拟南芥LEAFY及龙眼LEAFY同源基因转化雪柑研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柑桔(Citrus L.)是当今世界最重要的水果之一,也是我国南方最重要的经济果树。柑桔是多年生木本果树,以往的常规育种由于存在童期长、遗传高度杂合性和多胚现象,使得柑桔育种工作困难重重。近年来,不断完善的转基因技术为我们提供了新的育种和品种改良手段。
     目前,转基因作物的安全性问题受到极大关注。利用遗传转化技术改良柑桔品种首先要考虑生物安全性问题,使用安全的选择标记基因是有效方法之一。
     本实验以福建传统优良甜橙品种雪柑(C. sinensis L.Osb.)为材料,在初步建立以PMI(Phospho-mannose-isomerase,磷酸甘露糖异构酶)基因为选择标记转基因体系基础上,进一步优化转化体系;同时将拟南芥LEAFY基因以及龙眼LEAFY同源基因LLFY分别导入雪柑,以期培育童期短的雪柑新品系并研究LLFY基因的功能;本实验还对农杆菌介导的“针刺”法进行了探索研究,为柑桔和木本植物的转基因研究提供了新的思路。主要研究结果如下:
     1.以PMI基因为选择标记雪柑遗传转化体系的优化。通过对影响转化的各种因素的优化实验建立了雪柑以PMI基因/甘露糖选择标记系统的高效遗传转化体系。实验结果表明,在菌液OD600为0.6,1mg·L~(-1) 2,4-D预处理3h,农杆菌侵染30min,4d的共培养时间,选择压为甘露糖20g·L~(-1)的情况下大大提高了转化后的再生率,而在筛选培养基中加入2mg·L~(-1)BA+0.5mg·L~(-1)NAA的情况下有助于抗性大苗的筛选。
     2. LFY和LLFY基因导入雪柑的研究。以优化的条件为转化体系,将拟南芥LEAFY基因以及龙眼LEAFY同源基因LLFY分别导入雪柑中,获得转基因植株。研究表明,抗性芽在附加20g·L~(-1)甘露糖和10g·L~(-1)蔗糖的壮苗培养基中能够有效快速淘汰假阳性抗性芽;通过CPR和PCR检测, LFY和LLFY基因的大苗转化率分别为:3.7%和7.4%;通过滤纸桥生根法对转基因芽进行了生根,获得完整植株并移栽成功。
     3.农杆菌介导“针刺法”LFY基因转化雪柑的研究。以雪柑种子为外植体,以pC1301-PMI-LFY重组载体为转化载体,将蘸有农杆菌侵染液的接种针在种子胚的顶端分生组织部位刺2~3次,深度1mm左右,当实生苗成活后移栽。通过PCR检测和PCR-Southern杂交检测得到了1株转基因植株,转化率为4.35%。针刺法简便快速,在雪柑上能够成功应用,为木本植物的遗传转化提供了新的思路。
     4.龙眼LFY同源基因LLFY和SLLFY植物表达载体的构建。将红核子龙眼LLFY基因插入载体pC2300-35S-OCS的35S启动子和OCS终止子之间,构建了pC2300-35S-LLFY-OCS植物表达载体;将四季蜜龙眼SLLFY基因插入载体pC2300-35S-OCS的35S启动子和OCS终止子之间,构建了pC2300-35S-SLLFY-OCS植物表达载体,为研究这两个基因的功能创造条件。
Citrus is one of the most important economic fruits in the world and the south China and also is a perennial and woody fruit tree characterized by long juvenile period, genetic heterozygosity and polyembryony, which made the breeding of this specie become difficult. In recent years, transgene technology had brought a novel way for the improvement of cultivars.
     At the present time, more and more attention were paid on the issue of the biosafety of transgenic crops. The application of selective marker gene with biology safety in the genetic transformation was an effective solution.
     The sweet orange cultivar of“Xuegan”(C. sinensis L.Osb.) was used as the material to optimize the genetic transformation system, based on the PMI (Phospho-mannose-isomerase) selection system established earlier. LEAFY gene of Arabidopsis and its ortholog LLFY in longan were both transformed into“Xuegan”genome for getting short juvenile varieties. Additionally, the exploring of the transformation using method of prickling mediated by Agrobacterium tumefaciens was also carried out, providing the new mehtod for the transgene of Citrus and woody trees. The main results were as follows:
     1. Optimization of genetic transformation system of“Xuegan”using PMI selection marker. At the condition of 0.6 at OD600 of Agrobacterium mixture, explants pretreatment with 1mg·L~(-1) 2,4-D for 3 h, infection for 30 min, co-cultivation for 4d, 20g·L~(-1) mannose for selection, the regeneration rate was markedly increased after transformation. Supplement with 2mg·L~(-1) BA and 0.5mg·L~(-1) NAA on the media were benefit for the selection of resistant big plantlets.
