用户名: 密码: 验证码:
苹果MdSAMDC2和MdICE1基因的功能鉴定以及抗逆性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非生物胁迫严重影响植物的生长和发育,利用基因工程对作物进行遗传改良提高其抗逆性,是保障作物高产优质安全生产的有效途径,具有广阔的应用前景。多胺在植物细胞内参与诸多生命活动,并参与植物的抗逆性形成,SAMDC是多胺生物合成的关键酶,苹果MdSAMDC2基因的表达能够被低温、干旱和盐等逆境诱导上调,而其在植物体内的生物学功能还没有验证。为了确定MdSAMDC2的表达模式,本研究通过TAIL-PCR技术分离了该基因的启动子,初步研究了该启动子的启动活性;通过Gateway技术构建了MdSAMDC2的植物表达载体,并导入烟草使该基因过量表达,进一步研究了逆境条件下该基因的表达水平,测定了各项抗性生理指标,表明过量表达MdSAMDC2能够提高转基因烟草的抗逆性。ICE1(Inducer of CBF expression 1)是CBF3的正调节因子,已有研究表明,过量表达ICE1能够明显提高转基因拟南芥的耐寒性,说明ICE1在植物耐寒性形成中起重要作用。本研究从苹果中克隆到MdICE1基因,并对其表达和功能进行了初步研究,转基因研究表明MdICE1过量表达可以提高烟草的耐寒能力。主要结果和结论如下:
     1、根据MdSAMDC2基因的cDNA序列,设计了该基因编码区的3′和5′端引物并进行克隆,利用Gateway技术构建了植物表达载体,通过农杆菌浸染法转入烟草,PCR检测证明MdSAMDC2基因已经整合到烟草基因组中,RT-PCR表明MdSAMDC2在烟草中得到表达,所有转基因植株生长正常,能够完成生活史。用HPLC测定了转基因植株的多胺水平,发现转基因植株的多胺含量明显上升,并且不同多胺的比例发生了变化,Spd比例相对提高,Put和Spm的比例相对下降。分别用低温、20%PEG模拟干旱和NaCl等逆境胁迫进行处理,分析了转基因植株的抗逆生理生化变化,发现在逆境条件下,过量表达MdSAMDC2可以提高Spd和Spm的积累,降低Put含量,同时提高了脯氨酸含量以及SOD和CAT的酶活性,降低了MDA含量,表明转基因烟草抗逆性得到了提高。
     2、根据MdSAMDC2的5′端序列设计3条反向引物和4条随机兼并引物,以苹果基因组DNA为模板,利用改进TAIL-PCR法克隆到了长度为680bp的MdSAMDC2启动子,序列分析表明,该启动子区包含多种逆境诱导启动子的特异序列元件,如ACGTA序列元件、ASF1元件、MYC识别位点、MYB1和MYB2识别位点等。构建了该启动子和GUS基因的重组表达载体,将重组质粒导入农杆菌LBA4404,用农杆菌介导法转入烟草,GUS染色显示转基因烟草的叶片为蓝色,表明该启动子具有启动活性。
     3、为了验证不同抗性水平苹果砧木在逆境下的多胺反应,以山定子(M. baccata Borkh)、新疆野苹果(M. sieversii(Ledeb)Roem)、烟台沙果(M. prunifolia(Willd)Borkh)和莱芜难咽(M. micromalus Makino)等4种苹果砧木为试材,测定了低温胁迫下不同砧木叶片的多胺含量变化及MDA、抗氧化酶的变化等生理指标。结果表明,低温胁迫能明显诱导多胺总量(PAs)、腐胺(Put)、亚精胺(Spd)和精胺(Spm)的发生,耐寒性强的山定子和新疆野苹果PAs、Put和Spd增加显著,相关分析表明,叶片MDA相对增加量与PAs、Put和Spd的增加量呈极显著负相关,与Put/PAs比值呈显著负相关,而与(Spd+Spm)/Put、Spd/PAs、Spm/PAs呈显著正相关,表明当低温胁迫下叶片PAs、Put、Spd增加量较大时,苹果砧木耐低温胁迫的能力比较强。
     4、以苹果为材料,利用同源序列法和RACE技术克隆苹果MdICE1的全长cDNA序列(GenBank登录号为EF495202),该cDNA长度为1890bp,编码531个氨基酸,保守性分析表明,MdICE1蛋白质序列上包含由60个氨基酸残基组成的bHLH(basic Helix-Loop-Helix)功能域,同源性比较表明,不同bHLH蛋白功能域的同源性高达90%以上。将该蛋白氨基酸序列与拟南芥等植物的bHLH蛋白进行在线多重序列比较,并构建系统树,发现MdICE1与拟南芥ICE1(AAP14668)同源性最高,系统树将这两个蛋白聚为一类,因此可以确定MdICE1是拟南芥ICE1在苹果中的一个同源基因,编码bHLH类蛋白。表达和功能分析结果如下:
     ①构建了MdICE1的原核表达载体pET-30(a)+MdICE1,转化BL21,筛选重组菌株。经IPTG诱导后,SDS-PAGE发现大小为64.5kDa的特异蛋白产物。
     ②将MdICE1-GFP融合蛋白在洋葱表皮细胞内瞬时表达,只在细胞核中观察到绿色荧光,表明MdICE1定位于细胞核,Northern杂交结果表明MdICE1表达受低温和盐胁迫诱导。
     ③将MdICE1插入pBI121构建表达载体,利用农杆菌浸染法将35S::MdICE1转入烟草。PCR检测表明MdICE1已经整合到烟草基因组中,RT-PCR表明MdICE1在转基因烟草中能够表达。用低温胁迫处理转基因株系,分析了该基因表达模式和转基因植株的抗逆生理生化变化,表明过量表达MdICE1的转基因烟草的抗寒性明显提高。
Abiotic stresses often adversely affect both plant growth and crop productivity. To cope with abiotic stresses, breeding new varieties which hava modified stress tolerance is one of the most important approaches. Polyamines are involved in many life processes in plant cells. Increasing evidences indicate that polyamine accumulation confers stress tolerance on plants. SAMDC is a step-limiting enzyme for polyamine biosynthesis. MdSAMDC2 encoding a SAMDC in apple is induced by low temperature, dehydration and salinity. But its biological function in plants is yet to be identified. A modified TAIL-PCR strategy was used to isolate the promoter region of MdSAMDC2 from apple, and then the ability of MdSAMDC2 promoter to drive the downstream ORF was valuated.
     In order to characterize the in vivo biological function of MdSAMDC2 in plant, transgenic tobaccos over-expressing MdSAMDC2 were obtained. The enhanced tolerance of transgenic lines to abiotic stresses suggests that MdSAMDC2 is a candidate gene for genetic engineering to improve plant tolerance to stresses. In addition to MdSAMDC2, we also isolated MdICE1 from apple. Functional analysis demonstrated its crucial role the responses of plant to cold stress. Over-expressing MdICE1 remarkably improved the tolerance of transgenic tobacco to low temperature. The main results of this study were summarized as follows.
