新疆北部次宜棉区棉花群体构筑特征及其调控途径研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物构筑特征可以反映植物的生产性能。本实验探讨了棉花的形态可塑性、叶片格局分布、茎叶动态变化等特性,试图从这几方面探讨棉花高产的构筑特性和高产调控方法。主要结果如下:
     一、棉花占据空间的特性:
     在生育期内具有好的长势,在群体最大时期植株能够充分占据空间,并且茎、叶能够对太阳辐射、对疏密不同的空间做出适应性响应,是群体充分利用环境资源的表现之一。最明显的标志是群体可以形成适宜的结构。
     1.植株所占据的空间不同(株行距不同),各生育阶段的长势不同,才可能形成高产的群体结构。本实验中,密度为5×10~4株/hm~2,长势旺,小区产量高。蕾期LAI最大日增长量为0.156,节长和最快增长阶段日增长量为1.5cm(现蕾初期-现蕾盛期);花铃期-吐絮期LAI日增长量0.092。密度为25.6×10~4株/hm~2,长势较弱,小区产量也较高。蕾期LAI最大日增长量为0.03,节长和最快增长阶段日增长量为1.4cm(现蕾初期-现蕾盛期);花铃期-吐絮期LAI日增长量0.012。
     衡量棉花生长的关键时期可以通过形态可塑性大小来推断。可塑性最大的时期是棉花生长的关键时期。棉花叶片的分枝叶面积可塑性大小,可用于判定棉花的生长情况。长势正常的植株在吐絮期的单株分枝叶面积≥720cm~2。它与单株铃数的关系为:单株分枝叶面积在720cm~2-2000cm~2,单株结铃数y=-13.2424+3.10068ln(x);单株分枝叶面积在2000cm~2以上,单株结铃数y=2.7078+0.005182x-8.37148E-07x~2+1.02373E-10x~3(式中,x-单株分枝叶面积)。
     2.植株的茎叶能够占据稀疏空间时,单株的生产能力强。在株行距确定的条件下,长势旺盛的植株,能够通过枝叶生长占据稀疏空间(行间);长势弱的植株,可能会被长势旺的植株挤入行间。当植株的光照和通风条件得到改善时,植株的生产能力得到提高。
     3.当棉花叶片的倾角、光叶夹角、方位角能对太阳辐射做出适应性反应时,自身潜力能够得以发挥。在结铃盛期和结铃末期,至少有两个叶片角度指标能够对太阳辐射角度变化做出响应时,单株结铃数多。
     4.用Lewis-Leslie模型可基本模拟和反映棉花在打顶前LAI的动态变化趋势。该趋势可以作为了解棉花群体变化特性的参照。
     二、棉花结构特性
     当棉花茎叶形成一定的空间结构时,有利于充分利用太阳辐射、CO_2等资源。
     1.叶片的聚集分布:叶片聚集类别数与不同尺度呈幂指数关系。单株叶片及其聚集成的不同层次的类别数越多,单株结铃数也越多;满足幂律关系的范围越大(如7.3-28.4cm),该范围的初值越大(即叶片平均直径较大),小区产量越高。
     2.叶片的分形结构:当棉花封行后,单株、群体叶片的分维值(容量维或关联维)较大(如D_0=1.751或D_2=2.294)但两者相差不大、无标度区较大(如单株6.5-28.9cm,群体8.9-52.5cm),且群体无标度区范围大于单株无标度区范围和单株冠层幅宽时,棉花产量较高。
     3.叶片的格局分布:单株和群体叶片分布格局规模较大(如叶片数格局≥14cm,叶面积格局≥32cm),是棉花丰产的特性。如果存在多尺度格局,更有利于棉花生产潜力的发挥。
     4.单株冠层特性:当在棉花结铃盛期,单株冠层幅宽较大(不同密度群体的适宜冠层幅宽不同,如对于低密度群体,单株冠层幅宽68.7cm,对于高密度群体,32.9cm)、冠层垂直高度大(如对于低密度群体,冠层垂直高度64cm,对于高密度群体,42cm),从结铃盛期到结铃末期冠层幅宽和垂直高度变化小、冠层形状比率在1左右时,单株结铃数多。
     三、植株生长调控
     调控棉花植株生长主要采取水肥调控的方法。
     由于棉花是覆膜栽培,在苗期底墒充足或降水较多的情况下,会导致表层土壤水分过多影响根系生长。由于地膜的提墒作用,导致浅层土壤水分偏高,这不利于苗期根系向下生长,且容易导致蕾期或初花期植株抗旱能力下降,甚至表现出缺水伤害,因此需要提前灌水。在棉花蹲苗后,灌水量逐次增大,有利于棉花从缺水状态进入正常需水状态。根据棉花的生长状况,三种灌水方式[棉花前期灌水量少(73.6mm,现蕾中后期-盛花期前),灌水量每次逐渐增加;中期(结铃盛期)灌水量大(20天左右灌水144mm);后期(结铃末期-吐絮期)灌水量小(30天左右灌水量108.4mm),每次灌水量逐渐减少],对主茎叶面积、分枝叶面积、株高、茎粗、结铃数和单铃重等的提高都有积极意义。
     氮肥对棉花前期生长作用明显。当前期施氮肥多(尿素450kg/hm~2)时,对株高、主茎叶面积、分枝叶面积等有促进作用;施氮肥少(尿素150kg/hm~2)时,蕾铃脱落增加;施氮量适中(尿素300kg/hm~2)时,落叶少。当后期施氮肥量低时,对株高增长有利,有助于减少叶片脱落。
     在蕾期施用磷肥有促进主茎叶面积增加的作用;在开花期施磷肥量居中(三料300kg/hm~2)时,有利于主茎叶面积增大。施磷肥量大(三料450kg/hm~2)时,则植株增高明显。施磷肥量居中时,蕾铃脱落减少,主茎叶片数、主茎绿叶数等指标增加。
     在现有栽培条件下,以下措施有利于提高棉花产量:灌水量为3600m~3/hm~2或360mm,密度为5×10~4株/hm~2(籽棉产量:0.5617kg/m~2)或17.8×10~4株/hm~2(籽棉产量:0.6227kg/m~2),氮肥(尿素)为300kg/hm~2,磷肥(三料磷肥)300kg/hm~2,缩节胺67.5g/hm~2,打顶在初花期至盛花期。
Plant architecture can reflect the productivity of plant. In this paper, the characteristics of morphological plasticity, foliage distribution pattern and the dynamics of stem and leaf growth were studied. The characteristics of high-yield architecture of cotton population and the regulation methods were analyzed. The main results are as follows:
     1. The spatial characteristics of cotton population
     The performances of cotton population taking full advantage of environmental resources are such as good way in growth, fully occupation of space, active responses of stem and leaf to solar radiation and different space, among which the most obvious sign is the structure formed by cotton population.
     (1) When cotton plants can occupy different spaces and have different growth rates at different growing satges, they tended to form high-yield population structure. This experiment showed that when population density was 5×10~4/hm~2, cotton plants grew quickly and the population yield was high. The maximum increment of LAI per day was 0.156 in the bud stage of cotton. The biggest increment of the sum of internodes per day was 1.5cm from the beginning to the peak of bud stage. The increment of LAI per day was 0.092 from the blooming period to the wadding stage. When population density was 25.6×10~4 /hm~2, the cotton was growing slowly but the population yield was high too. The maximum increment of LAI per day was 0.03 at the bud stage. The biggest increment of the sum of internodes per day was 1.4cm from the beginning to the peak bud of stage. The increment of LAI per day was 0.012 from the blooming period to the wadding stage.
     The degree of morphological plasticity might be used to infer the critical period for cotton growth. When morphological plasticity showed biggest degree, it might be regarded as the critical period for cotton growth. The morphological plasticity of leaf area of branch might be used to judge the cotton growth. If the leaf area of branch per cotton plant was not less than 720cm~2 at the wadding stage, the plant might be regarded as normal in growth.The relationship between the number of bolls and the leaf area of branch per cotton plant was y= -13.2424+3.10068ln(x), when the leaf area of branch per plant was between 720cm~2-2000cm~2; and y=2.7078+0.005182x-8.37148E-07x~2+1.02373E-10x~3, when the leaf area of branch per plant was more than 2000cm~2 (here, y: the number of bolls per plant; x: the leaf area of branch per plant).
