鲢鳙相关形态性状数量性状定位分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鲢(Hypophthalmichthys molitrix)和鳙鱼(Hypophthalmichthys nobilis)是我国特有的四大家鱼的两个重要成员,在我国淡水养殖业中占有重要的地位。但近年来,由于人口的增长和人类经济活动以及对于鲢鳙鱼不完善的遗传管理方法和使用方法等原因,使得这两种鱼的生长表现、抗病抗逆和遗传多样性都明显降低。随着分子生物学的快速发展,采用分子育种与传统育种相结合的方式选育性状优良品种,是保持鲢鳙养殖业健康发展与种质资源的可持续利用的有效途径。本研究以鲢鳙作为主要研究对象,构建了鲢鳙全微卫星标记的连锁图谱,并首次对鲢鳙杂交子代相关的11个形态性状进行了QTL定位分析,为推动鲢鳙分子遗传育种工作的开展奠定了基础。
     1.鲢鳙遗传连锁图谱的构建
     本研究采用拟测交策略,以捕捞自长江流域的野生鳙鱼(♀)和野生鲢鱼(♂)为父母本,通过人工授精产生的176个F1个体作为作图群体。采用包括实验室开发的各种来源的微卫星引物共882对,在群体中进行基因分型。筛选得到297个多态性标记,用于遗传连锁图谱的构建。构建鲢鳙性别平均连锁图谱,鲢雄性连锁图谱以及鳙雌性连锁图谱。
     鲢鳙性别平均连锁图谱共定位247个微卫星标记(其中15个标记为实验室自己开发的,但在之前研究中未定位到鲢鱼连锁图谱上的标记),这些标记分布于25个连锁群(包括2个三联体和2个连锁对)。图谱总长度1010.4cM,图谱覆盖率达81.0%。233个座位间最大间隔24.8cM,平均间隔4.4cM,连锁群长度1.2cM到67.5cM,平均每个连锁群长度40.4cM。每个连锁群标记数2到19个,平均每个连锁群上标记数为9.9个。
     鳙雌性连锁图谱共定位180个微卫星标记,分布于30个连锁群中(4个三联体9个连锁对)。图谱长度960.0cM,图谱覆盖率68.4%。148个座位间最大间隔为29.5cM,平均间隔6.4cM。各连锁群长度在1.2-108.1cM之间,平均连锁群长度为32.0cM。每个连锁去标记数从2-平均每个连锁群标记数为6.0个。
     鲢雄性连锁图谱共定位167个微卫星标记,分布于32个连锁群(5个三联体9个连锁对)。图谱长度为803.1cM,图谱覆盖率为66.4%。133个座位间最大间隔为30.6cM,平均间隔为5.9cM。各连锁群长度在2.3cM-99.9cM之间,连锁群平均长度25.1cM。每个连锁群标记数为2-11个,平均每个连锁群标记数为5.2个。
     2.鲢鳙相关形态性状的QTLs定位初步研究
     利用已经构建的鲢鳙性别平均连锁图谱,采用MapQTL5.0软件对,对鲢鳙杂种的体重、体长、体宽、体厚、头长、头高、腹棱长、胸鳍长、腹鳍长、尾鳍长和胸鳍到腹鳍之间的距离总共11个重要的形态性状进行了QTL定位分析,这11个表型相关系数均达到了极显著水平(P<0.001),Person相关系数从0.950到0.996。该11个形态性状QTLs被定位到鲢鳙性别平均连锁图谱的总共6个连锁群上,每个形态性状定位QTL数目在1-6个之间,单个QTL的可释方差在9.1%到23.8%之间。研究发现许多性状QTL被定位到同一连锁群的同一位置,以连锁群19为例,11个形态性状的QTL都被在标记Hym435和Hym145之间区域内。另外如连锁群10和连锁群17,也各自定位了8个形态性状,而连锁群4、5、9,各自定位的性状数目为2-4。
Silver carp (Hypophthalmichthys molitrix) and bighead carp(Hypophthalmichthys nobilis) are two of the four most important pond-cultured fishspecies, which occupies important status in freshwater aquaculture in China. InRecent years, due to many factors such as increase of human population, theintensification of economical activity, inappropriate broodstock management,continuous artificial propagation over a long period of time has caused tremendousdecrease of genetic diversity and degeneration of disease resistance and growthperformance.With the rapid development of molecular biology, it is an effectiveapproach to cultivating the good strains using the combination of molecular breedingand traditional breeding for the sustainable development of the two fishes fishery andutilization of germplasm resources. In this study, genetic linkage map and QTLmapping of11morphometric body measurements of silver carp and bighead wereconstructed using microsatellite DNA markers, which provides strong support forpromoting the application of molecular genetics and breeding of silver carp andbighead carp.
     1.Construction of linkage map for silver carp and bighead carp
     In this study, a segregating population including176fingerling individualsfrom cross between a wild bighead carp (♀) and a silver carp(♂)collected from themain channel of Yangtze River was obtained based on the double pseudo-testcrossmapping strategy.882pairs of microsatellites primers used for genotyping includedthose developed ourselves and other sources.297pairs of polymorphismmicrosatellites primers was used to construct the different genetic linkage maps of silve carp and bighead carp: the sex average linkage map, the female (bighead carp)linkage map, the male (silver carp) linkage map.
     The sex average linkage map consisted of247microsatellites (15microsatellitesdeveloped ourselves but unmapped on the linkage map of silver carp we constructedearlier) assigned to25linkage groups (including2triplets and2doublets) thatspanned a length of1010.4cM, covering81.0%of the estimated genome size. Themaximum and average spaces between233loci were24.8cM and4.4cMrespectively. The length of linkage groups ranged from1.2cM to67.5cM with anaverage of40.4cM. The number of microsatellite markers per group varied from2to19with an average of9.9.