     1) Specific primers were designed based on the cDNA sequence of MdSAMDC2. Its ORF was cloned and inserted into expression vector pMDC32 with Gateway recombination. Then the resultant construct was introduced into tobacco with Agrobacterium-mediated transformation. PCR verified the integration of MdSAMDC2 into tobacco genome. Furthermore, RT-PCR detected a high level of MdSAMDC2 transcript in transgenic tobacco. All transgenic tobaccos normally grew and developed in appearance. Polyamine titers in transgenic plants were determined with HPLC. The results showed that the titers of three polyamines increased remarkably. After treated with low temperature, 20% PEG and salt respectively, transgenic plants accumulated more Spd and Spm but less Put than non-transgenic control. Moreover, proline content and the activity of SOD and CAT increased while MDA content decreased. So over-expression of MdSAMDC2 in tobacco enhanced the tolerance of transgenic plants to stresses.
     2) To investigate the expression pattern of MdSAMDC2, the promoter region of MdSAMDC2 was isolated from apple with a modified TAIL-PCR approach. The promoter is 643 bp in size and contains several basic elements for promoter such as TATA-box, CAAT-box, stress-induced elements and so on. To examine its ability to drive a downstream ORF, the promoter was inserted into a plant expression vector to replace CaMV 35S promoter driving GUS gene. Transient expression of GUS in transgenic tissues was detected with histochemical GUS staining. As a result, GUS activity was detected in transgenic plants. GUS activity can be induced by low temperature and high salt.
     3) MDA and polyamine contents in leaves of four apple rootstocks were exmined to explore the changes of polyamines in apple during low temperature stress. The results showed that MDA content could indicate the cold tolerance of four rootstocks at time point 6h during low temperature stress. The titers of total polyamines, put, spd and spm were significantly induced by low temperature. MDA content was negatively correlated with polyamines and the changes of Spd and put content while changes of relative content of spm(Spm/PAs)and spd content(Spd/PAs)are positively correlated with (Spd+Spm)/Put. The changes in polyamines content, Put content and Spd content under low temperatures were significant and could be used as indicator of cold tolerance in apple rootstocks.
     4) RT-PCR and RACEs were used to isolate MdICE1 (Inducer of CBF Expression 1) from apple. The full length cDNA of MdICE1 was registered in Genebank with an accession number EF495202. MdICE1 is 1890 bp in size and encodes 531 amino acid residues. Its full-length cDNA was inserted into vector PET-30a (+) and then transferred into E. coli strain BL21. As a result, a 64.5 kDa protein was specifically induced by IPTG treatment visualized by SDS-PAGE. BLAST analysis indicates that MdICE1 is a homolog of Arabidopsis ICE1. To investigate the subcellular localization of MdICE1 in cells, a construct producing MdICE-GFP fusion protein was introduced into onion epidermal cells. GFP florescence was observed only in the nucleus, suggesting that MdICE1 was localized to nucleus.
     MdICE1 expression patterns under different stresses in apple were detected with Northern blotting. The result showed that the expression of MdICE1 was induced by low temperature and salt stresses. To determine the function of MdICE1, transgenic tobacco plants were created with ectopic expression of MdICE1 driven by cauliflower mosaic virus 35S promoter. After treated with low temperature and salt stresses, transgenic plants produced increased proline and activated SOD and CAT enzymes, while decreased MDA content. All evidences indicated that ectopic expression of MdICE1 in tobacco confers cold tolerance on transgenic plants.
引文
蔡秋华, 张积森, 郭春芳等. 高等植物体内多胺的生理功能及其分子生物学研究进展. 福建教育学院学报, 2006, 10: 118~124
    曹慧, 兰彦平, 刘会超等. 干旱胁迫下短枝型苹果幼树活性氧代谢失调对光合作用的影响. 内蒙古农业大学学报, 2000, 21(3): 22~25
    曹慧, 韩振海, 许雪峰. 抗旱性不同的苹果属植物干旱胁迫下核酸代谢及自由基变化. 园艺学报, 2002, 29 (6): 505~509
    陈杰中, 徐春香. 植物冷害及其抗冷生理. 福建果树 1998, 2: 21~23
    陈坤明, 张承烈. 干旱期间春小麦叶片多胺含量与作物抗旱性的关系. 植物生理学报, 2000, 5: 381~386
    陈立松, 刘星辉. 作物抗旱鉴定的指标种类及综合评价.福建农业大学学报, 1997, 26: 277~282
    陈如凯, 张木清. 甘蔗耐盐生理研究IV. NaCl胁迫对甘蔗多胺代谢影响. 作物学报, 1995, (4): 479~484
    陈淑芳, 朱月林 刘友良等. NaCl胁迫对番茄嫁接苗叶片ABA和多胺含量的影响. 园艺学报, 2006, 33 (1): 58~62
    陈颖, 谢寅峰, 沈惠娟等. 银杏幼苗对干旱胁迫的生理响应. 南京林业大学学报(自然科学版), 2002, 26(2): 55~58
    范华, 冯双庆, 赵玉梅. 黄瓜、番茄冷害以及黄瓜温度预处理与多胺的相关性. 中国农业大学学报, 1996, (1): 108~110
    伏健民, 束怀瑞. 春季干旱对金冠苹果不同部位叶片衰老和脱落的影响. 果树科学, 1993, 10 (2): 110~116
    高武军, 李书粉, 常生辉等. 植物抵御非生物胁迫的内源性保护物质及其作用机制.植物生理学通讯, 2006, 42(2): 337~342
    高秀萍, 闰继耀, 刘恩科等. 干旱胁迫下梨、枣和葡萄叶片中甜菜碱含量的变化. 园艺学报, 2002, 29 (3): 268~270
    郭延平, 张良诚, 沈允钢. 低温胁迫对温州蜜柑光合作用的影响. 园艺学报,1998, 25 (2): 111~116