     (2) When the stems and leaves could occupy the sparse space, the productivity per plant was high. When the distances between rows and plants were determined, the plants that grew quickly could occupy the space between rows by the growth of stems and leaves, whereas the plants that grew slowly tended to hedge the competition from the strong plants and grew in the sparse space. When the situations of illumination and ventilation were improved, the productivity increased.
     (3) When the leaf inclination angles, azimuth angles, angles between leaf and solar ray could adaptively respond to the solar radiation, the potential of productivity of cotton plant could be played. When at least two indices of leaf angles responded to the angles of solar radiation, cotton plant could bear more bolls at the peak boiling stage and the late boiling stage.
     (4) LAI dynamic trend before topping could be simulated by Lewis-Leslie model, which could be used as a reference for understanding the changes of the characteristics of cotton population.
     2. The structural characteristics of cotton population
     When the stems and leaves of cotton plants formed certain spatial structures, solar radiation and carbon dioxide could be fully used.
     (1) Aggregate distribution of foliage. The relationship between the number of category of leaf assemblage and the scales was power exponential function. When there were more number of category of assemblage of leaves and layers, the number of bolls per plant tended to be more. When the range that met the relationship of power exponential function was broad, such as 7.3-28.4cm, and the initial value (i.e. the mean diameter of leaves) of the range was big, the plot yield tended to be high.
     (2) The fractal structure of foliage. When the values of fractal dimensions of single and population were big, such as D_0=1.751 or D_2=2.294, and the difference between them was small, and the scale invariant range was broad, such as 6.5cm-28.9cm for the single plant and 8.9cm-52.5cm the population, and the scale invariant range of the population was wider than that of single plant and the canopy breadth of single plant. the plot yield tended to be high.
     (3) The foliage distribution pattern. When the scales of distribution patterns of leaves of single plant and population were big, such as not less than 14cm for the pattern of number of leaves, and not less than 32cm for the pattern of leaf areas, the plot yield tended to be high. If there was a multi-scale pattern, the potential of productivity of cotton population tended to be played fully.
     (4) The canopy characteristics of single cotton plant. When the canopy width was broad, such as 68.7cm for the population with lowest density, and 32.9cm for the population with highest density, the vertical height of canopy is high at the peak boiling stage, such as 64cm for the population with lowest density, and 42cm for the population with highest density, and the changes of width and vertical height of canopy were small from peak boiling stage to late boiling stage, and crown shape ratio was about 1, there tended to be more bolls per plant.
     3. The control of growth of cotton plant
     The main methods used to control the growth of cotton plants were water- and fertilizer-control methods.
     Since cotton plants were cultivated under plastic film mulch, if soil water storage or rainfall was enough during seedling stage, surface soil would contain too much water affeting the growth of root system. The coverage of plastic film increased the surface soil moisture, which inhibited the growth of root system deeply and decreased the drought-resistant ability of plants, and even damage the plants. In this case, irrigation should be carried out in advance. After hardening of seedlings, gradually increased irrigation helped cotton plants grow up from water-scarcity state to normal state of water demand. According to the stages of cotton growth, using three irrigation methods increased the leaf areas of the main stems and the branches, stem height, diameters of the stems, number of bolls and single boll weight.
