腧穴敏化和电针镇痛的量效关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当内脏发生疾病时,体表相应部位出现皮下结节、牵涉痛、皮疹等病理反应的临床报道很多,这些病理反应常常伴随着疾病的发生而出现,并随着疾病的自愈而消退。这种内脏疾病能反应到体表的现象,中医远在两千年前早已发现,《素问·藏气法时论》记载:“心痛者,胸中痛,胁支满、膺背肩甲间痛,两臂内痛。”从此描述说明中国古代医生早已发现心痛可以反应到肩甲、两臂内侧等处,这不仅与临床上冠心病牵涉痛常出现的部位相一致,也正是十二经脉中心经经脉循行所过之处。因此,也有学者认为中医的经脉-脏腑相关理论是世界上最早的躯体-内脏相关学说。
     基于中医经脉-脏腑相关理论和西医的躯体-内脏相关学说,近年有学者提出腧穴面积的大小和功能的强弱会随着内脏功能的变化而发生改变的动态概念,并将这一规律称为腧穴的敏化。敏化腧穴不仅是一种新型的内脏疾病在体表的病理反应点,还是针灸治疗内脏疾病的最佳刺激点,当内脏发生疾病时,体表沉寂的腧穴可以被激活,其功能变得敏感而活跃,对相应内脏调节功能的“质”或“量”也会发生相应的变化。
     针灸可以治疗内脏疾病,缓解内脏疼痛,其疗效与电针强度、取穴部位密切相关。有关针刺镇痛的研究发现在同神经节段腧穴,针刺只要激活穴位深部的A类纤维就有明显的镇痛效应,而在异神经节段腧穴,针刺须激活穴位深部的C类纤维才能发挥镇痛效应。其机制可能与激活了脊髓和脊髓上中枢不同的内源性镇痛系统有关。
     虽然针刺镇痛的临床和实验研究很多,但是同时将痛源部位、体表敏化腧穴、电针强度综合起来考虑的研究甚少,关于体表敏化腧穴不同强度电针刺激缓解内脏痛的量效关系研究还是空白。
     本研究将具有躯体-内脏感觉会聚功能的脊髓背角广动力型(Wide Dynamic Range, WDR)神经元和延髓背侧网状核(Subnucleus Reticularis Dorsalis, SRD)全身异觉异位会聚神经元活动作为研究对象,观察生理和病理状态下这两类会聚神经元对不同强度电针传入的量-效激活反应,以及不同强度电针传入与内脏伤害性传入在这两类神经元的相互作用,来探讨腧穴敏化的规律和机制、电针镇痛的量效关系,以期阐明电针治疗内脏痛的最佳刺激部位和刺激强度,为临床提高电针镇痛效应提供参考。
     1材料和方法
     实验选用健康成年SD大鼠,体重250-300g,用10%的乌拉坦(urethane,1.0-1.2g-kg)腹腔注射麻醉,玻璃微电极细胞外记录神经元放电。
     所有记录到的神经元都用刷毛法观察其外周感受野在体表的分布范围,分别检验其体表感受野对各种机械刺激(包括触摸、电针齿镊夹皮)的反应和直结肠扩张刺激引起的反应,鉴定神经元的性质。在脊髓背角,凡是能够对来自体表感受野的各种机械刺激和来自内脏的扩张刺激均起激活反应的神经元,就被确定为WDR神经元;在延髓,凡是具有全身性的感受野,并且只能特异性地被体表和内脏的伤害性刺激激活,而对非伤害性刺激不发生反应的神经元就被确定为SRD神经元。
     内脏伤害性刺激采用直结肠扩张法,将一长约5-6cm的气囊经肛门插入直结肠,插入的深度约为4cm。内脏伤害性刺激由插入直结肠内的气囊充气超过20-50s实现。实验过程中直结肠扩张压力控制在60-80mmHg之间(40mmHg为伤害性刺激),两次重复的CRD刺激应至少间隔4min。
     分别在大鼠L2-4节段脊髓背角和延髓背侧网状亚核进行单细胞记录。观察内容分两部分:(1)观察WDR和SRD神经元在伤害性CRD刺激稳定激活的基础上,同时给予不同强度电针刺激对CRD引起的神经元痛敏反应的影响,探讨电针镇痛的量效关系;(2)观察在持续1min的伤害性CRD刺激前后,这两类神经元对来自感受野单纯电针刺激的量-效激活反应的变化,探讨腧穴敏化的规律及其机制。
     2结果
     2.1脊髓水平的实验结果
     于93只SD大鼠脊髓背角的L2-4节段共记录到168个神经元。其中广动力型(wide dynamic range neuron, WDR)神经元118个。大部分WDR神经元位于脊髓板层的第IV和V层,其外周感受野主要分布于记录部位同侧下半部皮肤,如:尾巴、下肢、会阴和臀部。
     在12个WDR神经元观察到60mmHg CRD刺激引起的神经元放电活动的激活率为100.90±21.41%,和背景活动相比有非常显著的差异(P<0.001),表明WDR神经元对来自同节段的内脏伤害性传入有稳定的激活反应。
     在60mmHg CRD刺激引起WDR神经元稳定激活的基础上,我们在体表非感受野分别观察了同神经节段穴区(选择位于记录部位对侧“足三里”穴区为中心)和异神经节段穴区(选择位于记录部位对侧“内关”穴区为中心)不同强度(1mA、2mA、4mA、6mA、8mA)电针刺激对CRD引起的神经元激活反应的影响。
     在同神经节段,电针能有效抑制CRD引起的WDR神经元的激活反应,和单纯CRD刺激引起的WDR神经元的激活反应相比,其抑制率分另为:11.43±3.40%(1mA)(P<0.05)、25.56±2.69%(2mA)(P<0.001)、46.35±3.44%(4mA)(P<0.001)、49.96±3.08%(6mA)(P<0.001)、47.04±4.79%(8mA)(P<0.001)。
     而在异神经节段,1mA电针刺激对CRD引起的WDR神经元的激活反应没有产生明显影响,与单纯CRD刺激时神经元的反应相比没有统计学差异(P>0.05);当电针强度达到2mA时,我们开始观察到电针对CRD引起的WDR神经元的激活反应的抑制效应。从2-8mA,其抑制率分别为:19.70±6.61%(2mA)(P<0.05)、33.71±3.93%(4mA)(P<0.001)、40.25±4.71%(6mA)(P<0.001)、40.44±5.68%(8mA)(P<0.001)。
     表明当电针强度为1mA时,只能引起节段性的抑制效应;而当电针强度达到2mA时,能引起广泛性的抑制效应;当电针强度达到4-6mA时,这种抑制效应还会到达一个平台期。
     之后,我们观察了体表感受野穴区(选择位于记录部位同侧的“足三里”穴区为中心)不同强度电针传入与内脏伤害性传入在WDR神经元的相互作用。
     首先观察单纯电针刺激对WDR神经元的量-效激活反应,和神经元背景活动相比,单纯电针刺激引起的WDR神经元的激活率分别为:14.50±4.63%(1mA)(P<0.05)、40.09±6.27%(2mA)(P<0.001)、99.47±13.18%(4mA)(P<0.001)、156.62±20.50%(6mA)(P<0.001)、189.15±11.33%(8mA)(P<0.001)。可见,从1mA-8mA的范围内,WDR神经元对单纯电针刺激的激活反应呈明显的量-效线性递增关系。
     然后在ERD引起WDR神经元稳定激活的基础上,同时给予电针刺激,当电针刺激强度为1mA时,电针对CRD引起的WDR神经元激活反应无明显影响(P>0.05)。当电针强度为2mA时,电针可以使WDR神经元的激活反应进一步增强,神经元的反应从单纯CRD激活的基础上依次再激活43.46±5.97%(2mA)(P<0.001)、77.44±8.32%(4mA)(P<0.001)、85.29±7.08%(6mA)(P<0.001)、90.38±13.01%(8mA)(P<0.01)。可见,同时给予CRD和感受野电针两种刺激,WDR神经元在电针强度达到6mA时,其激活反应也接近平台期。
     这些结果还表明来自感受野穴位的电针传入和来自内脏的伤害性传入可以在脊髓背角WDR神经元产生易化的相互作用。
     基于以上实验结果,为了探讨腧穴敏化的脊髓机制,我们给予大鼠70-80mmHg CRD刺激持续lmin造成内脏伤害性损伤后,观察WDR神经元对感受野穴位单纯电针刺激的激活反应的变化。实验观察到在CRD刺激后WDR神经元对电针的激活反应明显增强。CRD刺激前,电针引起的WDR神经元放电活动的激活率分别为:18.19±7.49%(1mA)、105.39±17.21%(4mA)、175.81±20.16%(7mA)、200.14±23.49%(10mA);而CRD刺激后,电针引起的WDR神经元放电活动的激活率分别为:95.09±26.37%(1mA)、202.44±18.90%(4mA)、278.41±32.64%(7mA)、280.84±39.87%(10mA)。并且在CRD刺激后,当电针强度达到7mA时,WDR神经元对电针的反应也接近平台期。表明持续的伤害性内脏传入可以易化脊髓背角WDR神经元,使其对来自体表感受野穴位的电针传入产生更强烈的反应。
     2.2延髓水平的实验结果
     于49只SD大鼠的延髓背角共记录到68个延髓背侧网状亚核(Subnucleus Reticularis Dorsalis,SRD)神经元。
     在16个SRD神经元系统观察了分级的CRD刺激引起的反应,在20-80mmHg的范围内,随着内脏扩张压力的升高,神经元反应的强度也随之增加,呈现出明显的量-效线性关系。表明SRD神经元对伤害性强度的内脏扩张刺激能做出准确的应答反应。
     由于这类神经元具有全身性的感受野,在60mmHg CRD刺激引起SRD神经元稳定激活的基础上,我们观察了与直结肠同神经节段的“足三里”穴区(取对侧)不同强度(1mA、2mA、4mA、6mA、8mA)电针刺激对CRD引起的SRD神经元激活反应的影响。
     实验观察到1mA电针刺激对CRD引起的SRD神经元的激活反应没有明显影响,电针后神经元的反应和单纯CRD刺激效应相比没有统计学差异(P>0.05);2mA电针刺激对CRD引起的SRD神经元的激活反应有一定的抑制作用,其抑制率为19.43±3.28%(P<0.01)、4mA、6mA、8mA电针刺激引起的抑制率分别为31.87±3.92%(P<0.001)、51.78±5.13%(P<0.001)、55.70±7.82%(P<0.01)。可见,随着电针强度的增加,电针的抑制效应逐渐增强,但是当电针强度达到6mA时,这种抑制效应也接近平台期。
     为了探讨腧穴敏化的延髓机制,这部分实验同样给予大鼠70-80mmHg CRD刺激持续1min造成内脏伤害性损伤后,观察电针“足三里”穴区对SRD神经元激活阈值和强度的变化,实验选择1.5mA和6mA分别代表低于和高于C类纤维阈值的的电针强度。
     结果显示在CRD刺激前,1.5mA电针刺激对SRD神经元的放电活动没有任何影响,与背景活动相比没有统计学差异(P>0.05);而在CRD刺激后,1.5mA电针刺激能明显激活SRD神经元,神经元的活动从背景活动的3.05±0.20spikes/s增加到4.81±0.46spikes-s,与背景活动相比,有非常显著的差异(P     当电针强度达到6mA时,CRD刺激前后电针对SRD神经元均有明显的激活作用。CRD刺激前后,电针引起的SRD神经元的激活率分别为318.34±53.56%、381.04±59.68%,CRD刺激前后的电针效应进行比较有显著的差异(P<0.01)。表明给予大鼠伤害性内脏扩张损伤后也可以易化延髓SRD神经元。
     3结论
     本研究系统分析了体表不同强度电针传入和内脏伤害性传入在脊髓背角WDR神经元和延髓背角SRD神经元的相互作用,得出以下结论:电针可以在脊髓和延髓抑制内脏伤害性反应,但是只有当电针达到一定的刺激强度时,电针的抑制效应才最明显,但并不是电针刺激强度越大,电针的抑制效应越明显。根据我们的实验结果,在脊髓水平,同节段穴区电针刺激强度在4-6mA时、异节段穴区电针刺激强度在6mA时,就能取得良好的抑制效应;而在延髓水平,电针强度在6mA时也能取得良好的抑制效应。从抑制强度来看,同节段穴区抑制强度最好,异节段穴区抑制强度稍低。
     在脊髓和延髓两个水平,伤害性内脏传入还可以易化相应节段体表的电针传入反应,引起体表相应穴区功能敏化。其发生机制与解释牵涉性痛觉过敏的会聚易化理论相一致。
Aim
     There are many clinical reports about when diseases occur in visceral organs, the relevant parts of the body surface would observed subcutaneous nodules, referred pain, skin rashes and other pathological responses. These pathological responses often occur as the diseases appear and fade as the healing of diseases. The phenomenon of pathological responses of visceral diseases can project to body surface has been noticed by Traditional Chinese Medicine (TCM)as early as2000years ago.《su wen·zang qi fa shi lun》 records:"Who aches in heart, will have pain in chest, distending pain in flanks, and pains between the scapula and in the inner side of arms".This description proves that ancient Chinese doctors have already found heartache causes responses of the scapula, inner side of the arms, and some other places. The sites of pain are not only consistent with clinical manifestation of referred pain at coronary heart disease, but also locate in the way of heart meridians.Therefore, some scholars believe that meridian-visceral connection theory in TCM is the oldest somato-visceral interactions theories in the worlds.