    郭卫东. 二棱大麦LEA cDNA的克隆与测序.西北农业大学学报, 2000, 28(2): 8~12
    郭紫娟, 孙风国, 张慎好. 多胺对果树生长发育的影响研究进展. 河北农业科学, 2005, 9(3): 99~102
    韩冰, 杨劼, 王艳芳等. 植物对干旱胁迫响应分子机制的研究进展. 内蒙古大学学报(自然科学版), 2006, 37(2): 227~232
    黄家权. 抗寒基因的克隆及根癌农杆菌介导的ICEl基因转化柑橘的研究. 华中农业大学博士学位论文, 2005
    黄久常, 王辉, 夏景光. 渗透胁迫和水淹对不同抗旱性小麦品种幼苗叶片多胺含量的影响. 华中师范大学学报, 1999 (02):259~262
    何培民. 细菌乙酰胆碱氧化酶基因(CODA)在烟草的表达与抗盐能力的分析. 生物化学与生物物理学报, 2001, 33(5): 519~524
    黄文功, 向殿军, 殷奎德. 植物耐寒基因ICE1 的克隆. 黑龙江八一农垦大学学报, 2006, 18(2): 16~18
    黄文功. 抗寒基因ICEl的克隆与转化烟草的研究. 黑龙江八一农垦大学, 硕士学位论文, 2006
    黄维玉, 王亚来, 袁林江. 多胺对小麦离体叶片衰老的调节. 植物学报, 1990, 32(2): 125~132
    黄义江, 王宗清. 苹果属果树抗寒性的细胞学鉴定. 园艺学报, 1982, 9(3): 23~30
    江行玉, 赵可夫, 窦君霞. NaCl 胁迫下外源亚精胺和二环己基胺对滨藜内源多胺含量和抗盐性的影响. 植物生理学通讯, 1999, 35(3):188~190
    江勇, 贾士荣, 费云标等. 抗冻蛋白及其在植物抗冻生理中的作用. 植物学报, 1999, 7(41): 418~422
    金建凤, 高强, 陈勇等. 转移拟南芥CBF1 基因引起水稻植株脯氨酸含量提高. Chineses Journal of Cell Biology, 2005, 27:73~76
    李勃, 刘成连, 杨瑞红等. 樱桃砧木抗寒性鉴定. 果树学报, 2006, 23(2): 196~199
    李宏彬, 黄建昌, 叶希等. 干旱胁迫对荔枝实生幼苗部分生理特性的影响. 仲恺农业技术学报, 2002, 15(3):39~43
    李莉, 任金平, 曲柏宏等. 水分胁迫对苹果梨叶片可溶性糖、脯氨酸含量的影响. 吉林农业科学, 2007, 1: 53~56
    李荣富, 蒋亲贤, 梁艳荣等. 苹果砧木的抗寒性田间鉴定. 内蒙古农业科技, 2003, (6): 7~8
    李天红, 李绍华. 干旱胁迫对苹果苗非结构性碳水化合物组分及含量的影响. 中国农学通报, 2002, 18(4): 35~51
    李子银, 张劲松, 陈受宜. 水稻盐胁迫应答基因的克隆、表达及染色体定位. 中国科学C辑, 1999(06): 2~11
    林定波, 刘祖祺, 张石城. 多胺对柑桔抗寒力的效应. 园艺学报, 1994, 21(3):222~226
    林文雄, 吴杏春, 梁康迳等. UV-B辐射增强对水稻多胺代谢及内源激素含量的影响. 应用生态学报, 2002, 13 (7): 807~813
    刘爱荣, 赵可夫. 盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用. 植物生理与分子生物学学报, 2005, 31 (4): 389~395
    刘凤华, 郭岩, 谷冬梅等. 转甜菜碱醛脱氢酶基因的耐盐性研究. 遗传学报, 1997, 24 (1): 54~58
    刘俊, 蒋明义, 周一峰等. 盐胁迫下玉米幼苗内源ABA促进了多胺的生成. 植物学报, 2005, 47 (11): 1326~1334
    刘艳, 王丽雪, 王有年等. 干旱胁迫对苹果叶片叶绿体 1,6-二磷酸果糖磷酸酷酶活性的影响. 内蒙古农业大学学报, 2002, 23(4): 42~45
    刘召华, 郭洪年, 郑光宇等. ACA基因启动子的克隆及功能初探. 生物工程学报, 2005, 21(1): 139~143
    罗华建, 刘星辉. 干旱胁迫对光合特性的影响. 果树科学, 1999, 16(2): 126~130
    马焕成, 王沙生. 胡杨膜系统的盐稳定性及盐胁迫下的代谢调节. 西南林学院学报, 1998, 18(1): 15~23
    马双艳, 姜远茂, 彭福田等. 干旱胁迫对几种果树甜菜碱含量的影响. 山西果树, 2003, (5):3~4
    矛林春, 张上隆. 采后桃果实中多胺和乙烯对低温胁迫的反应. 园艺学报, 1999, 26(6): 360~363
    潘根生, 吴伯干, 沈生荣等. 干旱胁迫过程中茶树新梢内源激素水平的消长及其与耐旱性的关系. 中国农业科学, 1996, 29(5): 9~15
    史胜青, 袁玉欣, 张金香等. 不同干旱胁迫方式对核桃苗叶绿素荧光的动力学特性的影响. 河北农业大学学报, 2003, 26(2):20~24
    史胜青, 袁玉欣, 杨敏生等. 干旱胁迫对 4 种苗木叶绿素荧光的光化学淬灭和非光化学淬灭的影响. 林业科学, 2004, 40(1): 168~173
    沈洪波, 陈学森, 张艳敏. 果树抗寒性的遗传和育种研究进展. 果树科学, 2002, 19: 292~297
    沈义国. 山菠菜胆碱单氧化物基因(CMO)的克隆与分析. 生物工程学报, 2001, 17(1): 1~6
    沈义国. 榆钱菠菜脯氨酸转运蛋白基因的克隆及转基因拟南芥的耐盐性, 植物学报, 2002, 44(8): 956~962
    王飞, 王华, 陈登文等. 杏品种花器官耐寒性研究. 园艺学报, 1999, 26 (6):356~359
    王关林, 方宏筠. 植物基因工程. 北京: 科学出版社, 2002
    王克勤, 王斌瑞. 土壤水分对金矮生苹果光合速率的影响. 生态学报, 2002, 22(2): 206~214
    王淑杰, 王家民, 李亚东. 可溶性蛋白、可溶性糖含量与葡萄抗寒性关系的研究. 北方园艺, 1996, (2):13~14
    王霞, 候平, 尹林克. 土壤缓慢干旱胁迫下柽柳植物内源激素的变化. 新疆农业大学学报, 2000, 23 (4): 41~43
    王晓玲, 徐继忠, 邵建柱. 苹果花芽生理分化期外源亚精胺对叶片内源多胺含量的影响. 河北农业大学学报, 2005, 28(6): 32~35
    王孝宣, 李树德, 东惠茹等. 番茄品种耐寒性与ABA 和可溶性糖含量的关系. 园艺学报, 1998, 25 (1): 56~60
    王学, 施国新, 徐勤松等. 外源亚精胺缓解荇菜Cr6+毒害的生理研究. 环境科学学报, 2003, 23(5): 689~693
    王有年, 杨爱珍, 于同泉. 干旱胁迫对爱宕梨渗透调节的影响.北京农学院学报, 2003, 18(1): 17~20
    王勇, 陆旺金, 张昭其等. ABA和腐胺处理减轻香蕉果实贮藏冷害.植物生理与分子生物学学报, 2003,29(6):549~554
    夏阳. 水分逆境对果树脯氨酸和和叶绿素含量变化的影响. 甘肃农业大学学报, 1993, 28 (1): 26~31
    徐昌杰, 陈昆松, 张波等. 柑橘组织RNA提取方法研究. 果树学报, 2004, 21(2):136~140
    徐德聪, 吕芳德, 潘晓杰. 叶绿素荧光分析技术在果树研究中的应用. 经济林研究, 2003, 21(3): 88~91
    徐继忠, 陈海江, 邵建柱等. 外源多胺促进红富士苹果花芽形成的效应. 果树学报, 1998, 15(1): 10~12
    徐继忠, 陈海江, 马宝焜等. 外源多胺对富士苹果花和幼果内源多胺与激素的影响. 园艺学报, 2001, 28(3): 206~210
    姚胜蕊, 曾骧, 简令成. 桃花芽越冬过程中的多糖的积累和质壁分离动态与品种抗寒性的关系. 果树科学, 1991 ,8 (1) :13~18
    严海燕, Steponkuspl. CBF3 基因过量表达的拟南芥细胞质膜组分的变化. 武汉植物学研究, 2004, 22(6): 529~533
    杨贵春, 高继国, 邢少辰. 植物抗非生物胁迫基因工程的研究进展. 吉林农业科学, 2005, 30(4): 25~30
    杨洪强, 黄天栋.干旱胁迫对苹果新根多胺和脯氨酸含量的影响. 园艺学报, 1994, 21(3): 295~296
    杨洪强. 蛋白激酶与植物逆境信号传导. 植物生理学通讯, 2001, 37(3):185~191
    杨军玉, 刘淑香. 果树抗冻研究现状. 河北林学院学报, 1996, 11(增刊):198~201
    杨敏生, 王进茂, 梁海永等. 白杨杂种无性系苗期生长与水分交互作用. 东北林业大学学报, 2002, 30(5): 5~8
    杨献光, 梁卫红, 齐志广等. 植物非生物胁迫应答的分子机制. 麦类作物学报, 2006, 26 (6):58~161
    叶金山, 王章荣. 干旱胁迫对杂种马褂木与双亲重要生理性状的影响. 林业科学, 2002, 38(3 ): 20~26
    尹立荣. 葡萄枝条结构、淀粉、还原糖及脂类变化与抗寒性的关系. 内蒙古农牧学院学报, 1994, 15 (4):1~7
    於丙军, 吉晓佳, 刘俊等. 氯化钠胁迫下野生和栽培大豆幼苗体内的多胺水平变化. 应用生态学报, 2004, 15 (7) :1223~1226
    余瑛, 夏玉先, 蔡绍晳. 植物小分子热休克蛋白.中国生物工程杂志, 2003, 23(7): 38~41
    岳艳玲, 李广敏, 商振清. 多胺延缓水分胁迫下小麦幼苗衰老机制的探讨. 华北农学报, 1997, 12(2): 71~ 75
    曾乃燕, 何军贤, 赵文等. 低温胁迫期间水稻光合膜色素与蛋白水平的变化. 西北植物学报, 2000, 20 (1): 8~14
    张国珍, 周睿. 精胺对小麦叶片膜脂过氧化的影响. 山东农业大学学报, 1992, 23(2):176~ 179
    张劲松. 植物中存在新的两组分信号系统基因. 科学通报, 1999, 44(6): 628~632
    张军科, 桑春果, 李嘉瑞等. 杏品质资源抗寒性主成分分析. 西北农大学报, 1999, 27 (6):79~84
    张满效, 王邦锡, 黄久常. 水分胁迫对小麦叶片内源多胺的累积和乙烯产生的影响. 甘肃科学学报, 1995, (4):33~36
    张木清, 陈如凯, 余松烈. 多胺对渗透胁迫下甘蔗愈伤组织的诱导和分化的作用, 植物生理学通讯, 1996, 32(3):175~178
    张毅, 戴俊英, 苏正淑等. 孕穗期低温对玉米雌穗的伤害作用. 作物学报, 1995, 21(2): 235~239
    张永恩, 李潮海, 王群. 植物抗旱相关功能基因研究进展. 中国农学通报, 2004, 20(6): 85~88