     2. Transformation of LFY and LLFY into“Xuegan”. Using the genetic transformation system optimized, LFY and LLFY were transformed into“Xuegan”. Transgentic plantlets were obtained. Medium for seedling strengthening were added with 20g·L~(-1) mannose and 10g·L~(-1) sucrose to screen resistant transgenic plantlets frequently and effectively. CPR and PCR positivity rates of resistant plantlets transformed with LFY and LLFY were 3.7% and 7.4% for the big ones, respectively, suggesting the target genes were successfully integrated into“Xuegan”genome. The transgenic plantlets were induced to root using method of filter paper bridge and transplanted.
     3. Genetic transformation of“Xuegan”using method of prickling mediated by Agrobacterium tumefaciens was carried out. To inoculate A.tumefaciens into the embryonic apical meristerm of the soaked seeds, a region on the seed suiface where a shoot would later emerge was pierced twice up to a depth of about 1mm with a needle dipped in the A. tumefaciens inoculum.Germinated seedings were transplanted.One transgenic plantlet was obtained, which was confirmed by PCR assay and PCR-Southern blot, with the transformation rate of 4.35%, suggesting the feasibility of this method on the genetic transformation of“Xuegan”and providing the new method for the transgene of woody trees.
     4. Construction of plant expression vector of homologous genes of LLFY and SLLFY in longan. LLFY gene of“Honghezi”and SLLFY gene of“Sijimi”were inserted into the pC2300-35S-OCS vector between 35S promoter and OCS terminator to produce the plant expression vectors of pC2300-35S-LLFY-OCS and pC2300-35S-SLLFY-OCS respectively for the research of the function of the two genes.
引文
[1]陈菁瑛,宋瑞琳,陈景耀,等.柑桔茎尖培养和植株再生试验[J].福建农业科技,1990,3:45.
    [2]陈菁瑛,陈景耀,柯冲.柑桔茎尖培养的研究I:茎尖培养与增殖[J].福建省农院学报,1994,9(3):1-6.
    [3]陈善春,张进仁,黄自然,等.根癌农杆菌介导柞蚕抗菌肽D基因转化柑桔的研究[J].中国农业科学,1997,30(3):7-13.
    [4]高峰,华学军,范云六,等.用根癌农杆菌离体转化离体柑桔[J].中国柑桔,1990,19(4):3-4.
    [5]官磊.龙眼LEAFY基因克隆与功能表达[D].福建农林大学,2008.
    [6]韩美丽,李耿光,贺红,等.农杆菌介导的枳壳转化系统建立研究初报[J].广西植物,2000,20(1):47-51.
    [7]黄曙光,石明旺,谭晓风.转基因植物标记基因的安全技术[J].生物学通报,2004,39(11):5-6.
    [8]黄涛,李耿光,张兰英,等.柑桔遗传转化技术的研究进展[J].广西植物,2004,24(2):134-138.
    [9]洪勇,何永睿,陈善春,等.柑桔栽培品种高效基因转化新技术研究[J].热带作物学报,2000,21(2):37-41.
    [10]洪勇,何永睿,陈善春,等.转基因柑橘Kanr抗性芽的生根研究[J].西南农业大学学报,2000, 5:387-389.
    [11]黄玉吉.根癌农杆菌介导的ACS反义基因和PEAS基因转化香蕉研究[D].福建农林大学,2006.
    [12]蒋迪,徐昌杰,陈大明,等.柑橘转基因研究的现状及展望[J].果树学报,2002,19(1):48-52.
    [13]兰树斌,李建国.植物LFY基因的研究进展[J].广西农业生物科学,2007,26:132-137.
    [14]李东栋,邓秀新.柑橘不同品种对根癌农杆菌介导遗传转化的反应差异[J].分子植物育种,2005,3(1).
    [15]李韬.芦柑、雪柑胚性愈伤组织的诱导[J].福建果树,1997,101(3):11.