     The effects of nitrogenous fertilizer to the growth of cotton was obvious in the initial period. The application of more nitrogenous fertilizer, such as 450kg/hm~2 for urea, promoted the growth of stem heights, leaf areas of the main stems and of branches at the initial period of cotton growth. The application of less nitrogenous fertilizer, such as 150kg/hm~2 for urea, the shedding of buds and fruits increased. The application of suitable amount of nitrogenous fertilizer, such as 300kg/hm~2 for urea, the falling of leaves decreased. When applying less amount of nitrogenous fertilizer at the late growing stage, promoted the growth of stem height and decreased the falling leaves.
     The application of phosphate fertilizer promoted the increase of leaf areas of the main stem at the bud period. At the blooming period, when applying phosphate fertilizer at the medium level, the leaf areas of the main stem increased, whereas when increased the application of phosphate fertilizer, the stem height increased obviously. When applying phosphate fertilizer at the medium level, the number of shedding buds, total leaf and green leaf of the main stems increased.
     At the present cultivation conditions, the following treatments might promote the yield of cotton: irrigation: 3500m~3/hm~2 or 360mm water, population density: 5×10~4 /hm~2 or 17.8×10~4 /hm~2, nitrogenous fertilizer (urea): 300kg/hm~2, phosphate fertilizer (double superphosphate): 300kg/hm~2, DPC: 67.5g/hm~2, date of topping: from the beginning of blooming period to the peak blooming period.
引文
1. Campbell G.S. and Norman J.M.(1989).The description and measurement of plant canopy structure [C]. In Plant canopies: their growth, form and Junction, ed. G. Russell, B. Marshall, P. G. Jarvis, pp. 1-19. Cambridge University Press, Cambridge.
    2. Canham Charles D. Growth and canopy architecture of shade-tolerant trees: response to canopy gaps [J]. Ecology. 1988, 69(3):786-795
    3. Dornbusch Tino, Wernecke Peter, Diepenbrock Wulf (2007). A method to extract morphological traits of plantorgans from 3D point clouds as a database for an architectural plant model [J]. Ecological Modelling 200:119-129
    4. Ehleringer James. R., Forseth Irwin N. (1989). Diurnal leaf movements and productivity in canopies [C].In Plant canopies: their growth, form and Junction, ed. G. Russell, B. Marshall, P. G. Jarvis, pp. 129-142. Cambridge University Press, Cambridge.
    5.Gautier H.Mech R,Prusinkiewici P,Varlet-Grancher C.(2000).3D Architectural Modelling of Aesial Photomorphogenesis in White Clover(Trifolium repens L.) using L-systems[J]. Annals of Botany, 85:359-370.
    6. Godin C., Costes E., Sinoquet H. (1999). A method for describing plant architecture which integrates topology and geometry [J]. Annals of Botany 84:343-357
    7. Hana J.S., Hearn A.B. (2003). Linking physiological and architectural models of cotton [J]. Agricultural System 75: 47-77
    8. Harper John L.(1989). Canopies as populations [C]. In: Plant canopies: their growth, form and Junction. ed. G. Russell, B. Marshall, P. G. Jarvis, pp. 105-128. Cambridge University Press, Cambridge.
    10. Kuuluvainen. Timo. (1992).Tree architecture adapted to efficient light utilization: is there a basis for latitudinal gradients?.[J] Oikos 65:275-284
    11. Lang A.R.G, Xiang yueqin, Norman J. M. (1985). Crop structures and the penetration of direct sunlight [J]. Agricultural and Forest Meteorology 35: 83-101
    12. Lemeur R. (1973). A method for simulating the direct solar radiation regime in sunflower, Jerusalem artichoke, corn and soybean canopies using actual stand structure data [J]. Agricultural Meteorology 12: 229-47
    13. Nancy E., Jeffrey Stamp, Lucast R. (1990). Spatial patterns and dispersal distances of explosively dispersing plants in florida sandhill vegetation [J]. Journal of Ecology 78: 589-600
    14. Raupach M. R. (1989). Turbulent transfer in plant canopy[C]. In Plant canopies: their growth, form and function, ed. G. Russell, B. Marshall, P. G.Jarvis, pp. 41-62. Cambridge University Press,Cambridge.
    15. Reinhardt Didier, Kuhlemeier Cris. (2002). Plant architecture [J]. EMBO Reports. Academic Research Library 3(9):pp. 845-851
    16. Roselyne Lacaze, Jing M. Chen, Jean-Louis Roujean, Sylvain G.Leblance. (2002). Retrieval of vegetation clumping index using hot spot signatures meatured by POLDER instrument [J]. Remote Sensing of Environment 79: 84-95
    17. Sadras Victor O. (1996). Cotton responses to simulated insect damage: radiation-use efficiency, canopy architecture and leaf nitrogen content as affected by loss of reproductive organs [J]. Field Crops Research 48: 199-208
    18. Thomson Alan J., Cocksedge Wendy. (2006). Salal (Gaultheria shallon) harvest: A plant architecture model [J]. Computers and Electronics in Agriculture 54:84-92
    19. Tremmel D.C, Bazzaz F. A. (1995). Plant architecture and allocation in different neighborhoods:
    ??Impications for competitive success fJ].Ecology 76(1):262-271.
    