    张云贵, 谢永红, 吴学良等. PEG诱导干旱胁迫对柑橘幼苗细胞质膜透性及脯氨酸含量的影响. 果树科学, 1995, 12(1): 25~28
    赵福庚, 刘友良. 精氨酸脱羧酶和谷酰胺转移酶活性的测定方法. 植物生理学通讯, 2000, (5): 442~445
    赵维峰, 孙光明, 李绍鹏等. 多胺与植物的抗逆性. 广西农业科学 2004(6): 443~447
    赵勇, 马雅琴, 翁跃进. 盐胁迫下小麦甜菜碱和脯氨酸含量变化. 植物生理与分子生物学学报, 2005, 31 (1): 103~106
    郑永华, 李三玉, 席芳等. 多胺与枇杷果实冷害的关系. 植物学报 2000, (8): 824~827
    周碧燕, 陈杰忠, 季作梁等. 香蕉越冬期间SOD活性和可溶性蛋白质含量的变化. 果树科学, 1999, 16(3): 192~196
    周玉萍, 王正询, 田长思. 多胺与香蕉抗寒性的关系的研究. 广西植物, 2003, 23(4): 252~256
    Abebe T, Guenzi AC, Martin B, et al. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol, 2003, 131: 1748~1755
    Alabadi D, Carbonell J. Expression of ornithine decarboxylase is transiently increase by pollination, 2,4-D Dichlorophenoxyacetic acid and gibberellic acid in tomato ovaries. Plant Physiol, 1998, 118: 323~328
    Andersen SC, Bastola DR, Minocha SC. Metabolism of polyamines in transgenic cells of carrot expressing a mouse ornithine decarboxylase cDNA. Plant Physiol, 1998, 116: 299~307
    Angelopoulos K, Dichio B, Xiloyannis C. Inhibition of photosynthesis in olive trees (Dlea europaea L.) during water stress and rewatering. J Exp Bot, 1996, 47(30l):1093~1100
    Arif S.A.M, Taylor MA, George L A, et al. Characterisation of the sadenosyl methionine decarboxylase (SAMDC) gene of potato. Plant Mol Biol, 1994, 26: 327~338
    Artus NN, Uemura M, Steponkus PL, et al. Constitutive expression of the cold regulated Arabidopsis thaliana COR15A gene affects both chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci USA, 1996, 93: 13404~13409
    Aziz A, Martin-Tanguy J, Larher F. Salt stress-induced praline accumulation and changes in tyramine and polyamine levels are linked to ionic adjustment in tomato leaf discs. Plant Sci, 1999, 145:83~91
    Baker SS, Wilhelm KS, Thomashow MF. The 5’-region of Arabidopsis thaliana CORl5A has cis-acting elements that confer cold- drought- and ABA- regulated gene expression. Plant Mol Biol, 1994, 24: 703~713
    Bais HP, Ravishankar GA. Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tiss Org Cult, 2002, 69:1~34
    Bastola DR, Minocha SC. Increased putrescine biosynthesis through transfer of mouse ornithine decarboxylase cDNA in carrot promotes somatic embryogenesis. Plant Physiol, 1995, 109: 63~71
    Bell E, Malmberg RL. Analysis of a cDNA encoding arginine decarboxylase from oat reveals similarity to Escherichia coli arginine decarboxylase and evidence of protein processing. Mol Gen Genet, 1990, 224, 431~436
    Bertin D, Michael J. Overexpression of arginine decarboxylase in trangeneic plants.Biochem J, 1997, 34: 331~337
    Bhavna W, Manchikatla VR. Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene. Plant Science, 2003, 164(5): 727~734
    Bolle C, Herrmann RG, Oelmüller R. A spinach cDNA with homologous to S-adenosylmethionine decarboxylase. Plant Physiol, 1995, 107: 1461~1462
    Borrel A, Culianez-Mania FA, Terosa A, et al. Arginine decarboxylase of is localized in chloroplasts. Plant physiol, 1995, 109: 771~776
    Borell A, Cabonell L, Farras R, et al. Polyamine inhibit lipid peroxidation in seneseing oat leaves. Physiol Plant, 1997, 99: 385~390
    Bortolotti C, Cordeiro A, Alcázar R, et al. Localization of arginine decarboxylase in tobacco plants. Physiol Plant, 2004, 120: 84~92
    Lee BH, David AH, Zhu JK, The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell, 2005, 17: 3155~3175
    Campbell SA, et al. A ca.40 kDa maize (zea mays L.) embryodehydrin is encoded by the dhn2 locus on chromosome. Plant Mol Biol, 1998, 38(3): 417~423
    Capell T, Bassie L, Christou P. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA, 2004, 101: 9909~9914
    Chang KS, Lee SH, Hwang SB, Park KY. Characterization and translational regulation of the arginine decarboxylase gene in carnation (Dianthus caryophyllus L). Plant J, 2000, 24, 45~56
    Chattopadhyay MK, Gupta S, sengupta DN, et al. Expression of arginine decarboxylase in seedlings of indica rice (Oryza sativa L.) cultivars as affected by salinity stress. Plant Mol Biol, 1997, 34, 477~483
    Choi DW, Rodriguez EM, Close TJ. Barley CBF3 gene identification, expression pattern and map location. Plant Physiol, 2002, 129(4): 1781~1787
    Chinnusamy V, Ohta M, Kanrar S, Lee B, et al. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Gene Dev, 2003, 17: 1043-1054
    Ge C, Cui X, Wang Y, et al. BUD2, encoding an S-adenosylmethionine decarboxylase, is required for Arabidopsis growth and development. Cell Res, 2006, 16: 446~456
    Close TJ, et al. Nucletide sequence of a gene encoding a 58.5 kilodalton barley dehydrin that lacks a serine trac-t. Plant Physicol, 1995, 107(1):289~290
    Colin H., Susanne S, Mayer MJ, et al. Arabidopsis polyamine biosythesis: absense of ornithine decarboxylase and the mechanism of arginine decarboxylase activity. Plant J, 2001, 27: 551~ 560.