    [16]李耿光,Chen R,贺红,等.农杆菌介导几丁质酶基因转化的柑桔植株[J].中国学术期刊文摘(快报),1999,7:940-942.
    [17]李浚明.植物组织培养教程[M].北京:中国农业大学出版社,1992,5.
    [18]李名扬,罗金华,陈红.发根农杆菌对柑桔的离体转化和植株再生[J].西南农业学报,1996,9(1):90-95.
    [19]李育阳.基因表达技术[M].北京科学出版社,2001.
    [20]李卫,陈亮,蔡得田,等.柑桔基因转化新方法的研究[J].植物学报,1997,39(8):782-784.
    [21]刘春玲,林伯年.成花基因研究进展[J].果树学报,2001,18(6):352-357.
    [22]吕柳新,林顺权.3种柑橘亚科植物的珠心组织培养[J].福建农林大学学报,2003,32(2):193-195.
    [23]马月萍,陈凡,戴思兰.植物LEAFY同源基因研究进展[J].植物学通报,2005,22(5):605-613.
    [24]彭世清,陈守才.甘露糖阳性选择系统的建立及在番茄转化中的应用[J].农业生物技术学报,2005,13(2):141-144.
    [25]邵寒露,李继红,郑学勤,陈守才.拟南芥LFY cDNA的克隆及转化菊花的研究[J] .植物学报.1999,41(3):268-271.
    [26]唐岱,徐淳.利用发根农杆菌转化实美橙子叶外植体的研究[J].西南农业大学学报,1993,15(4):363-365.
    [27]王峰,朱祯,李向辉.不同调控序列控制下的GUS基因在柑桔原生质体中的瞬间表达[J].福建农业学报,1998,13(2):1-5.
    [28]王关林,方宏绮.植物基因工程(第二版)[M].北京:科学出版社,2002.
    [29]万巧兰.柑橘离体形态建成及转鱼类抗冻蛋白基因研究[D].北京:中国农业科学院,1996.
    [30]吴金寿,王平,吕柳新,等.柚杂交胚离体培养再生植株的研究[J].福建农林大学学报,2003,32(4):474-477.
    [31]吴耀军,杜晓莉,韩美丽,等.农杆菌介导的甜橙基因转化系统建立研究[J].广西林业科学,2004,33(2):57-63.
    [32]武芸,丁莉.转基因农作物的安全性及其发展前景[J].安徽农业大学,2007,35(7):2096-2097.
    [33]徐海峰.以PMI基因为选择标记雪柑转基因体系的建立[D].福建农林大学,2007.
    [34]杨莉,徐昌,杰陈昆松.PMI/甘露糖筛选体系在转基因上的应用[J].2005,41(3).
    [35]岳建雄,孟钊红,张炼辉,等.以甘露糖作为筛选剂的棉花遗传转化[J].棉花学报,2005,17(1):3-7.
    [36]曾建军,曾川蓉,李晓红.转基因作物安全性研究回顾与展望[J].安徽农业科学,2007,35(22):6934-6935.
    [37]张丽霞,刘慧.转基因生物安全性新探[J].安徽农业科学,2007,35(3):678-679.
    [38]郑启发,陈大成,胡桂兵,等.抗生素对沙田柚外植体分化及生长的影响[J].广东农业科学,1998(1):22-24.
    [39] Almeida W A B, Mourao Filho F A A, Mendes B M J, et al. Agrobacterium-mediated transformation of Citrus sinensis and Citrus limonia epicotyl segments[J]. Scientia Agricola 2003a, 60(1): 23-29.
    [40] Almeida W A B, Mourao Filho F A A, Pino L E et al. Genetic transformation and plant recovery from mature tissues of Citrus sinensis L. Osbeck[J]. Plant Sci, 2003, 164: 203-211.
    [41] Boscariol R. L., Almeida W. A. B., Derbyshire M. T. V. C., et al. The use of the PMI/mannose selection system to recover transgenic sweet orange plants (Citrus sinensis L.Osbeck)[J]. Plant Cell Rep, 2003, 22: 122-128.
    [42] Bond JE, Roose ML. Agrobacterium-mediated transformation of the commercially important citrus cultivar Washington navel orange[J]. Plant Cell Rep, 1998, 18: 229-234.
    [43] Bowman JL. Genetic interactions among floral homeotic genes of Arabidopsis[J]. Development. 1992, 112: 1-20.