     Based on the meridian-visceral connection theory in TCM and somato-visceral interactions theory in Western medicine, in recent years, some scholars propose a dynamic concept that the size and strength of acupoints changes with the function of inner organs. They name this phenomenon as the sensitization of acupoints. Sensitized acupoint is not only a new point of pathological reaction on body surface, but also the best point of stimuli when using acupuncture to treat visceral disease. When visceral disease occurs, silent acupoints on the body surface can be activated, and their functions become sensitive and active. The "dose" or "effect" of its adjustment for corresponding internal organs will also change accordingly.
     Electro-acupuncture (EA) can relieve visceral pains. Its efficacy is closely related to the intensity of EA and acupoints. For the acupoints located at the same neural segment of pain areas, only activating the point's A-fiber can achieve obvious analgesic effects. But for acupoints located at different neural segment, obvious analgesic effects need to activate C-fiber. The mechanism may be related to the activation of the different endogenous analgesic system in the spinal cord and its central structure.
     Although there are many clinical and experimental researches on acupuncture analgesia, few researches take the sites of pain, sensitization of acupoints, and the intensity of EA together into consideration.
     In our study, we tried to use the WDR neurons and SRD neurons as research objects to observe the influences of EA with different intensities on the activity of these neurons in physiological/pathological state, and to explore the relationship between different EA intensities and noxious visceral stimulation to discuss the mechanism of acupoints sensitization and dose-effect relationship of EA analgesia, in the hope of clarifying the best intensities and points of EA and providing experimental support for improving EA analgesia effect.
     Material and Methods
     Experiments were performed on healthy adult Sprague-Dawley rats, weighing between250and300g.After anesthetizing the animals with an intraperitoneal injection of10%urethane (1.0-1.2g/kg), discharges from single neurons were recorded extracellularly with glass microelectrodes.
     For all recorded neurons, the skin receptive fields were identified initially by gentle tapping and brushing, and then checked their responses to colorectal distention (CRD) and mechanical stimuli (including touch, EA, pinch), and identified the type of neurons. In the dorsal horn of the spinal cord, neurons which can be activated by mechanical and visceral stimuli on surface receptive field were identified as WDR neurons; in the medulla oblongata, neurons which have systemic RF, can only be specially activated by noxious stimuli from body surface and visceral organs and don't react to non-noxious stimuli were identified as SRD neurons..
     Noxious visceral stimuli were generated by colorectal distention(CRD). CRD was applied by means of an inflatable ballon inserted rectally into descending colon for4cm from the anus and pumped for20-50s. Experimental colonic pressure is controlled between60-80mmHg(Pressure>40mmHg is considered as noxious), and the time interval between the two dilations was at least4min.
     Single-cell recordings were conducted in rat's WDR neurons and SRD neurons respectively. The experiment will be carried out in two parts:(1) Observe the influence of EA with different intensities on CRD-induced discharge activities of convergent neurons based on the stable activation of CRD to explore the dose-effect relationship of EA analgesia;(2)Observe the influence of pure EA stimuli on convergent neurons before and after1min noxious CRD stimuli to discuss the law and mechanism of acupoints sensitization.
     Results
     1Results Form Experiments of Spinal Level
     There are118WDR neurons among168neurons were recorded from L2-4. All the WDR neurons can be strongly activated by noxious CRD. We analyzed12WDR neuron's responses to60mmHgCRD. The increasing rate of WDR discharges activated by CRD is100.90±21.41%. P<0.001compared with background.
     In non-receptive field, during stimulation with60mmHgCRD, we examined the neurons'responses to EA with different intensities (1mA,2mA,4mA,6mA,8mA) applied to acupoints both from the same neural segments ("Zusanli" area as center)and different neural segments("Neiguan" area as center)of the neurons.
     If EA stimulation is appl ied at the same neural segments, EA can reduce the discharges of WDR neurons induced by CRD.The inhibition rates were11.43±3.40%(1mA)(P<0.05),25.56±2.69%(2mA)(P<0.001),46.35±3.44%(4mA)(P<0.001),49.96±3.08%(6mA)(P<0.001),47.04±4.79%(8mA)(P<0.001), respectively.
     If EA stimulation is applied at the different neural segments, EA with1mA has no effects on discharges of WDR neurons induced by CRD. When EA intensity reaches2mA to8mA, EA can reduce the discharges of WDR neurons induced by CRD. The inhibition rates were19.70±6.61%(P<0.05),33.71±3.93%(P<0.001),40.25±4.71%(P<0.001),40.44±5.68%(P<0.001).
     It indicates that when the EA intensity is1mA, EA can only generate inhibition in the same segment; but when EA intensity reaches2mA, it can generate inhibition in different segment; and when EA intensity reaches6mA, the inhibition effect reaches its peak.
     After that, we observed the effects of EA applied to RF (ipsilateral "Zusanli" area as center)with intensities on discharges of WDR neurons induced by CRD.
     Firstly,the dose-effect between pure EA stimuli and WDR neurons were observed. Compared with background activity, the firing rates under pure EA stimuli were14.50±4.63%(1mA)(P<0.05),40.09±6.27%(2mA)(P<0.001),99.47±13.18%(4mA)(P<0.001),156.62±20.50%(6mA)(P<0.001),189.15±11.33%(8mA)(P<0.001), respectively. It is clear that from1mA to8mA, the activation of WDR increased with pure EA intensity.
     Then, the effect of EA on discharges of WDR neurons induced by CRD were observed. EA with1mA has no effect on discharges of WDR neurons induced by CRD. When EA from2mA to8mA, the firing rate of neurons were43.46±5.97%(2mA),77.44±8.32%(4mA),85.29±7.08%(6mA),90.38±13.01%(8mA),P<0.001compare to CRD, respectively.And when EA intensity is6mA, the effect of combination of EA and CRD stimuli reaches its peak.
     These results also show that both pure EA stimuli in RF and CRD stimuli can activate WDR neurons, and the combination of the two stimuli has stronger effect than only one kind of stimuli, showing collaborative facilitation effect.
     Based on the experimental results above, to investigate the mechanism of acupoints sensitization. After given rats lmin70-80mmHg CRD stimuli to cause visceral injury, we observed WDR neurons'reactions to pure EA stimuli in RF. It is observed that after CRD stimuli, WDR neurons'activation increased. Before CRD stimuli, the firing rates of WDR neurons induced by pure EA were18.19±7.49%(1mA),105.39±17.21%(4mA),175.81±20.16%(7mA),200.14±25.59%(10mA), respectively; but after CRD stimuli, the firing rates were95.09±25.14%(1mA),202.44±18.90%(4mA),278.41±32.64%(7mA),280.84±39.87%(10mA). Besides,after CRD stimuli, when EA intensity reaches7mA, WDR neurons'responses to EA reach the maximum. This indicates noxious visceral injury can make WDR more sensitive to EA from RF in the body surface.
     2Results From Experiments of Medulla Oblongata Level
     There are68SRD neurons among96neurons were recorded from medulla oblongata.
     We analyzed16SRD neuron's responses to graded CRD stimulation. Within the range of20-80mmHg, the discharges of WDR neurons increased with the pressure of CRD, presenting linear dose-effects relationship. It indicates that SRD neuron can react quickly to injurious visceral distention stimuli.
     Based on stable SRD activation induced by60mmHg CRD stimuli, we observe the effects of different EA intensities in RF on SRD activation. Since this type of neurons have RF all through the body, we selected "Zusanli" area (with the same segment of colon)as center to perform EA stimuli.
     It is observed that1mA EA could not reduce the discharges of WDR neurons induced by CRD(P>0.05compared to pure CRD stimulation); EA with2mA could reduce the discharges of SRD neurons induced by CRD, which with an inhibiting rate of19.43±3.28%(P<0.01). When EA intensities were4mA,6mA and8mA, the inhibition rates were31.87±3.92%(P<0.001),51.78±5.13%(P<0.001) and55.70±7.82%(P<0.01) respectively. When the intensity reaches6mA, the inhibition effect reaches its peak.