    20.Loomis R.S.,Commor D.J.(1996).李雁鸣,梁卫理,崔彦宏,李占英等译(2002).作物生态学—农业系统的生产力及管理[M].中国农业出版社
    
    21.包国章,李向林,房春生,谢忠雷,沈万斌.(2001).土壤速效磷浓度对白三叶构型及能量分配的影响[J].草地学报,9(9):265-269
    
    22.北京市农业学校主编.(1999).植物及植物生理学[M].中国农业出版社
    
    23.蔡焕杰,康绍忠.(1997).棉花冠层温度的变化规律及其用于缺水诊断研究[J].灌溉排水16(1):1-5
    
    24.陈波,达良俊.(2003).栲树不同生长发育阶段的枝系特征分析[J].武汉植物学研究21(3):226-231
    
    25.陈敏.(2007).青藏高原东部四种风毛菊属植物表型可塑性的比较研究[D].兰州大学硕士学位论文
    
    26.陈颙,陈凌编著.(2005).分形几何学[M].地震出版社
    
    27.陈玉娟,李新裕,张新玲.(2001).矮密早体系高产棉花构件发育规律的研究[J].新疆农业科学38(4):171-173
    
    28.陈玉娟,李新裕,张新玲.(2001).株高日增长量化指标对棉花高产稳产的影响[J].塔里木农垦大学学报13(3):49-50.
    