    [44] Bradley D. Inflorescence commitment and architecture in Arabidopsis[J]. Science. 1997, 275: 80-84.
    [45] Cervera M, Pena JA, Juarez J. Agrobacterium-mediated transformation of citrange:factors afTecting transformation and regeneration[J]. Plant Cell Reports 1998a, 18: 271-278.
    [46] Chenna R A,Sung Y M, et al. Agrobacterium and biolistic transformation of onion using non-antibioticselectionmarkerphosphomannoseisomerase[J].PlantCellReports,2006,25:92-99.
    [47] Cirvilleri Q, Gentile A, Gennari M, R. et al. Influence of transgenic RoIABC citrus plants onroot-associated bacteria[J]. J Plant Pathol, 2003, 85(4): 288.
    [48] Coen ES, Romero JM, Doyle S, Elliot R, Murphy G, Carpenter R. F loricaula:a homeotic gene required for flower development in Antirrhinum majus[J]. Cell. 1990, 63: 1311-1322.
    [49] Colby, Meredith. Kanamycin sensitivity of cultured tissues of Vitis[J]. Plant Cell Reports, 1990, 9: 237-240.
    [50] Costa M G C, Otoni W C, Moore G A. An evaluation of factors affecting the efficiency of Agrobacterium-mediated transformation of Citrus paradisi (Macf.) and production of transgenic plants containing carotenoid biosynthetic genes[J]. Plant Cell Rep, 2002, 21: 365-373.
    [51] Dale P J. Spread of engineered genes to wild relatives[J]. Plant Physiol, 1999, 100: 13-15.
    [52] Degenhardt J, Poppe A, Montag J,et al. The use of the phosphomannose-isomerasemannose selection system to recover transgenic apple plants[J]. Plant Cell Rep, 2006, 25: 1149-1156.
    [53] Domínguez A, Guerri J, Cambra M, et al. Efficient production of transgenic citrus plant expressing the coat protein gene of citrus tristezavirus[J]. Plant Cell Rep, 2000, 19: 427-433.
    [54] Domínguez A, Cervera M, Perez RM, et al. Characterisation of regenerants obtained under selective conditions after Agrobacterium-mediated transformation of citrus explants reveals production of silenced and chimeric plants at unexpected high-frequencies[J]. Molecular Breeding 2004,14; 171-183.
    [55] Elena Z., Chartes S., and Peter M., Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobocco transgenes[J].Nat. Biotechnol.,2000,18:442-445.
    [56] Fagoaga C.,Rodrigo I.,Conejero V.,et al. Increased tolerance to Phytophthora citrophthora in transgenic orange plantas constitutively expressing a tomato pathogenesis related protein PR-5[J]. Molecular Breeding,2001,7:175-185.
    [57] Febres VJ, Niblett CL, Lee RF, Moore GA. Characterization of grapefruit plants (Citrus paradisi Macf.) transformed with citrus tristeza closterovirus genes[J]. Plant Cell Rep, 2003, 21: 421-428.
    [58] Frolich M W, Meyerowitz E M. The search for flower homeotic gene homologues in basal angiosperms and getales: a potential new source of data on the evolutionary origin of flowers.Plant Science. 1997, 158: 131-142.
    [59] Frolich M W, Parker D S. The mostly male theory of flower evolutionary origins from genes to fossils[J]. Systematic Botany. 2000, 25: 155-170.
    [60] Gentile A.Deng ZN.Malfa La S,et al. Enhanced resistance to Phoma tracheiphila and Botrytis cinerea in transgenic lemon plants expressing a Trichoderma harzianum chitinase gene. Plant Breeding,2006,125:1-6.
    [61] Ghorbel R, Juarez J, Navarro L, et al. Green fluorescent protein as a screenable marker to increase the efficiency of generating transgenic woody fruit plants[J]. Theor Appl Genet, 1999, 99: 350-358.
    [62] Gmitter FG, Moore GA. Plant regeneration from undeveloped ovules and embryogenic calli of citrus: Embryo production, germination and plant survival[J]. Plant Cell Tiss Org Cult, 1986, 6: 139-147.
    [63] Gutierrez-E MA, Luth, Moore GA. Factors affecting Agrobacterium-mediated transformation in Citrus and production of sour orange (Citrus aurantium L.) plants exprissing the coat protein gene of citrus tristeza virus[J]. Plant Cell Rep, 1997, 16: 745-753.