    Cristina B, Alexandra C, Alcazar R et al. Localization of arginine decarboxylase in tobacco plants. Physiol Plant, 2004, 120: 84~92.
    Delauney A J, Hu C A, Kishor P B, et al. Cloning of ornithine-aminotransferase cDNA from Vigna aconitifolia by trans-complementation in Escherichia coli and regulation of proline biosynthesis. J Biol Chem, 1993, 268 (25): 18673~18678
    Diamant S, Eliahu N, Rosent HD, et al. Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J. Biol. Chem, 2001, 276: 39586 ~ 39591.
    Doyle JJ, Doyle JL. Isolation of plant DNA from fresh tissue. Focus, 1990, 12:552-555
    Dresselhaus T, Barcelo P, Hagel C, et al. Isolation and characterization of a Tritordeum cDNA encoding S-adenosylmethionine decarboxylase that is circadian-clock-regulated. Plant Mol Biol, 1996, 30:1021~1033
    Despres C, Chubak C, Rochon A, et al. The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 2003, 15: 2181-2191
    Echevarría-Machado I, Ku-González A, Loyola-Vargas VM, et al. Interaction of spermine with a signal transduction pathway involving phospholipase C, during the growth of Catharanthus roseus. Physiol Plant, 2004, 120:140~151
    Espartero J, et al. Different accumulation of S-adenosy1 methionone synthetase in response to salt stress. Plant Mol Biol, 1994, 25: 217~227
    Giorni E, Crosatti C, Baldi P, et al. Cold-regulated gene expression during winter in frost tolerant and frost susceptible barley cultivars grown under field conditions. Euphytica 1999, 106: 149~157
    Novillo F, Alonso JM. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Plant Biol, 2004, 11:3985~3990
    Fowler S, Thomashow MF. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell, 2002, 14:1675~1690
    Fritze K, Czaja I, Walden R. T-DNA tagging of genes influencing polyamine metabolism-isolation of mutant plant lines and rescue of DNA promoting growth in the presence of polyamine biosynthetic inhibitor. Plant J, 1995, 7: 261~271
    Gao M J, Allard G, Byass L, et al. Regulation and characterization of four CBF transcription factors from Brassica napus. Plant Mol Biol, 2002, 49(5): 459~471
    Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, et al. Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem, 2000, 275:5668~5674
    Garg AK, Kim JK, Owens TG, et al. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA, 2002, 99: 15898~15903
    Gilmour S J,Zarka D G,Stockinger E J, et al. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activator as an early step in cold-induced COR gene expression. Plant J, 1998, 16 (4): 433~442
    Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol, 2000, 124: 1854~1865.
    Groppa MD, Tomaro ML, Benavides MP. Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Sci, 2001, 161:481~488
    Guye MG, Vigh L, Wilson JM. Polyamine titre in relatian to chill-sensitivity in Phaseolus sp. J Exp Bot, 1986, 37:1036~1043
    Haake V, Cook D, Riechmann JL, et al. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol, 2002, 130: 639~648
    Hamill JD, Robins RJ, Parr AJ, et al. Over-expressing a yeast ornithine decarboxylase gene in transgenic roots of Nicotiana rustica can lead to enhanced nicotine accumulation. Plant Mol Biol, 1990, 15: 27~38
    Hamilton III EW, Heckathorn SA. Mitochondrial adaptations to NaCl: Complex I is protected by antioxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol, 2001, 126: 1266~1274
    Handahl U, Hall RB, Osteryoung KW, et al. The chloroplast small heat shock protein undergoes oxidation-dependent conformational changes and may protect plants from oxidative stress. Cell Stress Chaperones, 1999, 4: 129~138
    Hanfrey C, Franceschetti M, Mayer MJ, et al. Abrogation of upstream open reading frame-mediated translational control of a plant S-adenosylmethionine decarboxylase results in polyamine disruption and growth perturbations. J Biol Chem, 2002, 277: 44131~44139
    Hanzawa Y, Imai A, Michael AJ, et al. Characterization of the spermidine synthase-related gene family in Arabidopsis thaliana. FEBS Lett, 2002, 527: 176~180
    Hanzawa Y, Takahashi T, Komeda. ACL5, an Arabidopsis gene is required for internode elongation after flowering. Plant J, 1997, 12: 863~874
    Hanzawa Y, Takahashi T, Michael AJ, et al. ACAULIS5, an arabidopsis gene required for stem elongation, encodes a spermine synthase. EMBO J, 2000, 19: 4248-4256
    Hatanaka T, Sano H, Kusano T. Molecular cloning and characterization of coffee cDNA encoding spermidine synthase. Plant Sci, 1999, 140: 161~168
    Hao YJ, Kitashiba H, Honda C, et al. Expression of arginine decarboxylase and ornithine decarboxylase genes in apple cells and stressed shoots. J Exp Bot, 2005, 56(414):1105~1115
    Hao YJ, Zhang Z, Kitashiba H, Honda C, Ubi B, Kita M, Moriguchi T. Molecular cloning and functional characterization of two apple S-adenosylmethionine decarboxylase genes and their different expression in fruit development, cell growth and stress responses. Gene, 2005, 350: 41~50
    Heish T H, et al. Heterology expression of the Arabidopsis C-repeat/Dehydration esponse element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgetic tomato. Plant Physiol, 2002, 129: 1086~1094
    Helga K, Sigrid L. Are polyamines involved in the synthesis of heat-shock proteins in cell suspension cultures of tobacco and alfalfa in response to high-temperature stress? Plant Physiol Biochem, 2002, 40:51~59
    Hellmann H, Funck D, Rentsch D, et al. Hypersensitivity of an Arabidopsis sugar signaling mutant toward exogenous proline application. Plant Physiol, 2000, 123:779~790
    Higo K, Ugawa Y, Iwamoto M, et al. Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res, 1999, 21(1): 297~300
    Hong ZL, Lakkineni K, Zhang ZM, et al. Removal of feedback inhibition of 1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol, 2000, 122:1129~1136