     The female (bighead carp)linkage map consisted of180microsatellites assignedto30linkage groups (including4triplets and9doublets) that spanned a length of960.0cM, covering68.4%of the estimated genome size. The maximum and averagespaces between148loci were29.5cM and6.4cM respectively. The length of linkagegroups ranged from1.2cM to108.1cM with an average of32.0cM. The number ofmicrosatellite markers per group varied from2to16with an average of6.0.
     The male (silver carp)linkage map consisted of167microsatellites assigned to32linkage groups (including5triplets and9doublets) that spanned a length of803.1cM, covering66.4%of the estimated genome size. The maximum and averagespaces between133loci were30.6cM and5.9cM respectively. The length of linkagegroups ranged from2.3cM to99.9cM with an average of25.1cM. The number ofmicrosatellite markers per group varied from2to11with an average of5.2.2. Quantitative trait loci for morphometric body measurements of the hybrids ofsilver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis)The location and effects of QTLs were estimated for body weight, standard length,body depth, body thickness, head length, head depth, length of ventral keel, length ofpectoral fin, length of pelvic fin, length of caudal fin, space between pectoral and pelvic fins traits using MapQTL5.0based on the sex average linkage map of silvercarp and bighead carp. Correlation coefficient of11phenotypic traits reached anextremely significant level. The Person coefficient was from0.950to0.996.11traitswere mapped at6QTLs on6linkage groups.The number of QTL of each trait rangedfrom1to6.The variance explained each locus ranged from9.1%to23.8%. It is alsovery interesting to note that many measurements were mapped on the same position;for example, a region bounded by Hym435and Hym145on linkage group19wasfound to be responsible for all the measurements analyzed in this study. Followinglinkage group19are linkage groups10and17, each contained QTL for8morphological characteristics. In addition, linkage groups4,5and9each were foundto hold QTL for2-4traits.
引文
[1]鲍宝龙,李家乐.主要水产养殖动物QTL定位的研究现状.上海水产大学学报,2006,14(4):444-450
    [2]邓务国.物种遗传多态性研究方法进.生物学通报,1994,29(1):7-9.
    [3]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001
    [4]何斌,杨爱国,王清印,等.栉孔扇贝早x虾夷扇贝占单对杂交子一代的ISSR分析.大连水产学院学报,2007,22(4):273-277
    [5]葛学亮,尹洪滨,毕冰,孙中武.2010.黄颡鱼遗传图谱构建及生长相关性状的QTL定位.水产学报,34(2):185-193
    [6]孔庆亮,李宗芸,傅美丽,等.鳙鱼染色体的DAPI核型分析.四川动物,2006,25(1):64-67.
    [7]匡刚桥,刘臻,鲁双庆,等.2007. FIASCO法筛选鳜鱼微卫星标记.中国水产科学,14(4):608–614
    [8]李宏俊.海湾扇贝微卫星标记的开发及遗传连锁图谱的构建.北京:中国科学院,2009.
    [9]李莉,郭希明.遗传图谱及其在主要水产动物的研究进展.海洋科学,2003,27(11):14-17.
    [10]李巧燕,林瑞庆,朱兴全.SRAP分子标记及其应用概述.热带医学杂志,2006,6(4):467-469
    [11]廖梅杰.鲢,鳙鱼遗传连锁图谱构建和鳙鱼蛋白感染因子基因的克隆.[博士学位论文]青岛,中国海洋大学,2007.
    [12]刘博.中国对虾“黄海1号”的遗传连锁图谱构建及生长相关性状的QTL分析:[博士学位论文]青岛,中国海洋大学,2009.
    [13]刘继红,张研,常玉梅,等.鲤鱼(Cyprinus carpio L.)头长、眼径、眼间距QTL的定位.遗传,2009,31(5):508-514
    [14]刘继红,张研,常玉梅,等.鲤鱼(Cyprinus carpio L.)体重和体长QTL的定位.广东海洋大学报,2009,29(4):19-25
    [15]刘贤德.皱纹盘鲍遗传图谱构建及生长相关性状的QTL定位.2005.中国科学院博士学位论文.
    [16]刘勋甲,尹艳,郑用琏.遗传标记的发展及分子标记在农作物遗传育种中的应用Ⅱ:分子标记在农作物遗传育种中的应用及原理.湖北农业科学,1998,(3):27-32
    [17]李鸥,曹顶臣,张研等.利用EST-SSR分子标记研究鲤的饲料转化率性状.水产学报,2009,33(4):624-631
    [18]罗林广,王新望,罗绍春.分子标记及其在作物遗传育种中的应用.江西农业学报,1997,9(1):45-54
    [19]马洪雨,2009.三种重要海水养殖鱼类性别特异标记和微卫星标记开发及遗传连锁图谱构建.中国海洋大学博士论文.
    [20]毛瑞鑫,刘福军,张晓峰,等.鲤鱼乳酸脱氢酶活性的QTL检测.遗传,2009,31(4):407-411
    [21]孙效文,鲁翠云,曹顶臣,等.镜鲤体重相关分子标记与优良子代的筛选和培育.水产学报,2009,33(2):177-181
    [22]孙效文,梁利群,2000.鲤鱼的遗传连锁图谱(初报).中国水产科学7(1),1-5.
    [23]田燚,孔杰,王伟继.中国对虾遗传连锁图谱的构建.科学通报,2008,53(5):544-555
    [24]王玲玲.栉孔扇贝和海湾扇贝遗传连锁图谱的构建研究.2005.中国科学院博士学位论文.
    [25]王宣朋,张晓峰,李文升,等.鲤饲料转化率性状的QTL定位及遗传效应分析.水生生物学报,2012,(2):177-196
    [26]吴为人,李维明,卢浩然.建立一个重组自交系群体所需要的自交代数.福建农业大学学报,1997,26(2):129-132
    [27]谢皓.小麦基因定位研究进展.北京农学院学报,2000,15(4):74-79
    [28]徐云碧,朱丽煌.分子数量遗传学.北京:中国农业出版社,1994.