     To investigate the mechanism of acupoints sensitization, in this part, we also offered rats70-80mmHg CRD stimuli for lmin to cause visceral injury and the effect of EA on the "Zusanli" area on discharges of SRD neurons were observed. We selected1.5mA and6mA as lower and higher than C-fiber threshold, respectively.
     Experimental results show that before CRD stimuli, EA with1.5mA has no effects on SRD discharge, P>0.05compared with background; but after CRD stimuli,1.5mA EA can evidently activate SRD neurons, its activity increased from3.05±0.20spikes/s to4.81±0.46spikes/s, which has evident statistical differences compared with background activity (P<0.001). When the intensity reaches6mA, EA can evidently activate SRD no matter before or after CRD stimuli. The activation rates were respectively318.34±53.56%and381.04±59.68%and there is an evident statistical difference between two groups. That showing noxious visceral distention injury can also make SRD neurons more sensitive.
     Conclusions
     This study systematically investigated the interactive effects of EA with different intensities and noxious visceral stimuli on WDR in the spinal cord horn and SRD neurons in the medullary horn. We can arrive at the following conclusions:EA can inhibit noxious visceral reactions in spinal cord and medullary dorsal horn. Only when EA reaches a certain level intensity, its inhibition effect is most evident. But it doesn't means that the greater the intensity, the better the effect. According to our study, in the spinal cord level, for the same segment area,4-6mA can reach good effect, and for different segment area,6mA is good. But in the medullary level,6mA can get good results. And acupoints sensitization effect is better for the same segment point than different segment point.
     In the spinal cord and medullary level, noxious visceral stimuli can make neurons in the same segment more sensitive to EA stimuli, which cause the sensitization of related acupoints. The occurrence mechanism is the same as the Convergence Facilitation Theory's explanation for referred pain.
引文
[1]陈淑萍,高永辉,喻晓春,等.电针不同经穴对直-结肠扩张大鼠血压及自主神经系统的影响[J].针刺研究.2010,35(5):335-341.
    [2]Cadden SW, Villanueva L, Chitour D, et al. Depression of activities of dorsal horn convergent neurons by propriospinal mechanisms triggered by noxious inputs:comparison with diffuse noxious inhibitory controls (DNIC) [J]. Brain Research.1983.275 (1):1-11.
    [3]Bouhassira D,Villanueva L,Bing Z,et al. Involvement of the subnucleus reticularis dorsalis in diffuse noxious inhibitory controls in the rat [J]. Brain Res.1992.595 (2):353-357.
    [4]Villanueva L and Le Bars D. The activation of bulbo-spinal controls by peripheral nociceptive inputs:diffuse noxious inhibitory controls [J]. Biol Res.1995,28 (1):113-125.
    [5]何晓玲,朱兵,刘乡,等.不同穴位电针对脊髓背角神经元伤害性反应抑制作用的广泛性和特异性[J].针刺研究.1993.18(4):271-271.
    [6]徐卫东,刘乡,朱兵,等.电针对三叉背角会聚神经元镇痛作用的广泛性和特异性的中枢机制研究[J].针刺研究.2000.25(4):248-252.
    [7]李亮,荣培晶,余玲玲,等.热灸对直结肠伤害性扩张抑制效应的脊髓机制研究[J].中国中医基础医学杂志.2011.17(10):1140-1145.
    [8]Villanueva L, Bing Z, Bouhassira D, et al. Encoding of electrical, thermal, and mechanical noxious stimuli by subnucleus reticularis dorsal is neurons in the rat medulla [J]. Neurophysiology.1989.61 (2) :391-402.
    [9]李亮,杨金生,荣培晶,等.不同表面积和不同温度热灸样刺激对大鼠延髓背侧网状亚核神经元的激活作用[J].针刺研究.2011.36(5):313-320.
    [10]程斌,石宏,吉长福,等.与急性胃黏膜损伤相关体表敏化穴位的动态分布观察[J].针刺研究.2010.6(35):193-197.
    [11]王少军和朱兵.卵巢-体表的相关性与经穴关系的研究[J].中国针灸.2007.27(10):761-765.
    [12]Giamberardino MA, Dalal A,Valente R, et al. Changes in activity of spinal cells with muscular input in rats with referred hyperalgesia from ureteral calculosis [J].Neurosci Lett.1996.203 (2):89-92.
    [13]Roza C,Laira JM, Cervero F. Spinal mechanisms underlying persistent pain and referred hyperalgesia in rats with an experimental ureteric stone [J].J Neurophysiol.1998.79 (4):1603-1612.
    [14]Garrison DW, Chandler MJ, Foreman RD. Viscerosomatic convergence onto feline spinal neurons from esophagus,heart and somatic fields:effect of inf lammation[J]. Pain.1992.49 (3):373-382.
    [1]Ness TJ,Gebhart GF. Visceral pain:a review of experimental studies [J]. Pain.1990,41 (2):167-234.
    [2]Ness TJ,Metcalf AM, Gebhart GF.A psychophysiological study in human using phasic colonic distension as a noxious visceral stimulus [J]. Pain.1990,43(3):377-386.
    [3]Mendell LM.Physiological properties of unmyelinated fiber projections to the spinal cord [J]. Exp. Neurol.1966,16 (3):316-332.
    [4]Besson JM. Supraspinal modulation of the segmental transmission of pain. In:Pain and Society, edited by Kosterlitz HW. and Terenius LY, Weinheim FRG:Verlag Chemie, p.161-182 (Dahlem Konferenzen).
    [5]Willis WD, Trevino DL, Coulter JD,et al. Responses of primate spinothalamic tract neurons to natural stimulation of hindlimb [J]. J. Neurophysiol.1974,37 (2):358-372.
    [6]Rong PJ, Zhu B, Huang QF, et al. Acupuncture inhibition on neuronal activity of spinal dorsal horn induced by noxious colorectal distention in rat[J]. World J Gastroenterol.2005,11(7):1011-1017.
    [7]李亮,荣培晶,余玲玲,等.热灸对直结肠伤害性扩张抑制效应的脊髓机制研究[J].中国中医基础医学杂志.2011,17(10):1140-1145.
    [8]Culberson JL,Haines DE,Kimmel DL,et al.Contralateral projection of primary afferent fibers to mammalian spinal cord [J]. Exp. Neurol.1979,64 (1):83-97.
    [9]华兴邦,李辞蓉,周浩良,等.大鼠穴位图谱的研制[J].实验动物与动物实验.1991,(1):1-5.
    [10]Bowsher D.The topographical projection of fibers from the anterolatcral quadrant of the spinal cord to the subdicncephalic brain stem in man[J]. Psychiatr. Neurol.1962,143:75-99.
    [11]Zemlan FP,Leonard CM, Kow LM, et al.Ascending tracts of the lateral columns of the rat spinal cord:a study using the silver impregnation and horseradish peroxidase techniques [J]. Exp. Neurol. 1978,62 (2):298-334.
    [12]Kerr FWL. And Lippman HH.The primate spinothalamic tract as demonstrated by anterolateral cordotomy and commissural myelotomy. In:Advances in Neurology. International Symposium on Pain, edited by Bonica JJ. New York:Raven.1974.4:147-156.
    [13]Breazile JE.And Kitchell RL.Ventrolateral spinal cord afferents to the brain stem in the domestic pig[J]. J. Comp. Neurol. 1968,133(3):363-372.
    [14]Benjamin RM. Single neurons in the rat medulla responsive to nociceptive stimulation [J]. Brain Res.1970,24 (3):525-529.
    [15]Blair RW. Noxious cardiac input onto neurons in medullary reticular formation[J]. Brain Res.1985,326 (2):335-346.
    [16]Burton H. Somatic sensory properties of caudal bulbar reticular neurons in the cat(felis domestica) [J]. Brain Res.1968,11 (2): 357-372.
    [17]Casey KL. Somatic stimuli, spinal pathways, and size of cutaneous fibers influencing unit activity in the medial medulary reticular formation [J]. Exp. Neurol.1969,25(1):35-56.
    [18]Gokin AP, Kostyuk PG, Preobrazhensky NN. Neuronal mechanisms of interactions of high-threshold visceral and somatic afferent influences in spinal cord and medulla[J]. J. Physiol (Paris). 1977,73(3):319-333.
    [19]Goldman PL, Collins WF, Taub A, et al. Evoked bulbar reticular unit activity following delta fiber stimulation of peripheral somatosensory nerve in cat [J]. Exp. Neurol.1972,37 (3):597-606.
    [20]Guilbaud G, Besson JM, Oliveras JL, et al. Modifications of the firing rate of bulbar reticular units (nucleus gigantocellularis)after intra arterial injection of bradykinin into the limbs [J]. Brain Res.1973,63:131-140.
    [21]Nord SG, and Ross GS. Responses of trigeminal units in the monkey bulbar lateral reticular formation to noxious and non-noxious stimulation of the face:experimental and theoretical considerations [J]. Brain Res.1973,58(2):385-399.
    [22]Pearl GS,and Anderson KV.Response patterns of cells in the feline caudal nucleus reticularis gigantocellularis after noxious trigeminal and spinal stimulation [J].Exp.Neurol.1978,58 (2):231-241.
    [23]Yokota T. Neural mechanisms of trigeminal pain. In:Advances in Pain Research and Therapy [M], edited by H. L. Fields et al.New York:Raven,1985,9:211-232.
    [24]Villanueva L, Bouhassira D, Bing Z, et al. Convergence of heterotopic nociceptive information onto subnucleus reticularis dorsal is neurons in the rat medulla [J]. J. Neurophysiol.1988,60 (3): 980-1009.
    [25]Rose JD. Anatomical distribution and sensory properties of brain stem and posterior diencephalic neurons responding to genital, somatosensory, and nociceptive stimulation in the squirrel monkey [J]. Exp Neurol.1979,66 (1):169-85.
    [26]Rose JD. Response properties and anatomical organization of pontine and medullary units responsive to vaginal stimulation in the cat [J]. Brain Res.1975,97 (1):79-93.
    [27]Villanueva L, de Pommery J, Mene trey D, et al.Spinal afferent projections to subnucleus reticularis dorsalis in the rat[J]. Neurosci Lett.1991,134 (1):98-102.
    [28]Villanueva L, Bouhassira D, Le Bars D. The medullary subnucleus reticularis dorsalis (SRD) as a key link in both the transmission and modulation of pain Signals [J]. Pain.1996,67 (2-3):231-40.
    [29]江振裕,张清才,朱秀莲,等.针刺镇痛效应及外周传入途径分析[J].中国科学.1973,15(2):157-161.