    29.陈玉娟,李新裕.(2001).缩节胺对棉花主茎节间抑制作用的研究[J].新疆农业科学,38(2):89-90
    
    30.单玉珊.(2001).小麦高产栽培技术原理[M].科学出版社
    
    31.董合忠,李维江,唐薇,李振怀.(2000).旱地棉花施肥技术与机理研究[J].莱阳农学院学报17(1):7-11
    
    32.段若溪,姜会飞 主编.(2006).农业气象学[M].气象出版社.
    
    33.樊梅英,夏日红,曹万友,陈黎.(2007).睫毛萼凤仙花响应土壤水分和竞争的表型可塑性[J].资源开发与市场,23(11):968-970
    
    34.樊映川等编.(1964).高等数学讲义(上册)[M].高等教育出版社.
    
    35.冯广龙,罗远培,刘建利,杨培岭.(1997).不同水分条件下冬小麦根与冠生长及功能间的动态消长关系.干旱地区农业研究[J].15(2):73-79.
    
    36.付明鑫,向敏超,孟风轩,许咏梅.(2000).阿克苏棉区不同氮磷钾配比对棉花产量的影响[J].西北农业学报,9(2):117-120.
    
    37.傅福道.(2001).PG微生物土壤磷活化剂在棉花上应用效果[J].江西棉花,23(2):13-14.
    
    38.高璆,马克浓编著.(1982).棉花的产量形成及其诊断[M].上海科学技术出版社.
    
    39.高延军,裴冬,张喜英,陈素英,刘孟雨.(2004).棉花调亏灌溉效应研究[J].中国生态农业学报,12(1):136-139.
    
    40.耿宇鹏,张文驹,李博,陈家宽.(2004).表型可塑性与外来植物的入侵能力[J].生物多样性,12(4):447-455.
    
    41.顾正清,王小琳,刘章勇.(1998).棉花株型控制与生产力关系研究[J].耕作与栽培,1:13-16.
    
    42.关保华,葛滢,樊梅英,牛晓音,卢毅军,常杰.(2003).华荠苧响应不同土壤水分的表型可塑性[J].生态学报,23(2):259-264.
    
    43.关保华.(2004).石荠苧属(Mosla)四种植物响应土壤水分的表型可塑性比较研究[D].浙江大学博士学位论文.
    
    44.何池全,赵魁义.(2003).毛果苔草种群地上生物量与株长或鞘高分形特征[J].应用生态学报14(4):640-642.
    
    45.何明珠,王辉,张景光.(2005).民勤荒漠植物枝系构型的分类研究[J].西北植物学报,25(9):1827-1832.
    
    46.何念祖,孟赐福编著.(1987).植物营养原理[M].上海科学技术出版社.
    
    47.何维明,钟章成.(2000).攀援植物绞股蓝幼苗对光照强度的形态和生长反应[J].植物生态学报,24(3):375-378.
    
    48.侯秀玲,张炎,王晓静,李磐,盛建东.(2006).新疆超高密度棉田氮肥运筹对产量和氮肥利用的影响[J].棉花学报,18(5):273-278.
    
    49.胡延吉,兰进好.(2001).山东省冬小麦品种冠层结构及光截获的研究[J].中国农业气象,2(3):28-32.
    
    50.黄春燕,王登伟,闫洁,张煜星,程诚.(2006).基于红边参数的棉花冠层叶片氮积累量之估算研究[J].中国农学通报,22(7):563-569.
    
    51.纪从亮,俞敬忠,刘友良,吴云康.(2000).棉花高产品种的株型特征研究[J].棉花学报.12(5):234-237.
    
    52.蒋云飞,刘九庆,韩玉杰.(2004).传感技术在精确检测植物水分中的应用研究[J].林业机械与木工设备,32(12):49-51.
    
    53.金静,钟章成,刘锦春,何跃军.(2005).石灰岩地区土壤水分对木豆表型可塑性的影响[J].西南农业大学学报(自然科学版),27(1):89-92.
    
    54.金聿,陈布圣.(1987).棉花栽培生理.农业出版社[M].
    
    55.鞠浩荃,(1999).植物及植物生理学[M].中国农业出版社.
    
    56.李静,马小凡,郭平,包国章.(2006).施肥及施加植物激素对羊草克隆构型的影响[J].草业科学,23(1):18-21.
    
    57.李莉,田长彦,吕昭智,黄子蔚.(2003).缩节胺对棉花苗期主茎生长的影响[J].干旱地区农业研究,21(4):26-30.
    