    [64] Haldrup A, Petersen SG, Okkels FT. Positive Selection: A Plant Selection Principle Based on Xylose Isomerase, An Enzyme used in the Food Industry[J]. Plant Cell Rep, 1998, 18: 76-81.
    [65] He Zhengquan, Fu Yaping, Si Hunmin. Phosphomannose-isomerase (PMI) gene as a selectable marker for rice transformation via Agrobacterium[J]. Plant Science, 166: 17-22.
    [66] Hidaka T, Omura M, Ugaki M, et al. Agrobacterium-mediated transformation and regeneration of Citrus spp.from suspension cells[J]. Japan J Breed, 1990, 40: 199-207.
    [67] Hidaka T., Omura M. Transformation of citrus protoplast by electroporation[J]. Japan Soc.Hort.Sci., 1993, 62: 371-376.
    [68] Holger P.,et al. Removing selectable marker genes:taking shortcut [J]. Trends in Plants Science ,2000,7.
    [69] Iwanami T, Shimizu T, Ito T, et al. Tolerance to Citrus mosaic virus in Transgenic Trifoliate Orange Lines Harboring Capsid Polyprotein Gene[J]. Plant Dis, 2004, 88(8): 865- 868.
    [70] Jack T, Brockmann LL. Euerpwttz EM. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS-box and is expressed in petals and stamens[J]. Cell. 1992, 68: 683-697.
    [71] James D J, Passey A J, Barbara D J. et al. Genetic transformation of apple (Malus pumilamill) using a disarmed Ti-binary vector[J]. Plant Cell Reports, 1989, 7: 658-661.
    [72] Januzzi Mendes B M, Luciana Boscariol R, Mourao Filho F D A A, et al. Agrobacterium-mediated genetic transformation of‘Hamlin’sweet orange[J]. Pesq Agropec bras, 2002, 37 (7): 955-961.
    [73] Jhy-jhu L, Nacyra A G, Jonathan K. Plant hormone effect of antibiotics on the transformation efficiency of plant tissues by Agrobacterium tumefaciens cells[J]. Plant Science, 1995, 109: 171-177.
    [74] Joersbo M, Donaldson I, Kreiberg J, et al. Analysis of mannose selection used for transformation of sugar beet[J]. Mol Breed, 1998, 4: 111-117.
    [75] Joersbo M, Petersen SG, Okkels SG. Parameters interacting with mannose selection employed for the production of transgenic sugar beet[J]. Physiol Plant, 1999, 105: 109-115.
    [76] Joersbo M, Mikkelsen JD, Brunstedt J. Relationship between promotor strength and transformation frequencies using mannose selection for the production of transgenic sugar beet[J]. Mol Breed, 2000, 6: 207-213.
    [77] Kennedy MO, otha FC, Burger JT. Pearl millet transformation system using the positive selectable marker gene phosphomannose-isomerase[J]. Plant Cell Rep, 22: 684-690.
    [78] Kim J Y, Jung M, Kim H S, et al. A new selection system for pepper regenration by mannose[J]. Journal Plant Biotechnology, 2002, 4(3): 129-134.
    [79] Kobayashi S.,Uchnimiya H.. Expression and integration of a foreigen gene in orange (Citrus sinensis Osb) Protoplasts by diresct DNA transfer[J]. Genet,1989,64:91-97.
    [80] Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T. Vectors carrying two separate T-DNA for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection marker. [J]. Plant J,1996,10:165-174.
    [81] Kuiper H A, Kleter G A, Notebon H, et al. Assessment of food safety issues related to genetically modified foods[J]. Plant J, 2001, 27: 503-528.
    [82] Li D D, Shi W, Deng X X. Agrobacterium-mediated transformation of embryogenic calluses of Ponkan mandarin and the regeneration of plants containing the chimeric ribonuclease gene[J]. Plant Cell Rep, 2002, 21(2): 153-156.
    [83] Lucca P, Ye X D, Potrykus I. Effective selection and regeneration of transgenic rice plants with mannose as selective agent[J]. Mol Breed, 2001, 7(1): 43-49.
    [84] Kojima,M, Arai,Y, Iwase,N, et al. Development of a simple and efficientmethod for transformation of buckwheat plants (Fagopyrumesculentum) using Agrobacterium tumefaciens[J]. Biosci Biotechnol Biochem, 2000,64:845–847.