    [30]Gunn CC and Milbrandt WE. Neurological mechanisms of needle grasp in acupuncture [J]. Am. J. Acupuncture.1977,5:115-120.
    [31]重庆医学院生理教研室针麻原理研究组.针感与神经系统关系的初步分析.全国针刺麻醉研究资料选编.上海人民出版社.1977:324-329.
    [32]哈尔滨医科大学经络研究小组.经络本质及针灸机制的研究.全国中西医结合研究工作经验交流会议资料选编.人民卫生出版社.1961:28-30.
    [33]Mayer DJ. Acuouncture:an evidence-based review of the clinical literature [J]. Annu Rev Med.2000.51:49-63.
    [34]Han JS and Terenius L. Neurochemical basis of acupuncture analgesia [J]. Ann Rev Pharmacol Toxicol.1982,22:193-220.
    [35]Han JS. Acupuncture:neuropeptide release produced by electric stimulation of different frequencies [J]. TINS.2003,26 (1):17-22.
    [36]Han JS,Chen XH,Sun SL,et al. Effect of low-frequency and high-frequency tens on met-enkephalin-arg-phe and dynorphin-a immunoreactivity in human lumbar CSF[J]. Pain.1991,47 (3):295-298.
    [37]Han JS and Wang Q. Mobilization of specific neuropeptides by peripheral stimulation of identified frequencies[J]. News in Physiol Sci.1992,7:176-180.
    [38]Fei H,Xie GX, Han JS.Low and high frequency electroacupuncture stimulations release (met5) enkephalin and dynorphin A in rat spinal cord[J].Kexue Tongbao.1987.32:1496-1501.
    [39]Fei H,Sun SL,Han JS. New evidence supporting differential release of enkephalin and dynorphin by low and high frequency electroacupuncture stimulation[J].Kexue Tongbao.1988,33 (1): 703-705.
    [40]Chen XH and Han JS. Analgesia induced by electroacupuncture of different frequencies is mediated by different types of opioid receptors:another cross-tolerance study[J]. Behavioral Brain Res.1992,47(2):143-149.
    [41]Wang Y,Zhang Y, Wang W, et al.Effects of synchronous or asynchronous electroacupuncture stimulation with low versus high frequency on spinal opioid release and tail flick nociception[J]. Exp Neurol.2005,192 (1):156-162.
    [42]万有,Mogil JS,黄诚,等.β-内啡肽基因敲除小鼠2Hz电针镇痛效果显著降低[J].中国疼痛医学杂志.1999,3:161-167.
    [43]郭惠夫,王晓民,田今华,等.2Hz和1 00Hz电针加速脑内三种阿片肽基因表达[J].生理学报.1997,49(2):121-127.
    [44]Guo HF,Fang Y,Wang XM, et al.Electroacupuncture of different frequencies accelerated the Fos protein expression in different areas of the CNS [J]. Acupunct Res.1994,19:52-54.
    [45]Chen XH, Guo SF, Chang CG, et al. Optimal conditions for eliciting maximal electroacupuncture analgesia with dense-and disperse mode stimulation[J]. Am J Acupunct.1994,22:47-53.
    [46]Han JS.Acupuncture and endorphins [J]. Neurosci Lett.2004,, 361 (1-3):258-261.
    [47]Hamza MA,White PF, Ahmed HE, et al. Effect of the frequency of transcutaneous electrical nerve stimulation on the postoperative opioid analgesic requirement and recovery profile[J]. Anesthesiology.1999,91 (5):1232-1238.
    [48]Sun RQ, Wang HC, Wan Y, et al. Supression of reuropathic pain by peripheral electrical stimulation in rats:mu-opioid receptor and NMDA receptor implicated [J]. Exp Neurol.2004,187 (1):23-29.
    [49]贾萍,陈日新,刘金香,等.不同频率电针对家兔胃电节律紊乱调整效应研究[J].中国针灸.2006,26(11):801-803.
    [50]Han JS.Acupuncture analgesia:Areas of consensus and controversy [J]. Pain.2010,10(012):1-8.
    [51]Barlas P, Ting SLH, Chesterton LS, et al. Effects of intensity of electroacupuncture upon experimental pain in healthy human volunteers:a randomized,double-blind,placebo-control led s tudy [J]. Pain.2006,122 (1-2):81-89.
    [52]Wang B, Tang J, White PF, et al. Effect of the intensity of transcutaneous acupoint electrical stimulation on the postoperative analgesic requirement[J]. Anesth Analg.1997, 85 (2):406-413.
    [53]Claydon LS, Chesterton LS, Barlas P, et al. Dose-specific effects of transcutaneous electrical nerve stimulation (TENS) on experimental pain:a systematic review[J]. Clin J Pain.2011,27 (7): 635-647.
    [54]Liu HX, Tian JB, Luo F, et al. Repeated 100Hz TENS for the treatment chronic inflammatory hyperalgesia and suppression of spinal release of substance P in monoarthritic rats[J].Evid Complement Altern Med.2007,4 (1):65-75.
    [55]Lee JH,Choi YH,Choi BT.The anti-inflammatory effects of 2Hz electroacupuncture with different intensities on acute carrageenan-induced inflammation in the rat paw[J]. Int J Mol Med. 2005,16(1):99-102.
    [56]刘乡.以痛制痛-针刺镇痛的基本神经机制[J].科学通报.2001,46(7):241-245.
    [57]吕国蔚,梁荣照,谢竞强,等.“足三里”针刺镇痛效应外周传入神经纤 维的分析[J].中国科学.1979,22(5):495-503.
    [58]吕国蔚,谢竞强,杨进,等.“足三里”针刺镇痛点传入神经纤维的研究[M].针灸针麻研究.科学出版社.1986:331-339.
    [59]吴建屏,赵志奇,魏仁榆.刺激传入神经对伤害性刺激引起的猫脊髓背外侧索神经纤维活动的抑制[J].中国科学.1974,17(5):526-533.
    [60]赵飞跃,朱丽霞.不同穴位电针对急性实验性关节炎大鼠背角神经元诱发放电的影响[J].针刺研究.1988,13(增刊3):162-168.
    [61]朱丽霞,黎春元,杨兵,等.新生鼠辣椒素处理对电针镇痛的影响[J].针刺研究.1990,15(4):285-291.
    [62]刘长宁,赵飞跃,朱丽霞.嘌呤类参与大鼠弱电针镇痛[J].针刺研究.1994,19(1):59-62.
    [63]徐卫东,刘乡,朱兵,等.电针对三叉背角会聚神经元镇痛作用的广泛性和特异性的中枢机制研究[J].针刺研究.2000,25(4):248-252.
    [64]何晓玲,朱兵,刘乡,等.不同穴位电针对脊髓背角伤害性反应抑制作用的广泛性和特异性[J].针刺研究.1993,18(4):271-275.
    [65]徐琥,陈胜国,甘子明,等.大鼠直,结肠炎CLS的镇痛作用及COX2与GFAP在CNS表达的形态学观察.新疆医科大学学报[J].2005,28(4):329-332.
    [66]席时元,陶之理.足三里穴传入途径探讨[J].针刺研究.1982.7:66-69.
    [67]陶之理,李瑞午,李翠红.内关穴传入神经元的节段性分布-HRP法研究[J].四川解剖学杂志.1983,3(3):22-26.
    [68]陈隆顺,唐敬师,阎剑群,等.针刺镇痛传入纤维的分析[J].科学通报.1980,25(16):763-765.
    [69]Hou ZL. A study on the histologic structure of acupuncture points and types of fibers conveying needling sensation [J]. Chinese Medical Journal.1979,92 (4):223-232.
    [70]刘乡,张守信,朱兵,等.伤害性刺激和电针对大鼠中缝大核内缝-脊神 经元的效应[J].生理学报.1984,36(4):349-357.
    [71]刘乡,蒋旻春,黄平波,等.传入C纤维的兴奋在电针足三里启动中缝大核中的作用[J].生理学报.1990,42(6):523-533.
    [72]李和,梁勋广,关新民.辣椒素敏感的C纤维在电针镇痛中的作用[J].同济医科大学学报.1994,23(增刊2):99-102.
    [73]包虹,周正峰,于英心,等.C纤维不是电针镇痛的主要传入纤维,而是弥散性伤害性抑制性控制的主要纤维.针刺研究.1991,16(2):120-124.
    [74]韩济生.针刺麻醉向何处去?中国疼痛医学杂志.1996,2(1):1-5.
    [75]刘乡,黄平波,蒋旻春.辣椒素阻断腓总神经C纤维的效应及其对电针“足三里”镇痛作用的影响[J].针刺研究.1997,22(4):295-303.
    [76]徐嵘,关新民,王才源.辣椒素处理坐骨神经对大鼠痛阈和针刺镇痛效应的影响[J].针刺研究.1993,18(4):280-284.
    [77]方宗仁,于琴,李艳华.外周C纤维传入在电针镇痛中作用的观察[J].针刺研究.1992,17(1):48-53.
    [78]Xu WD, Zhu B, Rong PJ, et al.The pain-relieving effects induced by electroacupuncture with different intensities at homotopic and heterotopic acupoints in humans [J]. Am J Chin Med.2003,31 (5): 791-802.
    [79]Zhu B, Xu WD, Rong PJ, et al.A C-fiber reflex inhibition induced by electroacupuncture with different intensities applied at homotopic and heterotopic acupoints in rats selectively destructive effects on myelinated and unmyelinated afferent fibers [J]. Brain Res.2004,1011 (2):228-237.
    [80]Melzack R, Wall PD. Pain mechanism:a new theory [J]. Science. 1965,150(3699):971 979.
    [81]韩济生.神经科学原理[M].北京.北京医科大学出版社:718.
    [82]秦潮,朱衡.大鼠后肢皮、肌神经及穴区诱发脊髓背根电位的传入纤维类别分析[J].针灸论文摘要选编.中国针灸学会.1987:305.
    [83]Garrison DW, Foreman RD. Decreased activity of spontaneous and noxiously evoked dorsal horn cells during transcutaneous electrical nerve stimulation (TENS) [J]. Pain.1994,58 (3):309-315.
    [84]何晓玲,朱兵,刘乡,等.不同穴位电针对脊髓背角伤害性反应抑制作用的广泛性和特异性[J].针刺研究.1993,4:271.
    [85]Wolf SL,Gersh MR,Rao VR. Examination of electrode placements and stimulating parameters in treating chronic pain with conventional transcutaneous electrical nerve stimulation (TENS) [J]. Pain.1981,11(1):37 47.
    [86]Berlant SR. Method of determining optimal stimulation sites for transcutaneous electrical nerve stimulation[J]. Phys Ther.1984, 64 (6):924-928.