    58.李伟,张书慧,张倩,董朝闻,张守勤.(2007).近红外光谱法快速测定土壤碱解氮、速效磷和速效钾含量[J].农业工程学报,23(1):55-59.
    
    59.李昌龙,赵明,王玉魁.(2007).不同密度四翅滨藜人工种群的分枝格局可塑性分析[J].西北林学院学报,22(2):5-8.
    
    60.李春喜,王志和,王文林.(2001).生物统计学(第二版)[M].科学出版社.
    
    61.李凤日.(2004).长白落叶松人工林树冠形状的模拟[J].林业科学,40(5):16-24.
    
    62.李慧卿,赵秀莲,张景波,李慧勇,江泽平,张洪江.(2005).乌兰布和沙漠东北缘不同灌溉模式绿洲外围半固定白刺群落格局研究[J].林业科学研究,18(2):158-162.
    
    63.李火根,黄敏仁.(2001).分形及其在植物研究中的应用[J].植物学通报,18(6):684-69.
    
    64.李伶俐,马宗斌,林同保,房卫平,谢德意.(2007).控释氮肥对棉花的增产效应研究[J].中国生态农业学报,15(3):45-47.
    
    65.李素清,李斌,张金屯.(2006).基于DCA-TTLQV的云顶山亚高山草甸群落格局分析[J].草业学报,15(6):44-48.
    
    66.李亚兵,毛树春,王香河,韩迎春,刘伟,王国平,范正义.(2006).棉花早衰程度诊断数码图像数字化指标的研究[J].棉花学报,18(3):160-163.
    
    67.梁红.(2002).我国“精准农业”现状及发展对策[J].农业与技术,22(3):55-59.
    
    68.梁士楚,王伯荪.(2002).红树植物木榄种群植冠层结构的分形特征.海洋通报,21(5):26-31.
    
    69.林红梅,韩忠明,吴劲松,杨利民.(2006).粗茎鳞毛蕨种群形态性状及其生态可塑性的研究[J].吉林农业大学学报,28(4):398-402.
    
    70.凌启鸿等.(1994).稻作新理论—水稻叶龄模式[M].科学出版社.
    
    71.刘桃菊,唐建军,戚昌瀚.(2002).水稻形态的分形特征及其可视化模拟研究[J].江西农业大学学报(自然科学版),24(5):583-586.
    
    72.刘庭凯,邹学新,赵婷婷,黄海波,王俊刚,麻琳.(2005).桂花叶片的分形特征[J].武汉植物学研究23(2):199-202.
    
    73.刘微,赵同科,方正,王树涛.(2005).精准农业研究进展[J].安徽农业科学,33(3):506-507.
    
    74.刘小平,董治宝.(2003).空气动力学粗糙度的物理与实践意义[J].中国沙漠,23(4):337-346.
    
    75.刘秀萍,陈丽华,宋维峰,吴彦霖.(2007).油松根系形态分布的分形分析研究[J].水土保持通报,27(1):47-51.
    
    76.刘焱选,白慧东,蒋桂英.(2007).中国精准农业的研究现状和发展方向[J].中国农学通报,23(7):577-582
    
    77.刘永平,李洪芹,张贵才.彭春香,李志欣.(1994).棉花开心栽培的增产机理[J].中国棉花(实用技术),21(7):26
    
    7/.张贵才.(1999).棉花开心株型增产栽培技术研究.中国农学通报[J],15(1):13-15.
    
    79.陆霞梅,周长芳,安树青,方超,赵晖,杨茜,颜超.(2007).植物的表型可塑性_异速生长及其入侵能力[J].生态学杂志,29(9):1438-1444.
    
    80.吕新,白萍,王克如.(2001).不同棉花品种群体冠层构成分析[J].中国棉花,28(4):4-1.
    
    81.吕新,李振河,李少昆,马富裕,张旺峰.(1997).北疆高产棉田冠层结构特性初步分析[J].新疆农业大学学报,20(4):29-31.
    
    82.吕建海,陈曦,王小平,包安明.(2004).大面积棉花长势的MODIS监测分析方法与实践[J].干旱区地理,27(1):118-123.
    
    83.罗志桢.(2006).河西走廊地区不同氮磷钾最佳配比对棉花产量影响[J].中国农学通报,22(1):191-193.
    
    84.骆郴,刘彤,魏鹏,宋红丽,赵峰侠.(2004).不同光照条件下新疆小拟南芥(Arabidopsis Pumila)的表型可塑性研究[J].石河子大学学报(自然科学版),22(2):149-153.
    