    Howell. Efficacy of chlorophyll fluorescence as a viability test for freeze-stressed woody grape tissues. Can J Plant Sci, 1999, 79 (3):401~409
    Huang JQ, Sun ZH. Agrobacterium-Mediated transfer of Arabidopsis ICE1 gene into Lemon (Citrus Limon (L.) Burm F.cv.Eureka). Agricultural Sciences in China, 2005, 4(9): 714~720
    Hughes MA, Dunn MA. The molecular biology of plant acclimation to low temperature. J Exp Bot, 1996, 47:291~305
    Hu CG, Hao YJ, Honda C, et al. Putative PIP1 genes isolated from apple: characterization and expression analyses during fruit development and under environmental stresses. J Exp Bot, 2003, 54 (390): 2193~2194
    Imai A, Akiyama T, Kato T, et al. Spermine is not essential for survival of Arabidopsis. FEBS Lett, 2004, 556: 148~152
    Ireáne H, Abdelhak EA, Gwenola G, et al. Involvement of polyamines in the interacting effects of low temperature and mineral supply on Pringlea antiscorbutica (Kerguelen cabbage) seedlings. J Exp Bot, 2004, 55(399): 1125~1134
    Nishizawa I. Low-temperature resistence of higher plants is signficantly enhanced by a cyanobacterial desaturase. Nat Biotech, 1996, 14: 1003~1009
    Iturriaga G, Schneider K, Salamini F, et al. Expression of desiccation-related proteins from the resurrection plant in transgenic tobacco. Plant Mol Biol, 1992, 20: 555~558
    Jaglo-Ottosen K R, Gilmour S J, Zarka D G, et al. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998, 280:104~106
    Jaglo KR, Kleff S, Amundsen KL, et al. Components of the Arabidopsis C-repeat/ dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol, 2001, 127: 910~917
    Jang IC, Oh SJ, Seo JS, et al. Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol, 2003, 131: 516~524
    Janowitza T, Kneifelb H, Piotrowski M. Identification and characterization of plant agmatine iminohydrolase, the last missing link in polyamine biosynthesis of plants. FEBS Lett, 2003, 544: 258~261
    Kanaya E, Nakajima N, Morikawa K, et al. Characterization of the transcriptional activator BFl from Arabidopsis thaliana. J Biol Chem, 1999, 274(23):16068~16076
    Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress inducible transcription factor. Nat Biotech, 1999, 17: 287~291
    Kakkar RK, Sawhney VK. Polyamines research in plants a changing perspective. Physiol Plant, 2002, 116: 281~292
    Kasinathan V, Wingler A. Effect of reduced arginine decarboxylase activity on salt tolerance and on polyamine formation during salt stress in Arabidopsis thaliana. Physiol Plant, 2004, 121: 101~107
    Kasukabe Y, He L, Nada K, et al. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol, 2004, 45: 712~722
    Katiyar-Agarwal S, Agarwal M, Grover A. Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Mol Biol, 2003, 51: 677~686
    Kazuoka T, Oeda K. Purification and characterization of COR85-oligomeric complex from cold-acclimated spinach. Plant Cell Physiol, 1994, 35: 601~611
    Kwon SW, Ko BR, Bai DG. Changes in antioxidant enzymes and polyamines in response to low temperature chilling in watermelon plants. ISHS Acta Horticulturae, 2003, 620:111~117
    Khedr AH, Abbas MA, Wahid AA, et al. Proline induces the expression of salt-stress- responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. J Exp Bot, 2003, 54: 2553~2562
    Kimberly D K, et al. Accumulation of type 1 fish antifreeze protein in transgenic tobacco is cold-specific. Plant Mol Biol, 1994, 25: 693~704
    Kirsten R, Jaglo-Ottosen, Sarah JG. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998, 280:104~106
    Koizumi M, et al. Structure and expression of two genes that encode distinct drought inducible cysteine proteinases in Arabidopsis thaliana. Gene.1993, 129: 175~182
    Kodama H. Genetic enhancement of cold tolerance by expression of a gene for chloroplast ω-3 fatty acid desaturase in transgenic tobacco. Plant physiol, 1994, 105: 601~608
    Konstantinova T, Parvanova D, Atanassov A, et al. Freezing tolerant tobacco, transformed to accumulate osmoprotectants. Plant Sci, 2002, 163: 157~164
    Krishnamurthy R, Bhagwat KA. Polyamine as modulators of salt tolerance in rice cultivars Plant Physiol, 1989, 91:500~504
    Kumira R, Rajam MV. Alteration in polyamine titres during Agrobacterium-mediated transformation of indica rice with ornithine decarboxylase gene affects plant regeneration potential. Plant Sci, 2002, 162: 769-777
    Kushad MM, Yelenosky G. Evalution of polyamine and praline levels during low temperature acclimation of Citrus. Plant Physiol, 1987, 84(3):692~695
    Kumar A, Taylor MA, Mad Arif SA, et al. Potato plants expressing antisense and sense S-adenosylmethionine decarboxylase (SAMDC) transgenes show altered levels of polyamines and ethylene: antisense plants display abnormal phenotypes. Plant J, 1996, 9: 147~158
    Kwak S-H, Lee SH.The regulation of ornithine decarboxylase gene expression by sucrose and small upstream open reading frame in tomato (Lycopersicon esculentum Mill). Plant Cell Physiol, 2001, 42: 314~323
    Lee H, et al. LOS2 a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO J, 2002, 21(11): 2692~2702
    Lee MM, Lee SH, Park KY. Charcaterization and expression of two members of the S-adenosylmethionine decarboxylase gene family in carnation flower. Plant Mol Biol, 1997, 34: 371~382
    Lee TM, Lur HS, Chu C. Role of abscisic acid in chilling tolerance of rice (Oryza sativa L.) seedlings Ⅱ: Modulation of free polyamine levels. Plant Sci, 1997, 126: 1~10.
    Lei XY, Zhu RY, Zhang GY, et al. Attenuation of cold-induced apoptosis by exogenous melatonin in carrot suspension cells: the possible involvement of polyamines. Journal of Pineal, 2004, 36:126-131
    Leproi O, Bassie L, Safwat G, et al. Over-expression of a cDNA for human ornithine decarboxylase in transgenic rice plant alters the polyamine pool in a tissue- specific manner. Mol Gene Gen, 2001, 266: 303~312.