    [87]Garrison DW, Foreman RD. Effects of transcutaneous electrical nerve stimulation (TENS) on spontaneous and noxiously evoked dorsal horn cell activity in cats with transected spinal cords [J]. Neurosci Lett.1996,216(2):125 128.
    [88]马聘,冯竞辉,闫丽萍.电针对神经病理性疼痛大鼠脊髓背角神经元突触传递长时程增强的抑制作用[J].针刺研究.2009,34(5):324-328.
    [89]朱丽霞,黎春元,吉长福,等.灸法镇痛中突触后抑制与生长抑素[J].针刺研究.1993,18:290-295.
    [90]何晓玲,刘乡,朱兵,等.强电针穴位对背角神经元镇痛效应广泛性的中枢机制[J].生理学报.1995,47(6):605-609.
    [91]Xu WD, Liu X.The neural mechanism of specificity and extensiveness of electroacupuncture at acupoint [J].In:8th World Congress On Pain. Abstract. Voncouver:International Association For the Study of Pain.1996,218.
    [92]Bing Z,Cesselin F, Bourgoin S, et al. Acupuncture-like stimulation induces a heterosegmental release of Met-enke-phalin- like material in the rat spinal cord [J]. Pain.1991a,47 (1):71-77.
    [93]Guo HF, Tian J,Wang X, et al. Brain substrates activated by electroacupuncture EA of different frequencies Ⅱ:role of Fos/Jun proteins in EA-induced transcription of preproenkephalin and preprodynorphin genes [J].Mol Brain Res.1996,43 (1-2):167-173.
    [94]Hui KK, Liu J,Marina 0, et al.The integrated response of the human cerebro-cerebellar and limbic systems to acupuncture stimulation at ST36 as evidence by fMRI[J]. Neuroimage.2005,27 (3): 479-496.
    [95]Lee JH, Beitz AJ. The distribution of brain-stem and spinal cord nuclei associated with different frequencies of electroacupuncture analgesia [J]. Pain.1993,52 (1):11-28.
    [96]Takeshige C, Tsuchiya M, Guo SY, et al. Dopaminergic transmission in the hypothalamic arcuate nucleus to produce acupuncture analgesia in correlation with the pituitary gland[J]. Brain. Res. Bull.1991,26(1):113-122.
    [97]Takeshige C, Oka K,Mizuno T, et al. The acupuncture point and its connecting central pathway for producing acupuncture analgesia[J]. Brain Res Bull.1993,30 (1-2):53-67.
    [98]Wu GC, Zhu J, and Cao XD. Involvement of opioid peptides of the preoptic area during electroacupuncture analgesia[J]. Acupunct. Electrother. Res.1995,20(1):1-6.
    [99]Yan B, Li K, Xu JX, et al. Acupoint-specif ic fMRI patterns in human brain [J]. Neurosci Lett.2005,383 (3):236-240.
    [100]Yang J,Song CY,Lin BC,et al. Effects of stimulation and cauterization of hypothalamic paraventricular nucleus on acupuncture analgesia [J]. Acta Physiol. Sin.1992,44 (5):455-460
    [101]Dickenson AH,Le Bars D, Besson JM. Diffuse noxious inhibitory controls (DNIC). Effects on trigeminal nucleus caudalis neurones in the rat [J]. Brain Res.1980,200 (2):293-305.
    [102]Le Bars D, Dickenson AH, Besson JM. Diffuse noxious inhibitory controls(DNIC):I. Effects on dorsal horn convergent neurons in the rat [J]. Pain.1979,6 (3):283-304.
    [103]Le Bars D, Dickens son AH, Besson JM. Diffuse noxious inhibitory control (DNIC). Ⅱ. Lake of effect on non-convergent neurons, supraspinal involvement and theoretical impl ications[J]. Pain. 1979,6(3):305-327.
    [104]Dickenson AH and Le Bars D. Diffuse noxious inhibitory controls (DNIC) involve trigeminothalamic and spinothalamic neurones in the rat[J].Exp Brain Res.1983,49 (2):174-180.
    [105]Bouhassira D,Chitour D,Villanueva L,et al.Morphine and diffuse noxious inhibitory controls in the rat:effects of lesions of the rostral ventromedial medulla [J]. Eur J Pharmacol.1993, 232 (2-3):207-215.
    [106]Bouhassira D,Bing Z,Le Bars D.Effects of lesions of locus coeruleus/subcoeruleus on diffuse noxious inhibitory controls in the rat [J]. Brain Res.1992,571 (1):140-144.
    [107]Bouhassira D, Bing Z, Le Bars D. Studies of the brain structures involved in diffuse noxious inhibitory controls:the mesencephalon [J]. J Neurophysiol.1990,64(6):1712-1723.
    [108]Bouhassira D,Villanueva L,and Le Bars D.Intracerebroven-tricular morphine decreases descending inhibitions acting on lumbar dorsal horn neuronal activities related to pain in the rat[J].J Pharmacol Exp Ther.1988,247 (1):332-342.
    [109]Villanueva L,Chitour D,Le Bars D. Involvement of the dorsolateral funiculus in the descending spinal projections responsible for diffuse noxious inhibitory controls in the rat [J]. J Neurophysiol.1986,56(4):1185-1195.
    [110]Villanueva L and Le Bars D. The activation of bulbo-spinal controls by peripheral nociceptive inputs:diffuse noxious inhibitory controls [J]. Biol Res.1995,28 (1):113-125.
    [111]Bing Z, Villanueva L,and Le Bars D. Acupuncture and diffuse noxious inhibitory controls:naloxone-reversible depression of activities of trigeminal convergent neurons [J]. Neuroscience. 1990,37 (3):809 818.
    [112]Murase K and Kawakita K. Diffuse noxious inhibitory controls in anti-nociception produced by acupuncture and moxibustion on trigeminal caudalis neurons in rats[J]. Japanese Journal of Physiology.2000,50(1):133 140.
    [113]Bouhassira D, Le Bars D, and Villanueva L. Heterotopic activation of Aδ and C fibers triggers inhibition of trigeminal and spinal convergent neurons in the rat[J]. J. Physiol.1987,389: 301-317.
    [114]Liu J, Fu W, Yi W, et al. Extrasegmental analgesia of heterotopic electroacupuncture stimulation on visceral pain rats [J].Brain Res.2011,1373(10):160-171.
    [115]Schliessbach J, van der Klift E, Siegenthaler A, et al.Does acupuncture needling induce analgesic effects comparable to diffuse noxious inhibitory controls? [J]. Evid Based Complement Alternat Med.2012:785613.
    [116]Villanueva L and Le Bars D. The encoding of thermal stimuli applied to the tail of the rat by lowering the excitability of trigeminal convergent neurons[J]. Brain Res.1985,330(2):245-251.
    [117]Le Bars D, Chitour D,Clot AM. The encoding of thermal stimuli by diffuse noxious inhibitory controls (DNIC) [J]. Brain Research. 1981,230(1-2):394-399.
    [118]Willer JC,De Broucker T, Le Bars D.Encoding of nociceptive thermal stimuli by diffuse noxious inhibitory controls in humans [J]. J. Neurophysiol.1989,62:1028-1038.
    [119]Def rin R, Tsedek I,Lugasi I,Moriles I,et al.The interactions between spatial summation and DNIC:effect of the distance between two painful stimuli and attentional factors on pain perception[J]. Pain.2010,151 (2):489-495.
    [120]Villanueva L,Bouhassira D,Bing Z,et al.Convergence of heterotopic nociceptive information onto subnucleus reticularis dorsal is neurons in the rat medulla [J].J Neurophysiol.1988,60(3): 980-1009.
    [121]Villanueva L, Bouhassira D, Le Bars D. The medullary subnucleus reticularis dorsalis (SRD) as a key link in both the transmission and modulation of pain signals [J]. Pain.1996,67 (2):231-240.
    [122]Lima D and Almeida A. The medullary dorsal reticular nucleus as a pronociceptive centre of pain control system [J].Prog Neurobiol.2002,66 (2):81-108.
    [123]Monconduit L, Desbois C, and Villanueva L. The integrative role of the rat medul lary subnucleus reticularis dorsalis in nociception [J].Eur J Neurosci.2002,16 (7):937-944.
    [124]Monconduit L, Desbois C, and Villanueva L. The integrative role of the rat medullary subnucleus reticularis dorsalis in nociception[J].Eur J Neurosci.2002,16 (5):937-944.
    [125]凌树才,李云庆,施济武.大鼠延髓网状背侧亚核的下行投射-PHA-L和BDA标记法研究[J].神经解剖学杂志.1997,13(4):384.
    [126]Bowsher D.The topographical projection of fibers from the antero-lateral quadrant of the spinal cord to the subdiencephalic brain stem in man[J]. Psychiatr Neurol.1962,143:75-99.
    [127]Valverde F. Reticular formation of the pons and medulla oblongata. A Golgi study [J].J Comp Neurol.1961,116:71-99.
    [128]Lima DA. Spinomedullary projection terminating in the dorsal reticular nucleus of the rat [J]. Neuroscience.1990,34 (4):577-589.
    [129]Villanueva L, DePommery J,Menetrey D, et al. Spinal afferent projections to subnucleus reticularis dorsalis in the rat[J]. Neurosci Lett.1991,134 (1):98-102.
    [130]Villanueva L, Bernard JF, Le Bars. Distribution of spinal cord projections from the medullary subnucleus reticularis dorsalis and the adjacent cuneate nucleus:a Phaseolus vulgaris-leucoagglutinin study in the rat[J].J Comp Neurol.1995,352 (1):11-32.
    [131]Bernard JF, Villanueva L, Car roue J, et al. Efferent projections from the subnucleus reticularis dorsalis (SRD):a Phaseolus vulgaris-leucoagglutin in study in the rat[J].Neurosci Lett. 1990,116(3):257-262.
    [132]Raboisson P,Dallel R,Bernard JF,et al.Organization of efferent projections from the spinal cervical enlargement to the medullary subnucles reticularis dorsalis and the adjacent cuneate nucleus:a PHA-L study in the rat[J].J Comp Neurol.1996,367 (4): 503-517.
    [133]Roboisson P, Dallel R, Bernard JF, et al. Comparison of centical and lumbar spinal afferent projections to the subnucleus reticularis dorsal is (SRD) of the cat medulla studied with the PHA-L method.Abstr.7th World Congress on Pain. Seattle:IASPPress. 1993:257.
    [134]高永静,倪衡健,张璐,等.大鼠延髓网状背侧亚核传出投射的PHA-L 顺行追踪法研究[J].南通医学院学报.2002,(22):125-127.