    [29]姚红,张四明,曾勇.鲢染色体图像电脑自动核型分析.1994,1(2):18-25
    [30]叶华.大黄鱼SSR遗传连锁图谱的构建及生长相关性状的QTL定位.湖南农业大学,2010.
    [31]袁晓君.黄瓜永久群体遗传图谱的构建及花、果相关性状的QTL定位:[博士学位论文]上海,上海交通大学,2008
    [32]占爱斌.栉孔扇贝(Chlamysfarreri)微卫星标记的筛选及应用[博士学位论文]青岛,中国海洋大学,2007.
    [33]张德水,陈受宜. DNA分子标记、基因组作图及其在植物遗传育种上的应用.生物技术通报,1998,5:19-22
    [34]张丽博,张晓峰,曹顶臣,等.利用SSR及EST标记对鲤鱼饲料转化率的QTL分析.农业生物技术学报,2010,18(5):963-967
    [35]张立楠.鲢遗传连锁图谱的构建及精子竞争对性别间重组率差异的影响.[博士学位论文]青岛,中国海洋大学,2010.
    [36]张蓉,刁其玉.遗传标记的发展及其在家畜遗传育种中的应用.现代畜牧兽医,2009,9:52-55
    [37]张俊玲,施志仪.几种DNA分子标记及其在水产动物中的应用.现代渔业信息,2006,21(8):7-10
    [38]张研.鲤鱼遗传图谱构建及其生长相关性状的QTL定位.上海水产大学博士学位论文.2008
    [39]张研,梁利群,常玉梅,等.鲤鱼体长性状的QTL定位及其遗传效应分析.遗传,2007,(10):1243-1248
    [40]张媛,胡则辉,周志刚,等.利用RAPD-PCR与ISSR-PCR标记技术分析长江口刀鲚的群体遗传结构.上海水产大学学报,2006,15(4):390一397
    [41]赵亮.小麦主要品质性状的定位:[博士学位论文]泰安,山东农业大学,2009.
    [42]郑先虎,匡友谊,鲁翠云,等.镜鲤体长、体高、体厚性状QTL定位分析.遗传,2011,33(12):1366-1373
    [43]郑先虎.鲤连锁图谱的及生长肉质性状的QTL定位研究:[博士学位论文].上海,上海海洋大学,2012
    [44]朱军.复杂数量选择基因定位的混合线性模型方法.全国作物育种学术讨论会论文集,1998,11-20
    [45] Adams MD, Kelley JM, Jeannine D, et al. Complementary DNA sequencing expressedsequence tags and human genome project. Science,1991,252:1651-1656
    [46] Agresti JJ, Seki S, Cnaani A, et al. Breeding new strains of tilapia: development of anartificial center of origin and linkage map based on AFLP and microsatellite loci.Aquaculture,2000,185(1-2):43-56.
    [47] Alfaqih M A, Brunelli J P, Drew R E, et al. Mapping of five candidate sex-determining loci inrainbow trout (Oncorhynchusmykiss). BMC genetics,2009,10(1):2.
    [48] Akkaya M S, Bhagwat A A, Cregan P B. Length polymorphisms of simple sequence repeatDNA in soybean. Genetics,1992,132:1131-1139
    [49] Anthony J. Brookes. The essence of SNPs. Gene,1999,234(2):77-18
    [50] Ardren WR, Borer S, Thrower F, Joyce JE, Kapuscinski AR. Inheritance of12microsatelliteloci in Oncorhynchusmykiss. J. Hered.,1999,90:529–536.
    [51] BaerwaldM R, Petersen J L, Hedrick R P, et al. A major effect quantitative trait locus forwhirling disease resistance identified in rainbow trout (Oncorhynchusmykiss). Heredity,2010,106(6):920-926.
    [52] Baranski M, Moen T, V ge D. Mapping of quantitative trait loci for flesh colour andgrowthtraits in Atlantic salmon(Salmosalar). Genetics Selection Evolution,2010,42(1):17-30
    [53] Baranski M, Moen T, V ge D I. Research Mapping of quantitative trait loci for flesh colourand growth traits in Atlantic salmon (Salmo salar).2010.
    [54] Barroso R, Wheeler PA, Lapatra S, etc. QTL for IHNV resistance and growth identified in arainbow(x) cutthroat trout cross. Aquaculture,2007,272: S243-S244
    [55] Barroso R M, Wheeler P A, LaPatra S E, et al. QTL for IHNV resistance and growthidentified in a rainbow (Oncorhynchusmykiss)×Yellowstone cutthroat(Oncorhynchusclarkibouvieri) trout cross. Aquaculture,2008,277(3):156-163.
    [56] Bartley D M, Rana K, Immink A J. The use of inter-specific hybrids in aquaculture andfisheries. Rev Fish Biol Fish,2000,10:325–337
    [57] Bi JZ, Shao CW, Miao GD, Ma HY, Chen SL,2009. Isolation and characterization of12microsatellite loci from cutlassfish (Trichiurushaumela).Conserv Genet.10,1171-1173.
    [58] Bierne N, Launey S, Naciri-Graven Y, Bonhomme F.1998. Early effect of inbreeding asrevealed by microsatellite analyses on Ostreaedulislarvae. Genetics.55:190–195.
    [59] Blears M J, De Grandis S A, Lee H, et al. Amplified fragment length polymorphism (AFLP):a review of the procedure and its applications. Journal of industrial microbiology&biotechnology,1998,21(3):99-114.