    [85] MA B, Soowal LN, Lee L, Weigel D. LFY expression and flower initiation in Arabidopsis[J]. Development. 1997, 124: 3835-3844.
    [86] MA M, Yanofsky MF. A gene triggering flower formation in Arabidopsis[J]. Nature. 1995, 377: 522-524.
    [87] Msgdalena Cervera, Jose Juarez,Antonio ,Navarro,et al. Genetic transformation and regeneration of mature tissue of woody fruit plants bypassing the juvenile stage[J].Transgenic Research,1998,7:51-59.
    [88] Malca I, Endo RM, Long MR. Mechanism of glucose counteraction of inhibition of root elongation by galactose, mannose and glucosamine[J]. Phytopathology, 1967, 57: 272-278.
    [89] Molinari H.B.C., Bespalhok J.C., Kobayashi A.K.,et al. Agrobacterium tumefaciens-mediated transformation of Swingle citrumelo(Citrus paradise Macf.×Poncirus trifoliate L.Raf.)using thin epiecotyl sections[J]. Scientia Horticulurae,2004,(99):379-385.
    [90] Moreira-Dias J M, Molina R V, Guardiola J L, et al. Daylength and photon flux density influence the growth regulator effects on morphogenesis in epicotyl segments of Troyer citrange[J]. Sci Hort, 2001, 87: 275-290.
    [91] Moore GA, Jacono CC, Neidigh JL, et al. Agrobacter-mediated transformation of citrus stem segments and rgeneration of transgenic plants[J]. Plant Cell Rep, 1992, 11: 23-243.
    [92] Moore G A, Jacono C C, Neidigh J L, et al. Transformation in Citrus In: Bajaj YPS eds., Plant protoplasts and genetic engineering IV[M]. Biotechnology in agriculture and forestry, Berlin Heidelberg: Springer press, 1993: 194-208.
    [93] Mouradow A, Glassick TV, Hamdorf BA, et al. Family of MADS-box genes expressed early in male and female reproductive structures of Monterey pine[J]. Plant Physiol. 1998, 117: 55-61
    [94] Negrotto D et a1. The use of Phosphomannose-isomerase as a Selectable Marker to Recover Transgenic Maize Plants (Zea mays L.) via Agrobacterium Transformation[J]. Plant Cell Rep, 2000, 19: 798-803.
    [95] Paola L, Ye X, Ingo P. Effective selection and regeneration of transgenic rice plants with mannose as selective agent[J]. Molecular Breeding, 2001, 7: 43-49.
    [96] Pe?a L, Cervera M, Juarez J, et al. High efficiency Agrobacterium mediated transformation and regeneration of citrus[J]. Plant Sci, 1995a, 104: 183-191.
    [97] Pe?a L, Cervera M, Juarez J, et al. Agrobacterium mediated transformation of sweet orange and regeneration of transgenic plants[J]. Plant Cell Rep, 1995b, 14: 616-619.
    [98] Pe?a L, Cervera M, Juarez J, et al. Genetic transformation of lime (Citrus aurantifolia Swing) factors affecting transformation and regeneration[J]. Plant Cell Rep, 1997, 16: 731-737.
    [99] Pe?a L, Cervera M, Juarez J, et al. Genetic transformation as a tool for the introduction of agronomically importan genes into citrus plants[J]. Acta Horti cult, 1998, 463: 61-68.
    [100] Pe?a L, Martin-Trill M, et al. Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time[J]. Nature biotech, 2001, 19 ; 263-267.
    [101] Pe?a L, Perez R M, Cervera M, et al. Early Events in Agrobacterium-mediated GeneticTransformation of Citrus Explants[J]. Ann Bot, 2004, 94: 67-74.
    [102] Po-Yen Chen, Chen-Kuen Wang, Shaw-Ching Soong, et al. Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants[J]. Molecular Breeding, 2003, 11: 287-293.
    [103] Ramesh S A, Kaiser B N,et al. Improved methods in Agrobacterium mediated transformation of almond using positive (mannose pmi) or negative (kanamycin resistance) selection-based protocols[J]. Plant Cell Reports,2006.25:821-825.
    [104] Refiner. Genes for ribitol and D-arabitol catabolism in Escherichia coli: their loci in C strains and absence in K-12 and B strains[J]. J Bacteriol, 1975,123 (2): 530-536.