    [135]Brodal A and Kaw amura K.Olivocerebellar projection:a review [J]. Adv Anat Embryol Ce11 Bio 1.1980,64:1-131.
    [136]Jones EG and Leavitt RY. Retrograde axonal transport and the demonstration of non-specific projections to the cerebral cortex and striatum from thalamic intra-laminar nuclei in the rat, cat and monkey [J]. J Comp Neurol.1974,154:349.
    [137]Kuraishi Y,Hirosa N, Sato Y, et al. Evidence that substance P and somatostatin transmit separate information related to pain in the spinal dorsal horn[J]. Brain Res.1985,325 (1-2):294-298.
    [138]Morgan C,Nadelhaft I, William C. The distribution of visceral primary afferents from the pelvic nerve to Lissauer's tract and the spinal gray matter and it's relationship to the sacral parasympathetic nucleus [J].J Comp Neurol.1981,201 (3):415-440.
    [139]李云庆,王智明,施际武.大鼠脊髓P物质受体定位分布的免疫细胞化学研究[J].神经解剖学杂志.1995,11:215-219.
    [140]凌树才,李云庆,施际武.大鼠脊髓向延髓网状背侧亚核神经元的形态及分布[J].解剖学杂志.1999,15(1):53-56.
    [141]Steinbusch HWM. Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals [J]. Neuroscience.1981,6 (4):557-618.
    [142]Ljung dahl A, H kfelt T,Nilsson G. Distribution of substance P-like immunoreactivity in the central nervous system of the rat-I.Cell bodies and nerve terminals [J]. Neuroscience.1978,3 (10): 861-943.
    [143]Finley JCW, Maderdrut JL, and Petrusz P. The immunocy tochemical localization of enkephalin in the central nervous system of the rat[J].J Comp Neurol.1981,198 (4):541-565.
    [144]Villanueva L,Bing Z,Bouhassira D, et al.Encoding of electrical, thermal, and mechanical noxious stimuli by subnucleus reticularis dorsalis neurons in the rat medulla[J].J Neurolphysiol.1989,61 (2):391-402.
    [145]Bing Z, Villanueva L, and Le Bars D. Effects of systemic morphine upon Aδ-and C-fiber evoked activities of subnucleus reticularis dorsalis neurons in the rat medulla [J]. Eur J Pharmacol.1989, 164(1):85-92.
    [146]Gall O, Villanueva L, Bouhassira D, et al. Spatial encoding properties of subnucleus reticularis dorsalis neurons in the rat medulla [J]. Brain Res.2000,873(1):131-134.
    [147]Ferrington DG,Sorkin LS, Wills WD Jr.Responses of spinothalamic tract cells in the superficial dorsal horn of the primate lumbar spinal cord [J]. J. Physiol. Lond.1987,388:681-703.
    [148]Handwerker HO,Iggo A,and Zimmermann M. Segmental and supraspinal actions on dorsal horn neurons responding to noxious and non-noxious skin stimuli [J]. Pain.1975,1 (2):147-165.
    [149]Price D and Browe C. Responses of spinal cord neurons to graded noxious and non noxious stimuli[J]. Brain Res.1973,64:425-429.
    [150]Torebjork E,and Hall in G.Perceptual changes accompanying controlled preferential bloking of A and C fiber responses in intact human skin nerves [J]. Exp Brain Res.1973,16 (3):321-332.
    [151]Torebjork HE,LaMotte RH,and Robinson CJ. Peripheral neural correlates of magnitude of cutaneous pain and hyperalgesia:simultaneous recordings in humans of sensory judgements of pain and evoked responses in nociceptors with C-fibers[J]. J Neurophysiol.1984,51(2):325-329.
    [152]Van Hees J and Gybels JM. Pain related to single afferent C fibers from human skin[J]. Brain Res.1972,48 (12):397-400.
    [153]Villanueva L,Bouhassira D,Bing Z,et al.Convergence of heterotopic nociceptive information onto neurons of the caudal medullary reticular formation in the monkey [J].J Neurophysiol. 1990,63(5):1118-1127.
    [154]Soto C,Martin-Cora FJ,Leiras R, et al. Processing noxious information at the subnucleus reticularis dorsalis (SRD) of an anesthetized cats:Wind-up mechanisms [J].Pain.2008.140 (1): 190-208.
    [155]Roy JC, Bing Z,Villanueva L, et al.Convergence of visceral and somatic inputs onto subnucleus reticularis dorsalis neurons in the reat medulla[J].J Physiol.1992.458:235-246.
    [156]Le Bars D. The whole body receptive field of dorsal horn multireceptive neurones[J].Brain Res Brain Res Rev.2002,40(1-3): 29-44.
    [157]Villanueva L and Le Bars D.The activation of bulbo-spinal controls by peripheral nociceptive inputs:diffuse noxious inhibitory controls [J].Biol Res.1995,28 (1):113-125.
    [158]Bouhassira D,Villanueva L,Bing Z.Involvement of the subnucleus reticularis dorsalis in diffuse noxious inhibitory controls in the rat [J]. Brain Res.1992,595 (2):353-357.
    [159]Le Bars D, Villanueva L,Bouhassira D, et al. Diffuse noxious inhibitory controls (DNIC)in animals and in man[J]. Patol Fiziol Eksp Ter.1992, Jul-Aug (4):55-65.
    [160]Le Bars D and Villanueva L. Electrophysiologic evidence for the activation of descending inhibitory controls by nociceptive afferent pathways [J]. Prog Brain Res.1988,77:275-299.
    [161]Villanueva L,Chitour D, Le Bars D. Involvement of the dorsolateral funiculus in the descending spinal projections responsible for diffuse noxious inhibitory controls in the rat [J]. J Neurophysiol.1986,56 (4):1185-1195.
    [162]Villanueva L, Peschanski M, Calvino B, et al. Ascending pathways in the spinal cord involved in triggering of diffuse noxious inhibitory controls (DNIC) in the rat[J].J Neurophysiol.1986, 55(1):34-55.
    [163]沈雪勇,王彩虹,张一和,等.胃炎患者穴位伏安曲线的定性定量分析[J].上海针灸杂志.1998,17(4):3-4.
    [164]王彩虹,沈雪勇,张海蒙,等.胃下垂患者穴位伏安曲线的定性定量分析[J].中国针灸.2000,20(7):413-414.
    [165]魏建子,沈雪勇,周钰,等.气虚患者太渊太溪穴伏安特性[J].辽宁中医杂志.2007,34(5):547-548.
    [166]王华.针灸学[M].高等教育出版社.2008,1:371.
    [167]Chang L, Berman S,Mayer EA, et al. Brain responses to visceral and somatic stimuli in patients with irritable bowel syndrome with and without fibromyalgia [J]. Am J Gastroenterol.2003,98 (6): 1354-1361.
    [168]曹东元,牛汉章,杜剑青,等.穴位电刺激经大鼠初级传入反射引起内脏的神经源性炎症反应[J].针刺研究.2002,27(1):45-49.
    [169]Miranda A, Peles S, Rudolph C, et al. Altered visceral sensation in response to somatic pain in the rat[J]. Gastroenterology.2004, 126(4):1082-1089.
    [170]Peles S,Miranda A, Shaker R, et al. Acute nociceptive somatic stimulus sensitizes neurons in the spinal cord to colonic distension in the rat[J].J Physiol.2004,560 (1):291-302.
    [171]喻晓春,朱兵,高俊虹,等.穴位动态过程的科学基础[J].中医杂志.2007,48(11):971-973.
    [172]王捷生,沈雪勇,魏建子,等.冲阳穴伏安特性与人体气血盛衰[J].上海针灸杂志.2001,20(6):29-31.
    [173]王少军,朱兵.卵巢-体表的相关性与经穴关系的研究[J].中国针灸.2007,27(10):761-765.
    [174]程斌,石宏,吉长福,等.与急性胃黏膜损伤相关体表敏化穴位的动态分布观察[J].针刺研究.2010,6(35):193-197.
    [175]Cervero F and Connell LA. Distribution of somatic and visceral primary afferent fibres within the thoracic spinal cord of the cat[J].J Comp Neurol.1984,230(1):88-98.
    [176]Cervero F. Somatic and visceral inputs to the thoracic spinal cord of the cat:effects of noxious stimulation of the biliary system[J]. J Physiol.1983,377:51-67.
    [177]李继硕,秦秉志.家兔躯体(坐骨神经)与内脏(膀胱)初级传入神经元向骶髓后连合核区的投射一HRP跨越神经节的追踪观察[J].神经解剖学杂志.1987,3(1):49-55.
    [178]Alles A and Dom RM. Peripheral sensory nerve fibers that dichotomize to supply the brachium and the pericardium in the rat: a possible morphological explanation for referred pain? [J]. Brain Res.1985,342(2):382-385.
    [179]蔚大金,李强,张连才.日月、期门穴区与其相应神经干、相关内脏对中枢的投射关系-CT-HRP和CB-HRP法研究[J].针刺研究.1990,15(1):13-17.
    [180]McMahon SB. Neuronal and behavioural consequences of chemical inflammation of rat urinary bladder [J].Agents Actions.1988,25 (3-4):231-233.
    [181]Giamberardino MA, Dalal A, Valente R, et al. Changes in activity of spinal cells with muscular input in rats with referred hyperalgesia from ureteral calculosis [J].Neurosci Lett.1996, 203(2):89-92.
    [182]Roza C, Laird JM, Cervero F. Spinal mechanisms underlying persistent pain and referred hyperalgesia in rats with an experimental ureteric stone [J].J Neurophysiol.1998.79 (4):1603-1612.
    [183]Giamberardino MA, Dalal A, Valente R, et al. Changes in activity of spinal cells with muscular input in rats with referred hyperalgesia from ureteral calculosis [J]. Neurosci Lett.1996.203 (2):89-92.
    [184]Garrison DW, Chandler MJ, Foreman RD. Viscerosomatic converge-nce onto feline spinal neurons from esophagus, heart and somatic fields:effect of inflammation [J]. Pain.1992,49 (3):373-382.
    [185]A1-Chaer ED, Westlund KN, Willis WD. Sensitization of postsy-naptic dorsal column neuronal responses by colon inflammation [J]. Neuroreport.1997,8 (15):3267-3273.
    [186]Euchner-Wamser I,Sengupta JN,Gebhart GF,et al. Characteri-zation of responses of T2-T4 spinal cord neurons to esophageal distension in the rat[J].J Neurophysiol.1993,69 (3):868-883.
    [187]Dugast C, Almeida A, Lima D. The medullary dorsal reticular nucleus enhances the responsiveness of spinal nociceptive neurons to peripheral stimulation in the rat [J]. Eur J Neurosci.2003,18 (3): 580-588.