    [60] Bostein, D., White, R.L., Skolnick, M., Davis, R.W. Construction of a genetic linkagemap inman using restriction fragment length polymorphisms. American Journal Human Genetics,198032:314-331
    [61] Boulton K, Massault C, Houston R D, et al. QTL affecting morphometric traits and stressresponse in the gilthead seabream (Sparusaurata). Aquaculture,2011,319(1):58-66.
    [62] Bouza C, Hermida M, Pardo B G, et al. A microsatellite genetic map of the turbot(Scophthalmus maximus). Genetics,2007,177(4):2457-2467.
    [63] Brumfield RT, Beerli P, Nickerson DA, et al. The utility of single nucleotide polymorphismsin inferences of population history. Trends in Ecology and Evolution,2003,18(5):249-256.
    [64] Brunel D, Froger N, Pelletier G. Development of amplified consensus genetic marker(ACGM) in Brassica napus from Arabidopsis thaliana sequences of known biologicalfunction. Genome,1999,42:387-402
    [65] Caetanao A G. DNA amplification fingerprinting using very short arbitrary oligonucleotideprimers.Biotechnology,1991,9:553-557
    [66] Callen DF, Thompson AD, Shen Y, Phillips HA, Richards RI, Mulley JC, SutherlandGR.Incidence and origin of null alleles in the (AC)n microsatellite markers. Am. J.Hum.Genet,1993,52:922–927.
    [67] Callum JB, Joseph RE.Assignment of30microsatellite loci to the linkage map ofArabidopsis. Genomics,1994,19(1):137-144
    [68] Casta o-Sánchez C, Fuji K, Ozaki A, et al. A second generation genetic linkage map ofJapanese flounder (Paralichthys olivaceus). BMC genomics,2010,11(1):554.
    [69] Cnaani A, Hallerman E, Ron M, etc. Detection of a chromosomal region with twoquantitativetrait loci, affecting cold tolerance and fish size, in an F2tilapia hybrid.Aquaculture,2003b,223:117-128
    [70] CnaaniA, Lee BY, Ron M, etc. Linkage mapping of major histocompatibility complex classIloci in tilapia (Oreochromis spp.). Animal Genetics,2003a,34(5):390-391
    [71] Cnaani A, Zilberman N, Tinman S, etc. Genome-scan analysis for quantitative trait loci in anF2tilapia hybrid. Molecular genetics and genomics,2004,272(2):162-172
    [72] Cao G, Zhu J, He C, et al. Impact of epistasis and QTL×environment interaction on thedevelopmental behavior of plant height in rice (Oryza sativa L.). TAG Theoretical andApplied Genetics,2001,103(1):153-160.
    [73] Chakravarti A, Lasher L K, Reefer J E. A maximum likelihood method for estimating genomelength using genetic linkage data. Genetics,1991,128:175-182.
    [74] Chen D W, Chen L Q. The first intraspecific genetic linkage maps of winter sweet(Chimonanthus praecox) based on AFLP and ISSR markers. ScientiaHorticulturae,2010,124(1):88-94.
    [75] Chen SL, Li J, Deng SP, et al. Isolation of female-sepcific AFLP markers and molecularidentification of genetic sex in half-smooth tongue sole (Cynoglossussemilaevis). MarBiotechnol,2007,9(2):273-280
    [76] Cheng, L., Liu, L., Yu, X.&Tong, J.Sixteen polymorphic microsatellites in bighead carp(Aristichthysnobilis) and cross-amplification in silver carp (Hypophthalmichthysmolitrix).Molecular Ecology Notes,2008,8:656–658.
    [77] Chistiakov D.A., Tsigenopoulos C.S., Lagnel J., Guo Y.M., Hellemans B., Haley C.S.,Volckaert F.A.&Kotoulas G. A combined AFLP and microsatellite linkage map and pilotcomparative genomic analysis of European sea bass DicentrarchuslabraxL. AnimalGenetics,2008,39:623-34.
    [78] Clark R M, Wagler T N, Quijada P, et al. A distant upstream enhancer at the maizedomestication gene tb1has pleiotropic effects on plant and inflorescent architecture.Nature genetics,2006,38(5):594-597.
    [79] Cordeiro G M, Casu R, McIntyre C L, Manners J M, Henry R J.Microsatellite markers fromsugarcane (Saccharumspp.) ESTs cross transferabletoerianthus and sorghum.Plant Science,2001,160:1115–1123.
    [80] Coulson A, Sulston J, Brenner S, et al. Toward a physical map of the genome of the nematodeCaenorhabditiselegans. Proceedings of the National Academy of Sciences,1986,83(20):7821-7825.
    [81] Darvasi A, Weinreb A, Minke V, et al. Detecting marker-QTL linkage and estimating QTLgene effect and map location using a saturated genetic map. Genetics,1993,134(3):943-951
    [82] De Almeida-Toledo, L.F.,Bigoni, A.P.V.,Bernardino, G.,Filho, S.D.A.T.(1995) Chromosomallocation of Nors and C bands in F1hybrids of bighead carp and silver carp reared in Brazil.Aquaculture,1995,135:277–284
    [83] Derayat A, Houston R, Guy D, etc. Mapping QTL affecting body lipid percentage inAtlanticsalmon (Salmosalar). Aquaculture,2007,272: S250-S251
    [84] Dib, C., Faure, S., Fizames, C., Samson, D., Drouot, N., Vignal, A., Millasseau, P., Marc, S.,Hazan, J., Seboun, E., Lathrop, M., Gyapay, G., Morissette, J., Weissenbach, J. Acomprehensive genetic map of the human genome based on524,6microsatellites. Nature,1996,380:152-154
    [85] Doi K, Izawa T, Fuse T, et al. Ehd1, a B-type response regulator in rice, confers short-daypromotion of flowering and controls FT-like gene expression independently of Hd1. Genes&Development,2004,18(8):926-936.