    [105] Reed J, Privallel M, Powell L, et al. Phosphomannose isomerase: an efficient selectable marker for plant transformation[J]. In Vitro Cell Dev Boil Plant, 2001, 37: 127-132.
    [106] Sarah J, Cindy Gustafson-Brown. Interactions among APETALA1, LEAFY and TERMINAL FLOWER1 Specify Meristem Fate[J]. The Plant Cell. 1999, 11: 1007–1018.
    [107] Shu G, Amaral W, Hileman LC, Amaral W, Hileman LC, Baum DA. LFY and the evolution of rosette flowering in violet cress(Jonopsidium acaule, Brassicaceae)[J].American Journal of Botany. 2000, 87: 634-641.
    [108] Supartana P, Shimizu T, Nogawa m, et al. Development of Simple and Efficient in Planta Transformation MEthod for Wheat (Triticum aestivum L.) Using Agrobacterium tumefaciens[J]. Journal of Bioscience and Bioengineering,2006,102(3):162-170.
    [109] Supartana P, Shimizu T, Shioiri H, et al. Development of simple andefficient in planta transformation method for rice (Oryzazativa L.) using Agrobacterium tumefaciens[J]. Biosci. Bioeng,2005,100:391–397.
    [110] Todd Rebecca, Tague BW. Phosphomannose Isomerase: A Versatile Selectable Marker for Arabidopsis thaliana Germ-Line Transformation[J]. Plant Molecular Biology Reporter, 2001, 19: 307-319.
    [111] Vardi A.,Bleichman S.,Aviv D..Gentic transfoumation of Citrus protoplasts and regeneration of transgenic plants[J].Plant Science,1990,69:199-206.
    [112] Vieille C, Hess JM, Kelly RM. Xyla cloning and sequencing and biochemical characterization of xylose isomerase from Thermotoga neapolitana[J]. Applied and Environmental Microbiology, 1995, 61(5): 1867-1875.
    [113] Wang AS, Evans RA, Altendorf PR, et al. A mannose selection system for production of fertile transgenic maize plants from protoplast[J]. Plant Cell Rep, 2000, 19: 654-660.
    [114] Weigel D, Coupland G. LFY blooms in a spen[J]. Nature. 1995, 377: 482-483.
    [115] Weisser P, Kramer R, Sprenger GA. Expression of the Escherichla coli pmi gene, encoding phosphomannose-isomerase in Zymomonas mobilis, leads to utilization of mannose as a novel growth substrate, which can be used as a selective marker[J]. Applied and Environmental Microbiology, 1996, 6, (11): 4155-4161.
    [116] Wigge P A, et al. Integration of spatial and temporal inforation during floral induction in Arabidopsis[J]. Science. 2005, 309(12): 1056-1059.
    [117] Wong W S, Li G G, Ning W, et al. Repression of chilling-induced ACC accumulation in transgenic citrus by over-production of antisense 1-aminocyclopropane-l-carboxylate synthase RNA[J]. Plant Sci, 2001, 161(5): 969-977.
    [118] Wright M, Dawson J, Dunder E, et al. Efficient biolistic transformation of maize (Zea mays L.) and wheat (Tricum aestivum L.) using the phosphomannose-isomerase gene (PMI) asthe selectable marker[J]. Plant Cell Rep, 2001, 20: 429-436.
    [119] Yang Z N,Ingelbrecht L.L.,Louzada E,et al.Agrobacterium-mediated transformation of the commercially important grapefruit cultivar Rio Red(Citrus paradise Macf.) [J].Plant Cell Reports,2000.19:1203-1211.
    [120] Yao J L, Wu J H, Gleave A P, et al. Transformation of citrus embryogenic cells using particle bombardment and production of transgenic embryos[J]. Plant Sci, 1996, 113: 175-183.
    [121] Yu Changhe, Huang Shu, Chen Chunxian, et al. Factors affecting Agrobacterium-mediated transformation and regeneration of sweet orange and citrange[J]. Plant Cell Tissue and Organ Culture, 2002, 71: 147-155.
    [122] Zuo J,Niu Q-W,Chua N H. An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants[J]. Plant Journal, 2000,2. Zhu Y J,Agbayani R,Heather M C,et al. Effective selection of transgenic papaya plants with the PMI-Man selection system[J]. Plant Cell Reports,2005,24:426-432.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700