    [1]Coffin B,Azpiroz F,Malagelada JR. Somatic stimulation reduces perception of gut distention in humans[J]. Gastroenterology.1994,107 (6):1636-1642.
    [2]Rong PJ, Zhu B, Huang QF, et al. Acupuncture inhibition on neuronal activity of spinal dorsal horn induced by noxious colorectal distention in rat [J]. World J Gastroenterol.2005,11 (7):1011-1017.
    [3]Hsiang TC. Neurophysiological basis of acupuncture analgesia[J] . Sci.Sin.1978,21 (6):829-826.
    [4]Fung SJ and Chan SHH. Primary afferent depolarization evoked by electroacupuncture in the lumbar cord of the cat [J].Exp.Neurol. 1976,52 (1):168-176.
    [5]Li CY,Zhu LX,Li WM, et al.Relationship between presynaptic depolarization and effect of acupuncture, γ-aminobutyric acid, opioid peptide substance P[J]. Acupunct. Res.1993,18 (3):178-182.
    [6]Hu SJ, Hu JJ, Liu DM. The centrifugal inhibitory action of acupuncture on nociceptors and its relation with the sympathetic nerve[J].Acta Zool. Sin.1982,28:131-138.
    [7]Wu CP, Zhao ZQ, Cheng Y, et al. Shao, D. H. Membrane potential changes of dorsal horn neurons elicited by electro-acupuncture [J]. Acupunct. Anaesthesis.1978,1:33-34.
    [8]Gim GT. Lee JH. Park E. et al. Electro- acupuncture attenuates mechanical and warm allodynia through suppression of spinal glial activation in a rat model of neuropathic pain[J]. Brain Res Bull. 2011,86 (5-6):403-411.
    [9]江振裕,刘仁义,朱德行,等.家兔针刺镇痛效应的脊髓上行通路[J].科学通报.1974,19(1):31-34.
    [10]江振裕.针刺镇痛效应在脊髓内的上行通路[J].中华医学杂志.1974,56(1):701-704.
    [11]梅俊,钱效杰,侯宗濂.猫足三里穴在脊髓中上行通路的电生理学观察[J].西安交通大学学报(医学版).1984,5(3):249-256.
    [12]Millan MJ. The induction of pain:an integrative review[J]. Prog. Neurobiol.1999,57 (1):1-164.
    [13]Millan MJ. Descending control of pain[J].Prog Neurobiol. 2002,66(6):355-474.
    [14]Chen-yu C, Jen-yi L,Teh-hsing C, et al. Studies on spinal ascending pathway for effect of acupuncture analgesia in rabbits [J].Sci Sin.1975,18(5):651-658.
    [15]Sumiya E and Kawakita K. Inhibitory effects of acupuncture manipulation and focal electrical stimulation of the nucleus submedius on a viscerosomatic reflex in anesthetized rats[J]. Jpn J Physiol.1997,47(1):121-130.
    [16]Bing Z, Cesselin F, Bourgoin S, et al. Acupuncture-like stimulation induces a heterosegmental release of Met-enke-phalin-like material in the rat spinal cord [J]. Pain.1991a,47 (1):71-77.
    [17]Guo HF, Tian J,Wang X, et al. Brain substrates activated by electroacupuncture EA of different frequencies Ⅱ:role of Fos/Jun proteins in EA-induced transcription of preproenkephalin and preprodynorphin genes [J]. Mol. Brain Res.1996,43 (1-2):167-173.
    [18]Hui KK, Liu J, Marina 0, et al.The integrated response of the human cerebro-cerebellar and limbic systems to acupuncture stimulation at ST36 as evidence by fMRI [J]. Neuroimage.2005,27 (3): 479-496.
    [19]Lee JH, Beitz AJ. The distribution of brain-stem and spinal cord nuclei associated with different frequencies of electroacupuncture analgesia [J]. Pain.1993,52(1):11-28.
    [20]Takeshige C, Tsuchiya M, Guo SY, et al. Dopaminergic transmission in the hypothalamic arcuate nucleus to produce acupuncture analgesia in correlation with the pituitary gland[J]. Brain.Res. Bull.1991,26(1):113-122.
    [21]Takeshige C, Oka K, Mizuno T, et al. The acupuncture point and its connecting central pathway for producing acupuncture analgesia [J]. Brain Res. Bull.1993,30 (1-2):53-67.
    [22]Wu GC,Zhu J,Cao XD,Involvement of opioid peptides of the preoptic area during electroacupuncture analgesia[J]. Acupunct. Electrother. Res.1995,20(1):1-6.
    [23]Yan B, Li K, Xu JX, et al. Acupoint-specif ic fMRI patterns in human brain[J]. Neurosci. Lett.2005,383(3):236-240.
    [24]Yang J, Song CY, Lin BC, et al. Effects of stimulation and cauterization of hypothalamic paraventricular nucleus on acupuncture analgesia [J]. Acta Physiol. Sin.1992,44 (5):455-460.
    [25]Hu SJ, Hu JJ, Fan JZ. The influence of dorsal half transaction of the spinal cord on inhibitory effect of electroacupuncture upon the medbrain discharges [J]. Acta Zool. Sin.1980,26:115-120.
    [26]Shen E,Cai TD, Lan Q. Effects on supraspinal structures on acupuncture-induced inhibition of visceral-somatic reflex [J]. Chin. J.Med.1984,10:628-633.
    [27]Li A.Wang Y, Xin J, et al. Electroacupuncture suppresses hyperalgesia and spinal Fos expression by activating the descending inhibitory system[J]. Brain Res.2007,22 (1186):171-179.
    [28]Toda K. Response of raphe magnus neurons after acupuncture stimulation in rat[J].Brain Res.1982,242 (2):350-353.
    [29]刘乡,王治民,史清瑶.电针“足三里”对中缝大核单位放电及其痛反应的影响[J].针刺研究.1982,7(1):14-21.
    [30]朱兵,刘乡.电针对大鼠导水管周围灰质和中缝大核神经元活动的影响[J].基础医学与临床.1984,(1):85-87.
    [31]Du HJ, Zhao, YF. Central localization of descending inhibition of visceral-somatic reflex produced by acupuncture [J].Sci.Sin.1975, 18:631-639.
    [32]Liu X, Zhu B, Zhang SX. Relationship between electro-acupuncture analgesia and descending pain inhibitory mechanism of nucleus raphe magnus [J]. Pain.1986,24 (3):383-396.
    [33]Liu X, Jiang MC, Huang PB, et al.Role of afferent C fibers in electroacupuncture of "zusanli" point in activating nucleus raphe magnus[J]. Acta Physiol.Sin.1990,42:523-533.
    [34]Fields HL, Basbaum AI, and Heinricher MM. Central nervous system mechanisms of pain modulation [M].2005. In:Wall, Melzack, (Eds.) Text book of Pain. fifth ed. Elsevier.
    [35]Wang J,and Chen ZF.The action of medullary tail-flick related neurons in electroacupuncture analgesia [J]. Acta Physiol. Sin.1993. 45 (3):299-304.
    [36]王晓琳,陈涛,李云庆.小鼠中脑导水管周围灰质下行投射的SP能终末与中缝大核内SP受体阳性神经元的突触联系[J].神经解剖学杂志.2007.23(3):283-287.
    [37]朱丽霞,胡苛,姜学强,等.电针穴位对中脑、中央灰质自发放电的影响[J].针刺研究.1982.7(1):22-30.
    [38]李希成,黄辰格,刘盛田,等.损毁大白鼠中脑中央灰质对针刺镇痛效应的影响[J].中华医学杂志.1980.60(2):612-613.
    [39]Mayer DJ, Price DD, Rafii A. Antagonism of acupuncture analgesia in man by the narcotic antagonist naloxone [J].Brain Res.1977. 121(2):368-372.
    [40]蒌艾琳,郑超强,白呼群.狗中缝大核内微量注射纳洛酮和普鲁卡因对电针抑制内脏牵拉反应的影响[J].生理学报.1982.34(1):84-89.
    [41]Basbaum, AI and Fields HI.Endogenous pain control system:Brainstem spinal pathways and endorphin circuitry [J].Annu Rev Neurosci.1984,7:309-338.
    [42]Jensen TS, and Yaksh TL. Comparison of antinociceptive action of morphine in the periaqueductal gray, medial and paramedial medulla in rat[J].Brain Res.1986,363 (1):99-113.
    [43]周丽,姜建伟,吴根诚,等.电针镇痛时大鼠外侧网状旁巨细胞核中内阿片肽的变化[J].生理学报.1993,45(1):36-43.
    [44]Schmidek HH, Fohanno D. Ervin FR, et al.Pain threshold alterations by brain stimulation in the monkey[J]. J. Neurosurg. 1971,35 (6):715-722.
    [45]Zhang DX,Gu XG, Shan HY. Modification of pain reaction by electrical stimulation of different loci of the head of caudate nucleus in rabbits [J]. Acta Physiol. Sin.1980,32:159-165.
    [46]Chen GB.Acupuncture anesthesia in neurosurgery [J]. Am J Chin Med.1980,8 (3):271-282.
    [47]Acupuncture Anesthesia Coordinating Group, Hua Shan Hospital of Shanghai First Medical College. Observation on electrical stimulation of the caudate nucleus of human brain and acupuncture in treatment of intractable pain[J]. Chin. Med. J (Engl).1977,3 (2): 117-124.
    [48]Chun XY, Tie FS,Qiou YH, et al. Study on antagonism of CCK-8 to the analgesic effect of electroacupuncture at the levels of pain-related neurons in caudate nucleus and whole tail-flick reflex [J]. Neuroscience Bulletin.2005,21 (5):324-329.
    [49]Chen G, Jiang C, Li S, et al. The role of the human caudate nucleus in acupuncture analgesia [J].Acupunct Electrother Res.1982,7 (4): 255-265.
    [50]He LF and Xu SF.Caudate nucleus and acupuncture analgesia [J]. Acupunct. Electrother. Res.1981,6 (2-3):169-182.
    [51]He LF,Lu RL,Zhuang SY,et al.Possible involvement of opioid pep tides of caudate nucleus in acupuncture analgesia [J]. Pain.1985, 23(1):83-93.
    [52]Herkenham M and Nauta WJ. Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the f iber-of-passage problem[J]. J. Comp. Neural.1977,173 (1):123- 146.
    [53]Herkenham M and Nauta WJ. Efferent connections of the habenular nuclei in the rat [J]. J. Comp. Neurol.1979,187 (1):19-47.
    [54]Wang RY and Aghajanian GK. Physiological evidence for habenula as major link between forebrain and medbrain raphe[J]. Science. 1977,197(4298):89-91.