    85.梅拥军,徐僔,魏新水,成金丽,孙守营,徐富.(1998).缩节胺对中棉所23号产量及形态形状空间分布的影响[J].塔里木农垦大学学报,10(1):26-30.
    
    86.孟兆江,段爱旺,刘祖贵,张寄阳.(2005).根据植株茎直径变化诊断作物水分状况研究进展[J].农业工程学报,21(2):30-33.
    
    87.牛哓颖,钱东平,王秀,杨世凤,邵利敏.(2005).基于归一化植被指数的变量施肥控制系统研究[J].河北农业大学学报,28(2):94-98.
    
    88.潘瑞炽主编.(2001).植物生理学[M].高等教育出版社.
    
    89.潘文斌,蔡庆华.(2000).保安湖—湖湾大型水生植物群落格局的研究[J].水生生物学报,24(5):412-417.
    
    90.庞雄飞.(2002).害虫种群的生态控制[M].高等教育出版社.
    
    91.邵光成,张展羽,蔡焕杰,俞双恩,邢文刚.(2004).膜下滴灌棉花缺水诊断指标的试验研究[J].河海大学学报(自然科学版),2004年05期.(无页码显示)
    
    92.石雪峰,夏建新,吉祖稳.(2006).空气动力学粗糙度与植被特征关系的研究进展[J].中央民族大学学报(自然科学版),15(3):218-225.
    
    93.史刚荣,蔡庆生.(2006).白三叶叶片解剖可塑性及其对光强的响应[J].草地学报,14(4):301-305.
    
    94.宋世德,郭满才 主编.(2002).数学试验[M].高等教育出版社.
    
    95.宋永昌.(2001).植被生态学[M].华东师范大学出版社.
    
    96.汤孟平,唐守正等.(2003).Ripley's K(d)函数分析种群空间分布格局的边缘校正[J].生态学报,23(8):1533-1538.
    
    97.唐胜,郑曙峰,阚画春,徐道青.(2005).棉花水分高效利用株型与群体质量控制[J].安徽农业科学,33(7):1165,1179.
    
    98.陶建平,钟章成.(2003).光照对苦瓜形态可塑性及生物量配置的影响[J].应用生态学报,14(3):336-340.
    
    99.王本洋,余世孝,王永繁.(2006).植被演替过程中种群格局动态的分形分析[J].植物生态学报,30(6):924-930.
    
    100.王本洋,余世孝,王永繁.(2006).种群分布格局的各向异性分析[J].中山大学学报(自然科学版),??45(2):83-87.
    
    101.王本洋,余世孝.(2005).种群分布格局的多尺度分析[J].植物生态学报,29(2):235-241.
    
    102.王建华,顾永圣,李新宇,林琭,汤一卒.(2006).双秆棉产量品质优势及其成铃机理的研究[J].棉花学报,18(1):47-52.
    
    103.王克如,李少昆,曹连莆,宋光杰,陈刚,曹栓柱.(2003).新疆高产棉田氮、磷、钾吸收动态及模式初步研究[J].中国农业科学,36(7):775-780.
    
    104.王克如.(2000).新疆超高产棉花(3000kg/hm~2)群体质量特征及栽培策略研究[D].石河子大学硕士学位论文.
    
    105.王荣栋,尹经章主编.(2000).作物栽培学[M].新疆科技卫生出版社.
    
    106.王新忠,王熙,王智敏.(2002).精准农业与变量施肥技术[J].黑龙江八一农垦大学学报,14(4):25-27.
    
    107.王永锐.(1991).作物高产群体生理[M].北京科学技术文献出版社.
    
    108.危常州,张福锁,朱和明,侯振安,郭冠山,鲍柏洋.(2002).新疆棉花氮营养诊断及追肥推荐研究[J],中国农业科学,35(12):1500-1505.
    
    109.尉秋实,王继和,李昌龙,庄光辉,陈善科.(2005).不同生境条件下沙冬青种群分布格局与特征的初步研究[J].植物生态学报,29(4):591-598.
    
    110.吴华兵,朱艳,田永超,姚霞,刘晓军,周治国,曹卫星.(2007).棉花冠层高光谱指数与叶片氮积累量的定量关系[J].作物学报,33(3):518-522.
    
    111.肖强,叶文景,朱珠,陈瑶,郑海雷.(2005).利用数码相机和Photoshop软件非破坏性测定叶面积的简便方法[J].生态学杂志,24(6):711-714.
    