    Leung J, Giraudat J. Abscisic acid signal transduction. Annu Rev Plant Biol, 1998, 49: 199~222
    Li XH, Kazuyoshi N, Yoshihisa K et al. Enhanced susceptibility of photosynthesis to low temperature photoinhibition due to inter ruption of chillind uced increase of S-adenosylmethionine decarboxylase activity in leaves of spinach (Spinacia oleracea L.). Plant Cell Physiol, 2002, 43:196~206
    Liansen Liu, Michae J White, Thomas H MacRae. Transcription factors and their genes in higher plants functional domains, evolution and regulation. Eur. J. Biochem, 1999,262, 247 ~257
    Liu HP, Dong BH, Zhang YY et al. Relationship between osmotic stress and the levels of free, conjugated and bound polyamines in leaves of wheat seedlings. Plant Sci, 2004, 166:1261~1267
    Luo H, Song F, Goodman RM, et al. Up-regulation of OsBIHD1, a rice gene encoding BELL homeodomain transcriptional factor, in disease resistance responses. Plant Biol (Stuttg), 2005, 7: 459-468
    Liu K, Fu HH, Bei QX et al. Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physio1, 2000, 124:1315~1325
    Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an ERBP/AP2DNA binding domain separate two cellular signal transduction pathways in drought and low temperature responsive gene expression respectively in Arabiopsis. Plant Cell, 1998, 10: 1391~1406
    Liu YG, Norihiro Mitsukawa, Teruko Oosumiet al. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J, 1995, 8(3):457~463
    Mad Arif SA, Taylor MA, George LA, et al. Characterisation of the S-adenosylmethionine decarboxylase (SAMDC) gene in potato. Plant Mol Biol, 1994, 26: 327~338
    Mai R, Chang L, Ohta A, et al. A lea class gene of tomato congers salt and freezing tolerance when expressed in Saccharmomyces cerevisiae. Gene, 1996, 170: 243~248
    Malabika R, Wu R. Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci, 2001, 160:869~875
    Malabika R, W R. Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci, 2002, 163:987~992
    Marco F, Carrasco P. Expression of the pea S-adenosylmethionine decarboxylase is involved in developmental and environmental responses. Planta, 2002, 214: 641~647
    Hara M, Terashima S, Fukaya T, et al. Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta, 2003,217:290~298
    Malik MK, Slovin JP, Hwang CH, et al. Modified expression of a carrot small heat shock protein gene, Hsp17.7, results in increased or decreased thermotolerance. Plant J, 1999, 20: 89~99
    Mc Cue K F, Hanson AD. Salt-inducible betaine aldehyde dehydrogenase from sugar beet: cDNA cloning and expressing. Plant Mol Biol, 1993,18 (1): 1~11
    McDonald RE, Kushad MM. Accumulation of putrescine during chilling injury of fruit. Plant Physiol, 1986, 82:324~326
    Mckersiebd, et al. Iron superoxide dismutase expression in transgenic al falfa increases in photosynthetic oxidative stress tolerance. Plant Physiol, 2000, 122: 1427~1438
    Medina J, Bargues M, Terol J, et al. The Arabidopsis CBF gene family is composed of three gene encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol, 1999, 119:463~469
    Mehta RA, Cassol T, Li N, et al. Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nature Biotech, 2002, 20: 613-618
    Michael A J, Furze J M, Rhodes M C, et al. Molecular cloning and functional identification of a plant ornithine decarboxylase cDNA. Biochem J, 1996, 314: 241~248.
    Michael F Thomashow, Sarah J Gilmour, et al. Role of the Arabidopsis CBF transcriptional activators in cold acclimation. Physiol Plant, 2001, 11(2):171~175.
    Michael AJ, Furze JM, Rhodes MJC, et al. Molecular cloning and functional identification of a plant ornithine decarboxylase cDNA. Biochem J, 1996, 314: 241~248
    Miroshnichenko S, Tripp J, Nieden UZ, et al. Immunomodulation of function of small heat shock proteins prevents their assembly into heat stress granules and results in cell death at sublethal temperatures. Plant J, 2005, 41: 269~281
    Moghaieb REA, Tanaka N, Sancoka H, et al. Expression of betaine aldehyde dehydrogenase gene in transgenic tomato hairy roots leads to the accumulation of glycine betaine and contributes to the maintenance of the osmotic potential under salt stress. Soil Sci Plant Nutr, 2000, 46: 873~883
    Mo H, Pua EC. Up regulation of arginine decarboxylase gene expression and accumulation of polyamines in mustard (Brassica juncea) in response to stress. Physiol Plant, 2002, 114, 439~449
    Mohanty A, Kathuria H, Ferjani A, et al. Transgenics of an elite indica rice variety Pusa Basmati harbouring the codA gene are highly tolerant to salt stress. Theor Appl Genet, 2002, 106: 51~57
    Motoaki Seki, Ayako Kamei. Molecular responses to drought, salinity and frost: common and different paths for plant protection. Cur Opin Biotech, 2003, 14:194~199
    Nam KH, Lee SH, Lee JH. Differential expression of ADC mRNA during development and upon acid stress in soybean (Glycine max) hypocotyls. Plant Cell Physiol, 1997, 38:1156~1166
    Nanjo T, Fujita M, Seki M, et al. Toxicity of free proline revealed in an Arabidopsis T-DNA tagged mutant deficient in proline dehydrogenase. Plant Cell Physiol, 2003, 44: 541~548
    Navakoudis E, Lutz C, Langebartels C. Ozone impact on the photosynthetic apparatus and the protective role of polyamines. Biochim Biophys Acta, 2003, 1621:160~169
    Ndong C, Danyluk J, Wilson KE, et al. Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins molecular characterization and functional analyses. Plant Physiol, 2002, 129: 1368~1381
    Park EJ, Jeknic Z, Sakamoto A, et al. Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. Plant J, 2004, 40: 474~487
    Park, SJ, Cho YD. Identification of functionally important residues of Arabidopsis thaliana S-adenosylmethionine decarboxylase. J. Biochem. 1999,126, 996~1003
    Penna S. Building stress tolerance through over-producing trehalose in transgenic plants. Trends Plant Sci, 2003, 8: 355~357
    Pérez-Amador MA, Leon J, Green PJ, et al. Induction of the arginine decarboxylase ADC2 gene provides evidence for the involvement of polyamines in the wound response in Arabidopsis. Plant Physiol, 2002,130, 1454~1463
    Piotrowski M, Janowitz T, Kneifel H. Plant C-N hydrolases and the identification of a plant N-carbamoylputrescine amidohydrolase involved in polyamine biosynthesis. J Biol Chem, 2003, 278: 1708~1712
    Pillai MA, Akiyama T. Differential expression of an S-adenosyl-L-methionine decarboxylase gene involved in polyamine biosynthesis under low temperature stress in japonica and indica rice genotypes. Mol Gen Genomics, 2004, 271: 141~149
    Prakash L, Prathapasenan G. Putrescine Reduces NaCl-induced inhibition of germination and early seeding growth of rice. Aust J Plant Physiol, 1988, 15:761~767
    Rerez-Amador A, Carbonell J, Granell A. Expression of arginine decarboxylase is induced during early fruit development and in young tissue of Pisum Sativum (L.). Plant Mol Biol, 1995, 28: 997~ 1009.
    Riechmann J L, Heard J, Martin G, et al. Arabidopsis transcriptional factors: genome-wide comparative analysis among eukaryotes. Science, 2000, 290: 2105~2110
    Roberts D R, Dumbroff E B, Thompson J E. Exogenous polyamine alter membrane fluidity in bean leaves- a basis for potential misintertation of their true physiological role. Planta, 1986, 157: 395~ 401
    Rostogi R, Dulson J, Rothstein SJ. Cloning of tomato (Lycopersicon esculentum Mil) arginine decarboxylase gene and its expression during fruit ripening. Plant Physiol, 1993,103: 829~ 834.
    Roy M, Wu R. Overexpression of S-adenosylmethionine decarboxylase gene in rice increase polyamine level and enhances sodium chloride-stress tolerance. Plant Sci 2002, 163: 987~992
    Saijo Y, et al. Over-expression of a single Ca2+ dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J, 2000, 25: 319~327
    Saowarath Jan taro et al. content and biosynthesis is of polyamines in salt and osmotically stressed cells of Synechocystis sp. PCC6803. FEMS Microbiol Lett, 2003, 228(1): 129~ 135
    Gilmour SJ, Fowler SG, Thomashow MF. Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol Biol, 2004, 54: 767~781
    Scharf KD, Siddique M, Vierling E. The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chaperones, 2001, 6 (3): 225~237
    Schultz H R.relations and photosynthetic responses of two grapevine cultivars of different geographical origin during water stress. Acta Hort, 1997, 427: 251~166
    Scon J, Adiga R, Prasad G. Biosynthesis and regulation of polyamines in higher plants. Plant Sci, 1985, 3: 205~ 226
    Seki M, Narusaka M, Abe H, et al. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell, 2001, 13: 61~72.