    [55]Department of Physiology, Kirin Medical College,Changchun, China. The inhibition effect and the mode of action of electro-acupuncture upon discharges from the pain-sensitive cells in spinal trigeminal nucleus [J]. Sci. Sin.1977,20 (4):485-501.
    [56]Wang S,Liu GJ,Gao YL,et al.Effects of exciting habenula by 1-glutamic acid on the pain threshold and acupuncture analgesia [J]. Acta Pharmacol. Sin.1987,8 (3):200-203.
    [57]Wang S,Jiang Y, Xiao JS,et al. Spontaneous dischanges of habenular nucleus and its inhibitory action on nucleus raphe magnus[J].Ke Xue Tong Bao (Sci. Bull.) 1980,25:83-88.
    [58]Liu GJ and Wang S.Effect of nucleus raphe magnus and locus coeroleus in descending modulation of habenula on pain threshold and acupuncture analgesia [J]. Acta Pharmacol. Sin.1988,9 (1):18-22.
    [59]唐斌,樊小力,吴苏娣.电刺激红核对大鼠脊髓背角WDR神经元伤害性反应的影响[J].中国应用生理学杂志.2002,18(4):393-400.
    [60]李元庆,施际武.大鼠中脑边缘镇痛环路的形态学研究[J].针刺研究.1994,19(1):21-22.
    [61]Involvement of vasopressinergic neurons of paraventricular nucleus in the electroacupuncture-induced inhibition of experimental visceral pain in rats[J]. Acta Physiological Sinica. 1992,44 (5):434-441.
    [62]Yang J, Yang Y,Wang CH,et al. Effect of arginine vasopressin on acupuncture analgesia in the rat [J]. Peptides.2009,30 (2):241-247.
    [63]Tsumori T, Yokota S,Lai H, et al. Monosynaptic and disynaptic projections from the substantia nigra pars reticulata to the parafascicular thalamic nucleus in the rat [J]. Brain Res.2000, 858 (2):429-435.
    [64]Sidibe M, Pare JF, Smith Y. Nigral and pallidal inputs to functionally segregated thalamostriatal neurons in the centromedian/parafascicular intralaminar nuclear complex in monkey [J].J Comp Neurol.2002,447 (3):286-299.
    [65]Weigel R,Krauss JK.Center median-parafascicular complex and pain control. Review from a neurosurgical perspective [J]. Stereotact Funct Neurosurg.2004,82 (2-3):115-126.
    [66]Harte SE, Hoot MR, and Borazcz GS. Involvement of the intralaminar parafascicular nucleus in muscarinic-induced antinociception in rats [J]. Brain Res.2004.1019 (1-2):152-161.
    [67]Albe FD, Berkley KJ, Kruger L, et al. Diencephalic mechanisms of pain sensation[J]. Brain Res Rev.1985,356 (3):217-296.
    [68]Snider RS and Niemer WT. A stereotaxic atlas of the cat brain[M]. Chicago:University of Chicago Press.1961:375-378.
    [69]罗茀荪,袁钧苏,杨善璐,等.刺激丘脑中央中核对束房核神经元痛放电的抑制[J].中国科学.1978,(4):456
    [70]符文双,吴敏范,张新刚,等.电刺激束旁核、中央中核对猫丘脑后核群内脏痛放电的影响[J].沈阳医学院学报.2002,4(1):16-18.
    [71]青岛医学院针麻原理研究组.下丘脑视上核在电针镇痛中作用的初步观察[J].青岛大学医学院学报.1978(01):78-79.
    [72]屈超玲,唐敬师.腹外侧眶皮层在痛觉调制和针刺镇痛中的作用[J].生理科学进展.2008,39(4):297-301.
    [73]Zhang YQ, Tang JS,Yuan B, et al. Inhibitory effects of electrically evoked activation of ventrolateral orbital cortex on the tail-flick reflex are mediated by periaqueductal gray in rats [J]. Pain.1997,72 (1-2):127-135.
    [74]Hutchison WD, Harfa L, and Dostrovsky JO. Ventrolateral orbital cortex and periaqueductal gray stimulation induced effects on on-and off-cells in the rostral ventrom edialmedulla in the rat [J]. Neuroscience.1996,70 (2):391-407.
    [75]吕方,唐敬师,袁斌,等.双侧损毁腹外侧眶皮层对EA抑制大鼠甩尾反射的效应[J].针刺研究.1996,21(4):39-42.
    [76]蒋晏春,刘乡.大脑皮层体感II区对中缝大核下行痛抑制活动的调控及其与针刺镇痛的关系[J].针刺研究.1993,18(1):1-4.
    [77]徐维.林郁,张燕丰.电针穴区对大脑皮层体感II区神经元的激活作用[J].生理科学.1984,1:211.
    [78]蒋晏春,刘乡.损毁大鼠大脑皮层体感II区导致电针对中缝大核痛调制的效应减弱[J].针刺研究.1994,19(1):4-7.
    [79]徐维,林郁,陈正秋,等.大脑皮层体感II区在针刺镇痛中的下行性调节[J].针刺研究.1985,10(1):173-177.
    [1]林文柱,徐明海,范黎,等.足阳明胃经脊髓脑干神经网络-解溪、足三里穴区HRP逆行和跨神经节追踪研究[J].上海针灸杂志.1994,13(5):225-226.
    [2]逮波,晋志高,蔡虹.新生鼠足三里穴区感觉神经元的节段性分布[J].中国中医基础医学杂志.2002,8(9):62-62.
    [3]赵敏生,余安胜,李西林.辣根过氧化物酶追踪“足三里”穴的脊髓投射研究[J].中国针灸.1999,(9):551-553.
    [4]李瑞午,李翠红,汪智民.足三里穴区不同层次感觉和运动神经元的节段性分布研究[J].中国针灸.2000,(3):161-163.
    [5]李瑞午,李翠红,郭莹.乳鼠胃经腧穴的神经节段性分布实验研究[J].中国针灸.2000,(8):473-475.
    [6]Martinez V, Wang L, Mayer E, et al. Proximal colon distention increases Fos expression in the lumbosacral spinal cord and activates sacral parasympathetic NADPHd-positive neurons in rats[J].J Comp Neurol.1998,390(3):311-321.
    [7]Traub RJ and Murphy A. Colonic inflammation induces fos expression in the thoracolumbar spinal cord increasing activity in the spinoparabrachial pathway[J]. Pain.2002,95 (1-2):93-102.
    [8]Landrum LM, Jones SL, and Blair RW. The expression of Fos-labeled spinal neurons in response to colorectal distension is enhanced after chronic spinal cord transection in the rat[J]. Neuroscience.2002,110 (3):569-578.
    [9]张家驹,蒋冬成.家兔足三里穴区与盲肠传入神经元的节段性分布—HRP法研究[J].针刺桂林医学院学报.1991,4(1):4-7.
    [10]崔香淑,李在琉.胃肠感觉的神经解剖学基础[J].诊断学理论与实 践.2006,5(1):5-7.
    [11]Zurowski D, Nowak□, and Thor PJ. The role of vagal afferents in visceral hyperalgesia [J]. Folia Med Cracov.2005,46 (3-4):97-105.
    [12]吴红金,周雷,薛峥,等.电针抗大鼠急性炎症性内脏痛的肠神经机制[J].针刺研究.1999,24(2):138-140.
    [13]叶小丰,李建国,杜朝晖,等.电针“足三里”穴对大鼠迷走神经放电的影响[J].针刺研究.2006,31(5):290-292.
    [14]Tian SL, Wang XY,Ding GH,et al. Repeated electroacupuncture attenuates chronic visceral hypersensitivity and spinal cord NMDA receptor phosphorylation in a rat irritable bowel syndrome model [J]. Life Sci.2008,83 (9/10):356-363.
    [15]荣培晶,朱兵,黄启福,等.针刺抑制直结肠伤害性扩张引起的大鼠脊髓背角神经元反应[J].中国针灸.2005,25(9):645-650.
    [16]Guoxi T.The action of the visceronociceptive neurons in the posterior group of thalamic nuclei:possible mechanism of acupuncture analgesia on visceral pain[J].Kitasato Arch Exp Med.1991,64(1):43-45.
    [17]Wu JC, Ziea ET, Lao L, et al. Effect of electroacupuncture on visceral hyperalgesia, serotonin and fos expression in an animal model of irritable bowel syndrome[J]. J Neurogastroenterol.2010,16(3):306-314.
    [18]Liu HR, QiL, WuLY, et al. Effects of moxibustion on dynorphin and endomorphin in rats with chronic visceral hyperalgesia[J]. World J Gastroenterol.2010,16 (32):4079-4083.
    [19]陈淑萍,高永辉,喻晓春,等.电针不同经穴对直-结肠扩张大鼠血压及自主神经系统的影响[J].针刺研究.2010,35(5):335-341.
    [20]杨拯,李昆,王超,等.电针足三里对不完全性肠梗阻大鼠小肠肌电活动的影响[J].世界华人消化杂志.2011,19(12):1237-1243.
    [21]蒌艾琳,叶智文,左和鸣.电刺激中缝大核和电针足三里对孤束核神经 元放电的影响[J].针刺研究.1984,9(2):101-103.
    [22]林殷利,李中华,陈小美.电针对猫胃电和迷走神经核细胞放电的影响[J].生理学报.1982,34(2):239-241.
    [23]Holzer P and Maggi CA.Dissociation of dorsal root ganglion neurons into afferent and efferent-like neurons[J]. Neuroscience. 1998,86(2):389-390.
    [24]陈兰,刘诗.高频电针刺激足三里促进大鼠结肠推进运动[J].世界华人消化杂志.2006,14(30):2962-2964.
    [25]陈兰,文峰,钱伟,等.高频电针刺激足三里通过胆碱能及氮能神经调节结肠传输功能的研究[J].临床消化病杂志.2011,23(1):34-36.
    [26]Luo D, Liu S, Xie X, et al. Electroacupuncture at acupoint ST-36 promotes contractility of distal colon via a cholinergic pathway in conscious rats [J]. Dig Dis Sci.2008,53 (3):689-693.
    [27]Iwa M, Matsushima M, Nakade Y, et al. Electroacupuncture at St-36 acceletates colonic motility and transit in freely moving conscious rats [J].Am J Physiol Gastrointest Liver Physiol.2006,290(2):285-292.
    [28]Iwa M, Nakade Y, Pappas TN, et al. Electroacupuncture elicits dual effects:stimulation of delayed gastric emptying and inhibition of accelerated colonic transit induced by restraint stress in rats [J]. Dig Dis Sci.2006,51 (8):1493-1500.
    [29]李瑞午,李翠红,郭莹,等.针刺对大鼠胃肠肌间神经丛NO能神经元的影响[J].上海针灸杂志.2002,21(4):40-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700