    [86] Donis-Keller, H., Green, P., Helms, C., Cartinhour, S., Weiffenbach, B., Stephens, K., Keith,T., Bowden, D., Smith, D., Lander, E., Botstein, D., Akots, G., Rediker, K., Gravius, T.,Brown, V., Rising, M., Parker, C., Powers, J., Watt, D., Kauffman, E., Bricker, A., Phipps,P., Muller-Kahle, H., Fulton, T., Ng, S., Schumm, J., Braman, J., Knowlton, R., Barker, D.,Crooks, S., Lincoln, S., Daly, M., Abrahamson, J. A genetic linkage map of humangenome.Cell,1987,51:319-33
    [87] Eshel O, Shirak A, Weller J, etc. Fine-mapping of a locus on linkage group23forsexdetermination in Nile tilapia (Oreochromisniloticus). Animal Genetics,2011,42(2):222-224
    [88] FAO. Yearbook of Fishery and Aquaculture Statistics2010.FAO, Rome, Italy,2012.
    [89] Faris J D, Laddomada B, Gill B S. Molecular mapping of segregation distortion loci inAegilopstauschii. Genetics,1998,149(1):319-327.
    [90] FitzSimmons NN, Moritz C, Moore SS. Conservation and dynamics of microsatellite lociover300million years of marine turtle evolution. Molecular Biology and Evolution,1995,12:432-440.
    [91] Fotherby H A, Moghadam H K, Danzmann R G, et al. Detection of quantitative trait loci forbody weight, condition factor and age at sexual maturation in North American Atlanticsalmon (Salmo salar) and comparative analysis with rainbow trout (Oncorhynchus mykiss)and Arctic charr (Salvelinus alpinus). Aquaculture,2007,272(1):256.
    [92] Franch R, Louro B, Tsalavouta M, et al. A genetic linkage map of the hermaphrodite teleostfish Sparus aurata L. Genetics,2006,174(2):851-861.
    [93] Fuji K, Kobayashi K, Hasegawa O, et al. Identification of a single major genetic locuscontrolling the resistance to lymphocystis disease in Japanese flounder(Paralichthysolivaceus). Aquaculture,2006,254(1):203-210.
    [94] Fuji K, Hasegawa O,Honda K,et al. Marker-assisted breeding of a lymphocystisdisease-resistant Japanese flounder (Paralichthysolivaceus). Aquaculture,2007,272:291-295
    [95] Fuji K, Hasegawa O, Sakamoto T, etc. Quantitative trait loci associated with pseudo-albinismin Japanese flounder, Paralichthys olivaceus. Aquaculture,2007,272: S257-S257
    [96] Gadish I, Zamir D. Differential zygotic abortion in an interspecific Lycopersiconcross.Genome,1987,29(1):156-159.
    [97] Gates M A, Kim L, Egan E S, et al. A genetic linkage map for zebrafish: comparativeanalysis and localization of genes and expressed sequences. Genome research,1999,9(4):334-347.
    [98] Geoffrey CW, BrianGB, DannyJN, William RW A microsatellite-based genetic linkage mapfor channel catfish, Ictaluruspunctatus.Genetics,2001,158:727-734.
    [99] Gervai J, Csanyi V. Artificalgynogenesis and mapping of gene-centromere distances in theparadise fish, Macropodusoperculari. Theoretical and Applied Genetics,1984,68(6):481-485.
    [100] Gharbi K, Gautier A, Danzmann R G, et al. A linkage map for brown trout (Salmo trutta):chromosome homeologies and comparative genome organization with other salmonid fish.Genetics,2006,172(4):2405-2419.
    [101] Ghaveyazie B, Huang N, Second G, et al. Classification of rice germplasm. I. Analysisusing ALP and PCR-based RFLP. TheorAppl Genet,1995,91:218-227
    [102] Gheyas, A.A., Cairney, M., Gilmour, A.E., Sattar, M.A., Das, T.K.,Mcandrew, B.J.,Penman, D.J.&Taggart, J.B. Characterization of microsatellite loci in silver carp(Hypophthalmichthysmolitrix), and cross-amplification in other cyprinid species.Molecular Ecology Notes,2006,6:656–659.
    [103] Gheyas AA, Haley CS, Guy DR, etc. Effect of a major QTL affecting IPN resistance onproduction traits in Atlantic salmon. Animal Genetics,2010,41(6):666-668
    [104] Gheyas AA, Houston RD, Mota-Velasco JC, etc. Segregation of infectious pancreaticnecrosis resistance QTL in the early life cycle of Atlantic Salmon (Salmo salar). AnimalGenetics,2010,41(5):531-536
    [105] Gilbey J, Verspoor E, McLay A, et al. A microsatellite linkage map for Atlantic salmon(Salmo salar). Animal Genetics,2004,35(2):98-105.
    [106] Gilbey J, Verspoor E, Mo T A, et al. Identification of genetic markers associated withGyrodactylus salaris resistance in Atlantic salmon Salmo salar. Diseases of aquaticorganisms,2006,71(2):11
    [107] GlazierA.M.,Nadeau J.H., AitmanT.J.Finding genes that underlie complextraits.Science,2002,298:2345–2349
    [108] Grattapaglia, D., Sederoff, R.R. Genetic linkage maps of Eucalyptus grandis andEucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD marker.Genetics,1994,137:1121–1137
    [109] Green, B.W., Smither man, R.O.Relative growth, survival and harvestability of bigheadcarp, silver carp, and their reciprocal hybrids. Aquaculture,1984,37:87–95
    [110] Guo S, Zou G, Yang G. Development of microsatellite DNA markers of grass carp(Ctenopharyngodonidella) and their cross-species application in black carp(Mylopharyngodonpiceus). Conservation Genetics,2009,10(5):1515-1519.
    [111] Guyon R, Senger F, Rakotomanga M, et al. A radiation hybrid map of the European seabass (Dicentrarchus labrax) based on1581markers: Synteny analysis with model fishgenomes. Genomics,2010,96(4):228.