    112.肖伟,夏连胜,王万志,刘树堂.(2006).长期定位施肥对夏玉米生长发育的影响[J].安徽农业科学,34(16):4058-4059.
    
    113.徐立华,朱永歌,王铁书,卢霞.(2000).密度对棉花叶枝利用的调节效应[J].江苏农业科学,5:26-27.
    
    114.许凯扬,叶万辉,李静,黄忠良,李国民.(2005).入侵种喜旱莲子草对土壤水分的表型可塑性反应[J].华中师范大学学报(自然科学版),39(1):100-1003.
    
    115.阎凌云主编.(2006).农业气象[M].中国农业出版社.
    
    116.杨曙辉,丛者福,魏岩,宋于洋.(2006).梭梭植冠的构筑型分析[J].新疆农业科学,43(1):6-10.
    
    117.杨在娟,岳春雷,汪奎宏.(2002).光照强度对雷竹无性系生长的影响[J].浙江林业科技,22(3):74-77.
    
    118.姚延娟,阎广建,王锦地.(2005).多光谱多角度遥感数据综合反演叶面积指数方法研究[J].遥感学报,9(2):117-122.
    
    119.余渝,陈冠文,林海,王波.(2001).北疆棉田叶面积系数变化动态的研究[J].棉花学报,13(5):300-303.
    
    120.俞希根,孙景生,肖俊夫,刘祖贵,张寄阳.(1999).棉花适宜土壤水分下限和干旱指标研究[J].棉花学报,11(1):35-38.
    
    121.张军,王一鸣,毛文华,董乔雪,赵燕东.(2007).棉花冠层叶面积的动态模拟[J].农业机械学报,38(6):117-120.
    
    122.张伟,吕新:(2004).棉花冠层对不同灌水量的反应及其产量形成研究[J].干旱区研究,21(4):425-429.
    
    123.张福锁主编.(1993).环境胁迫与植物营养[M].北京农业大学出版社.
    
    124.张怀志,曹卫星,周治国,朱艳,张立桢.(2003).棉花适宜叶面积指数的动态知识模型[J],棉花学报,15(3):151-154
    
    125.张寄阳,段爱旺,孟兆江,刘祖贵.(2006).基于茎直径微变化的棉花适宜灌溉指标初步研究[J].农业工程学报,22(12):86-89.
    
    126.张金屯,米湘成.(1999).山西五台山亚高山草甸优势种群和群落的格局研究[J].河南科学,17:65-67
    
    127.张金屯.(2004).数量生态学[M],科学出版社.
    
    128.张金柱,徐学华,杨艳坡,张慧.(2007).太行山片麻岩区整体景观格局分析[J].中国生态农业学报,15(6):161-164.
    
    129.张巨松,周抑强,陈冰,张权中,贺宾.(1999).棉花“矮、密、早”高产栽培调控机理的研究[J].新疆农业大学学报,22(4):283-288.
    
    130.张立桢,潘学标,李亚兵,延琴,Peter Cull,李红娟.(1998).棉花不同群体冠层特征的映像分析[J].棉花学报,10(3):140-145;
    
    131.张玲丽,王辉,孙道杰,冯毅.(2004).高产小麦品种冠层形态结构及其与产量性状的关系[J].西北植物学报,24(7):1211-1215.
    
    132.张旺锋,王振林,余松烈,李少昆,曹连莆,王登伟.(2002).氮肥对新疆高产棉花群体光合性能和产量形成的影响[J].作物学报,28(6):789-796.
    
    133.张旺锋.(2001).新疆高产棉花光合生产特征及其调控研究[D].山东农业大学博士学位论文.
    
    134.张伟,吕新.(2004).不同灌水量对棉花冠层结构的影响极其调控作用[J].新疆农业科学,41(1):17-20.
    
    135.张伟,吕新,朱芸,曹连莆.(2005).不同灌水量下新疆高产棉花冠层结构分析研究及产量初报[J].新疆农业科学,42(2):77-82.
    
    136.赵书军,姚其华,陈明亮.(2001).植物根系养分吸收机理模型在研究棉花施磷技术上的应用[J].湖北农业科学,5:40-43
    
    137.赵相健,王孝安.(2005).太白红杉分枝格局的可塑性研究[J].西北植物学报,25(1):0113-0117.
    
    138.中国农业科学院棉花研究所主编.(1999).棉花优质高产的理论与技术[M].中国农业出版社.
    
    139.周桂生,封超年,李国生,余月书,孙冲,吴进.(2005).密度和磷钾肥配比对棉花盛花期主要害虫和天敌种群的影响[J].安徽农业科学,33(3):389-390.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700