伟,周轶尘.扭振干扰力矩简谐系数的分析计算[J].武汉水运工程学院学报.1983(4)
    [51]邱群虎.内燃机角振动测量技术与停缸诊断方法研究[D].西南交通大学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700