    [112] Haidle L, Janssen J E, Gharbi K, etc. Determination of quantitative trait loci (QTL) forearly maturation in rainbow trout (Oncorhynchus mykiss). Marine Biotechnology,2008,10(5):579-592
    [113] HamadaH, Pitrino M., Kakunaga T. A novel repeated element with Z-DNA-formingpotential is widely found in evolutionarily diverse eukaryotic genomes. Proceedings of theNational Academy of Sciences,1982,79:6466–6469
    [114] Hedgecock, D., Sly, F. Genetic drift and effective population sizes of hatchery-propagatedstocks of the Pacific oyster, Crassostreagigas. Aquaculture,1990,88,21–38.
    [115] Holm, L., V. Loeschcke&C. Bendixen. Elucidation of the molecular basis of a null allelein a rainbow trout microsatellite.2001, Marine Biotechology3:555-560.
    [116] Houston RD, Bishop SC, Hamilton A, etc. Detection of QTL affecting harvest traits inacommercial Atlantic salmon population. Animal Genetics,2009,40(5):753-755
    [117] Houston RD, Gheyas A, Hamilton A, et al. Detection and confirmation of a major QTLaffecting resistance to infectious pancreatic necrosis (IPN) in Atlantic salmon (Salmo salar).Dev Biol (Basel),2008,132:199-204.
    [118] Houston RD, Guy DR, Hamilton A, etc. Mapping QTL affecting resistance toinfectiouspancreatic necrosis (IPN) in Atlantic salmon (Salmosalar). Aquaculture,2007,272: S269-S269
    [119] Houston RD, Haley CS, Hamilton A, etc. The susceptibility of Atlantic salmon fry tofreshwater infectious pancreatic necrosis is largely explained by a major QTL. Heredity,2010,105(3):318-327
    [120] Howes, G. Anatomy and phylogeny of the Chinese major carps Ctenopharyn godon Steind.,1866and Hypophthal michthys Blkr.,1860. Bulletin of the British Museum (NaturalHistory), Zoology,1981,41(1):1-52
    [121] http://www.intl-Pag.org/pag/8/abstracts/pag8723.html
    [122] Hu J G, Vick B A. Target region amplification polymorphism: a noval marker technique forplant genotyping. Plant Molecular biollogy Reporter,2003,21:289-294
    [123] Hu J G, Vick B A. Target region amplification polymorphism: a noval marker technique forplant genotyping. Plant Molecular biollogy Reporter,2003,21:289-294
    [124] Inami M, Hatanaka A, Mitsuboshi T, et al. A microsatellite linkage map of red sea bream(Pagrus major) and mapping of QTL markers associated with resistance to red sea breamiridovirus (RSIV). Plant and Animal Genome XIII Abstracts. Available on http://www.intlpag. org/13/abstracts/PAG13_P607. html,2005.
    [125] Issa, M.A.,Horvath, L.,Kosba, M.A.,Sharrabi, M.A note on the survival, growth, feedconversion and some morphological characters of the reciprocal hybrids of silver carp(HypophthalmichthysmolitrixVal.) and bighead carp (AristichthysnobilisRich.) raised inpolyculture. Aquaculture Hungarica,1986,5:7–14
    [126] Janeja H S, Banga S K, Bhaskar P B, et al. Alloplasmic male sterile Brassica napus withEnarthrocarpuslyratus cytoplasm: introgression and molecular mapping of an E. lyratuschromosome segment carrying a fertility restoring gene. Genome,2003,46(5):792-797
    [127] Jansen R C. Interval mapping of multiple quantitative trait loci. Genetics,1993,135:205-21
    [128] Johnston I, Li X, Vieira V, etc. Muscle and flesh quality traits in wild and farmedAtlanticsalmon. Aquaculture,2006,256:323-336
    [129] Jones AG, Stockwell CA, Walker D, Avise JC.The molecular basis of microsatellitenullallele from the White Sands pupfish. J. Hered.,1998,9:339–342.
    [130] Kai W, Kikuchi K, Fujita M, et al. A genetic linkage map for the tiger pufferfish,Takifugurubripes. Genetics,2005,171(1):227-238
    [131] Kolar, C.S., Chapman, D.C., Courtenay, W.R. Jr., Housel, C.M., Williams, J. D., Jennings,D.P.Asian Carps of the Genus Hypophthalmichthys (Pisces, Cyprinidae)-A BiologicalSynopsis and Environmental Risk Assessment. Report to U.S. Fish and Wildlife Serviceper Interagency Agreement94400-3-0128,2005.
    [132] Kantety RV, Rota ML, Matthews DE, Sorrells ME. Datamining for simple sequencerepeats in expressed sequence tagsfrom barely, maize, rice, sorghum and wheat. Plant MolBiol,2002,48:501–510
    [133] Kappes S M, Keele J W, Stone R T, et al. A second-generation linkage map of the bovinegenome. Genome Research,1997,7(3):235-249.
    [134] Kimura T, Yoshida K, Shimada A, et al. Genetic linkage map of medaka with polymerasechain reaction length polymorphisms. Gene,2005,363:24-31
    [135] Kesseli R V, Paran I, Michelmore R W. Analysis of a detailed genetic linkage map ofLactuca sativa (lettuce) constructed from RFLP and RAPD markers. Genetics,1994,136(4):1435-1446.
    [136] Khlestkina EK, Salina EA. SNP markers: methods of analysis, ways of development, andcomparison on an example of common wheat. Genetika,2006,42(6):585-594
    [137] Kimura T, Yoshida K, Shimada A, et al. Genetic linkage map of medaka with polymerasechain reaction length polymorphisms. Gene,2005,363:24-31.
    [138] Kj glum S, Grimholt U, Larsen S. Non-MHC genetic and tank effects influence diseasechallenge tests in Atlantic salmon (Salmo salar). Aquaculture,2005,250(1):102-109.