    Serrano M, Martinez-Madrid MC, Pretel MT, et al. Modified atmosphere packaging minimizes increases in putrescine and abscisic acid levels caused by chilling injury in pepper fruit. J Agr Food Chem, 1997, 45: 1668~1672
    Serrano M, Pretel MT, Martinez-Madrid MC et al. CO2 treatment of zucchini squash reduces chilling induced physiological changes. J Agr Food Chem, 1998, 46:2465~2468
    Shen WY, Kazuyoshi N, Shoji T. Involvement of polyamines in the chilling tolerance of cucumber cultivars. Plant Physiol, 2000, 124:431~440
    Shinwari Z K, Nakashima K, Miura S, et al. An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem Biophys Res Commun, 1998, 250(1): 161~170
    Silva JM, Arrabaca MC. Contributions of soluble carbohydrates to the osmotic adjustment in the C4 grass Setaria sphacelata: a comparison between rapidly and slowly imposed water stress. J Plant Physiol, 2004, 161: 551~555
    Simpson SD, Nakashima K, Narusaka Y, et al. Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J, 2003, 33: 259~270
    Soyka S, Heyer AG. Arabidposis knockout mutation of ADC2 gene reveals inducibility by osmotic stress. FEBS Lett, 1999, 458: 219~223
    Stanley BA, Shantz LM, Pegg AE. Expression of mammalian S-adenoxylmethionine decarboxylase in Escherichia Coil. J Biol Chem, 1994, 269: 7901~7907.
    Steponkus PL, Uemura M, Joseph RA, et al. Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci USA, 1998, 95: 14570~14575
    Stochinger E J, et al. Arabidopsis thaliana for CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C repeat/ drea cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA, 1997, 94:1035~1040
    Stockinger EJ, Mao Y, Regier MK, et al. Transcriptional adaptor and histone acetyltrans-ferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression. Nucleic Acids Res, 2001, 29(7):1524~1533
    Studer S, Narberhaus F. Chaperone activity and homo- and hetero-oligomer formation of bacterial small heat shock proteins. J Biol Chem, 2000, 275: 37212~37218
    Sun W, Bernard C, van de Cotte B, van Montagu M, et al. At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J, 2001, 27: 407~415
    Tan JX, Shi JP, L GM, et al. Effect of spermidine on content of endogenous ethylene and polyamines in maize seedlings under water stress. Plant Physiol Commun, 1995, 31(2): 99~ 102.
    Tassoni A, Napier RM, Franceschetti M, et al. Spermidine-binding proteins purification and expression analysis in maize. Plant Physiol, 2002, 128: 1303~131
    Terauchi R, Kahl G. Rapid isolation of promoter sequences by TAIL-PCR: the 5′-flanking regions of Paland Pgigenes from Yams (Dioscorea). Mol Gen Genet, 2000, 263:554~560
    Teresa C, Ludovic B, Paul C. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA, 2004, 101:9909~9914
    Thomashow MF, Stochinger EJ, Jaglo Ottosen KR, et al. Role of the Arabidopsis CBF transcriptional activators in cold acclimation. Plant Physiol, 2002, 112:171~175
    Thomashow MF. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol. Plant Mol. Biol, 1999, 50: 571~599
    Tian AG, Zhao JY, Zhang JS, et al. Genomic characterization of the S-adenosylmethionine decarboxylase genes from soybean. Theor Appl Genet, 2004, 108: 842~850
    Tiburcio AF, Kaur SR, Galston AW. Polyamine metabolism in Miflin BJ(Ed), intermediary nitrogen metabolism. Bio Plants, 1990, 16: 283~325
    Puhakainen T, Hess MW, Makela P, et al. Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol, 2004, 54: 743~753
    Urano K, Yoshiba K, Nanjo T, et al. Arabidopsis stress inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochemical and Biophysical Research Communications, 2004, 313: 369~375
    Viswanathan C, MasaruO, Siddhartha K, et al. ICE1: a regulator of cold-induced transcription and freezing tolerance in Arabidopsis. Gene Dev, 2003, 17: 1043~1054
    Viswanathan C, Zhu J, Zhu JK. Gene regulation during cold acclimation in plants. Plant Physiol, 2006, 126: 52~61
    Walden R, Cordeiro A, Tiburcio AF. Polyamines: small molecules triggering pathways in plant growth and development. Plant Physiol, 1997, 113: 1009~1013
    Wang W, Vinocur B, Shoseyov O, et al. Role of plant heatshock proteins and molecular chaperones in the abiotic stress response. Trend Plant Sci, 2004, 9: 244~252
    Wang ZC, Stutte GW. The role of carbohydrates in active osmotic adjustment in apple under water stress. J Amer Soc Hort Sci, 1992, 117: 816~823
    Watson MB, Emory KK, Piatak RM, et al. Arginine decarboxylase (polyamine synthesis) mutants of Arabidposis thaliana exhibit altered root growth. Plant J, 1998, 13: 231~239
    Wu SJ, et al. SOS1, a genetic locus essential for salt tolerance and potaasium. Plant Cell, 1996, 8: 287~293
    Xiloyannis C, Uriu K, Martin GC. Seasonal and journal variations in abscisic acid, water potential and diffusive resistance in leaves from irrigated and non-irrigated peach trees. J Amer Soc Hori Sci. 1980, 105:412~415
    Xin Z, Browse J. eskmol mutants of Arabidopsis are constitutively freezing-tolerant. Proc Natl Acad Sci USA, 1998, 95: 7799~7804
    Xu D, Duan X, Wang B, et al. Expression of a late embryogenesis abundant protein gene HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol, 1996, 110: 249~257
    Yoshihisa K, Lixiong H, Kazuyoshi N, et al. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol, 2004, 45:712~722
    Zapata P J, Serrano M, Pretel M T, et al. Polyamines and ethylene changes during germination of different plant species under salinity. Plant Science, 2004, 167: 781~788
    Zarka DG., Vogel JT, Cook D, et al. Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF Expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. Plant Physiol, 2003, 133: 910~918
    Zentella RA. Selaginell lepidophylla trehalose-6-synthase complements growth and stress tolerance defects in a yeast tps1 mutant. Plant Physiol, 1999, 119: 1473~1482
    Zhang JZ, RA. Creelman, Zhu JK. From laboratory to field, using information from Arabidopsis to engineer salt, cold and drought tolerance in crops. Plant Physiol, 2004, 135: 1~7
    Zhao FG, Sun C, Liu YL, et al. Relationship between polyamine metabolism in roots and salt tolerance of barley seedlings. Acta Bot Sin, 2003, 45(3):295~300
    Zhen W, Chen X, Sun SY, et al. Over-expression of Arabidopsis CBF1 confers elevated tolerance to chilling stress in transgenic rape and tobacco. Progress in Natural Science, 2000, 10 (12):1104~1108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700