    [139] Knapik E W, Goodman A, Ekker M, et al. A microsatellite genetic linkage map forzebrafish (Daniorerio). Nature genetics,1998,18(4):338-343.
    [140] Kojima S, Takahashi Y, Kobayashi Y, et al. Hd3a, a rice ortholog of the Arabidopsis FTgene, promotes transition to flowering downstream of Hd1under short-day conditions.Plant and Cell Physiology,2002,43(10):1096-1105.
    [141] Konieczny A, Ausubel F M. A procedure for mapping Arabidopsis mutations usingco-dominant ecotype-specific PCR-based markers. The Plant Journal,1993,4:403-410
    [142] Kucuktas H, Wang S, Li P, et al. Construction of genetic linkage maps and comparativegenome analysis of catfish using gene-associated markers. Genetics,2009,181(4):1649-1660.
    [143] Lander ES. The new genomics: global views of biology. Science,1996,274(5287):536-539
    [144] Lander E S, Bostein D. Mapping Mendelian factors underlying quantitative traits usingRFLP linkage maps.Genetics,1989,121:185-199.
    [145] Launey S, Hedgecock D.2001.High genetic load in the Pacific oyster Crassostreagigas.Genetics.159:255–265.
    [146] Le Bras Y, Dechamp N, Krieg F, etc.Detection of QTL with effects on osmoregulationcapacities in the rainbow trout (Oncorhynchusmykiss). BMC genetics,2011,12:46
    [147] Lee B-Y, Coutanceau J-P, Ozouf-Costaz C, etc. Genetic and Physical Mapping ofSex-Linked AFLP Markers in Nile Tilapia (Oreochromis niloticus). Marine Biotechnology,2011,13(3):557-562
    [148] Lee B Y, Lee W J, Streelman J T, et al. A second-generation genetic linkage map of tilapia(Oreochromis spp.). Genetics,2005,170(1):237-244.
    [149] Lee B Y, Penman D J, Kocher T D. Identification of a sex‐determining region in Niletilapia (Oreochromis niloticus) using bulked segregant analysis. Animal genetics,2003,34(5):379-383.
    [150] Leister D, Ballvora A, Salamini F, et al. A PCR-based approach for isolation pathogenresistance genes from potato with potential for wide application in plants. Nature Geneitics,1996,14:421-429
    [151] Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP) a new marker systembased on a simple PCR reaction: its application to mapping and gene tagging in Brassica.TheorAppl Genet,2001,103:455-461
    [152] Li, G., Hubert, S., Bucklin, K., Ribes, V.&Hedgecock, D. Characterization of79microsatellite DNA markers in the Pacific oysters Crassostreagigas. Molecular EcologyNotes,2003,3:228–232.
    [153] Li H. H., Ye G., Wang J. A modified algorithm for the improvement of composite intervalmapping. Genetics,2007,175:361-374
    [154] Li H., Ribaut J. M., Li Z., Wang J. Inclusive composite interval mapping (ICIM) fordigenic epistasis of quantitative traits in biparental populations. TheorAppl Genet,2008,116:243-260
    [155] Li, J., Zhu, Z., Wang, G., Bai, Z.&Yue, G.,2007.Isolation and characterization of17polymorphic microsatellites in grass carp.Molecular Ecology Notes7,1114–1116.
    [156] Li, S., Fang, F.On the geographical distribution of the four kinds of pond-cultured carps inChina. Acta Zoologica Sinica,1990,36:244–250
    [157] Li, S.F.Aquaculture research and its relation to development in China. In: Gardiner P.R.(ed.) Agricultural development and the opportunities for aquatic resources research inChina. World Fish Center, Malaysia.,2003, pp.17-28
    [158] Li Y, Byrne K, Miggiano E, Whan V, Moore S, Keys S, Crocos P, Preston N, Lehnert S.Genetic mapping of the kuruma prawn Penaeusjaponicus using AFLP markers.Aquaculture,2003,219:143-156
    [159] Liao M, Zhang L, Yang G, et al. Development of silver carp (Hypophthalmichthysmolitrix)and bighead carp (Aristichthysnobilis) genetic maps using microsatellite and AFLPmarkers and a pseudo-testcross strategy. Animal Genetics,2007,38:364-370.
    [160] Liao X., Shao CW, TianYS and Chen SL.Polymorphic dinucleotide microsatellites intongue sole (Cynoglossussemilaevis). Molecular Ecology Notes,2007b,7:1147–1149
    [161] Lien S, Gidskehaug L, Moen T, et al. A dense SNP-based linkage map for Atlantic salmon(Salmo salar) reveals extended chromosome homeologies and striking differences insex-specific recombination patterns. BMC genomics,2011,12(1):615.
    [162] Lindblad-Toh K, Winchester E, Daly M J, Wang D G. et al. Large-scale discory andgenotyping of single nucleodite polymorphisms in mouse. Natu Genet,2000,24:381-386.
    [163] Liu, S.P., Qiu, S.L., Chen, D.Q., Huang, M.G.Protection and rational utilization of thegermplasm resources of the four major Chinese carps in the Yangtze River system.Resources andEnvironment in the Yangtze Valley,1997,6:127–31(in Chinese withEnglish abstract).
    [164] Lou Y D, Purdom C E. Diploid gynogenesis induced by hydrostatic pressure in rainbowtrout, Salmogairdneri Richardson. Journal of fish biology,1984,24(6):665-670.
    [165] Loukovitis D, Sarropoulou E, Tsigenopoulos C S, et al. Quantitative trait loci involved insex determination and body growth in the gilthead sea bream (Sparusaurata L.) throughtargeted genome scan. PloS one,2011,6(1): e16599.
    [166] Lu, C., Sun, X., Cao, J.&Liang, L. Microsatellite enrichment by magnetic beads in silvercarp (Hypophthalmichtysmolitrix). Journal of Agricultural Biotechnology,2005a.13:772–776.(in Chinese with English abstract).
    [167] Lu, C., Sun, X.&Liang, L. Isolation of microsatellite markers in bighead carp(Aristichthysnobilis). Journal of Fishery Sciences of China,2005b,12:192–196.(inChinese with English abstract).
    [168] Ma ZQ, Roder M, Sorrells ME. Frequencies and sequence characteristics of di-, tri2-,and tetranucleotide microsatellite in wheat. Genome,1996,39:123-130.
    [169] Magee R. The Effect of Cyclic Feeding Regime on Growth-Related Traits, Estimates of FatDeposition and Their Genetic Architecture in Rainbow Trout(Oncorhynchusmykiss).University of Guelph for the degree of Master of Science.2012
    [170] Martinez-Alvarez R M, Morales A E, Sanz A. Antioxidant defenses in fish: biotic andabiotic factors. Reviews in fish biology and fisheries,2005,15(1):75-88.
    [171] May B, Johnoson K R. Composite linkage map of salmonid fishes (Salvelinus, Salmo,andOncorhynchus). In: O’Brien, S.J.(Ed.), Genetic Maps: Locus Maps of ComplexGenomes. ColdSpring Harbor,1993,4:309-317
    [172] McClelland EK, Naish KA. Quantitative trait locus analysis of hatch timing, weight, lengthand growth rate in coho salmon, Oncorhynchuskisutch. Heredity,2010,105(6):562-573
    [173] Miao G, Shao C, Ma H, et al. Isolation and characterization of polymorphic microsatelliteloci from a dinucleotide-enriched genomic library of starry flounder (Platichthysstellatus)and cross-species amplification. Conservation Genetics,2009,10(3):631-633.
    [174] Michelmore R.W., Shaw D.V. Quantitative genetics: Character dissection. Nature,1988,335:672–673.
    [175] MilesLG, LaneeSL, IsbergSR, MoranC, GlermTC.Cross一species amplificationofmicrosatellites in crocodilians:assessmentandapplicationsforthe future.ConservationGenetics,2008,online available.
    [176] Moen T, Agresti JJ, Cnaani A, etc. A genome scan of a four-way tilapia cross supportstheexistence of a quantitative trait locus for cold tolerance on linkage group23.Aquaculture Research,2004,35(9):893-904
    [177] Moen T, Baranski M, Sonesson A, etc. Confirmation and fine-mapping of a major QTLfor resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar):population-level associations between markers and trait. BMC genomics,2009,10(1):368
    [178] Moen T, Munck H, Raya LG. A genome scan reveals a QTL for resistance to infectioussalmon anaemia in Atlantic salmon (Salmosalar). Aquaculture,2005,247:25-26
    [179] Moen T, Sonesson A, Hayes B, etc. Mapping of a quantitative trait locus for resistanceagainst infectious salmon anaemia in Atlantic salmon (Salmo Salar): comparing survivalanalysis with analysis on affected/resistant data. BMC genetics,2007,8:53
    [180] Moghadam H K, Poissant J, Fotherby H, et al. Quantitative trait loci for body weight,condition factor and age at sexual maturation in Arctic charr (Salvelinus alpinus):comparative analysis with rainbow trout (Oncorhynchus mykiss) and Atlantic salmon(Salmo salar). Molecular Genetics and Genomics,2007,27
    [181] Moore G, Devos K M, Wang Z, et al. Grasses, line up and form a circle. CurrBiol,1995,5(7):737-739
    [182] Morishima K, Nakamura-Shiokawa Y, Bando E, et al. Cryptic clonal lineages and geneticdiversity in the loach Misgurnus anguillicaudatus (Teleostei: Cobitidae) inferred fromnuclear and mitochondrial DNA analyses. Genetica,2008,132(2):159-171.
    [183] Nakamura Y, Leppert M, O’Connell P, et al. Variable number of tandem repeat (VNTR)markers for human gene mapping. Science,1987,235:1616-1622
    [184] Nichols K M, Broman K W, Sundin K, et al. Quantitative trait loci×maternal cytoplasmicenvironment interaction for development rate in Oncorhynchus mykiss. Genetics,2007,175(1):335-347.
    [185] Nichols K, Wheeler P, Thorgaard G. Quantitative Trait Loci Analyses for Meristic Traitsin Oncorhynchus mykiss. Environmental Biology of Fishes,2004,69:317-331
    [186] Ning Y., Liu X.D., Wang Z.Y., Guo W., Li Y.Y., Xie F.J.,2007. A genetic map of largeyellow croaker Pseudosciaenacrocea. Aquaculture,264:16-26
    [187] Ninwichian P, Peatman E, Liu H, et al. Second-Generation Genetic Linkage Map ofCatfish and Its Integration with the BAC-Based Physical Map. G3: Genes|Genomes|Genetics,2012,2(10):1233-1241.
    [188] O'Brien, S.J., Graves, J.A.M.,1990. Report of the committee on comparative genemapping.Cytogenet Cell Genetetics90,8308-8309
    [189] Ohara E, Nishimura T, Nagakura Y, et al. Genetic linkage maps of two yellowtails (Seriolaquinqueradiata and Seriola lalandi). Aquaculture,2005,244(1):41-48.
    [190] Ohtsuka, M., Makino, S., Yoda, K.Construction of a linkage map of the medaka(Oryziaslatipes) and mapping of the Da mutant locus defective in dorsoventral patterning.Genome Research,1999,9,1277-1287.
    [191] O'malley K G, Sakamoto T, Danzmann R G, et al. Quantitative trait loci for spawningdate and body weight in rainbow trout: testing for conserved effects across ancestrallyduplicated chromosomes. Journal of Heredity,2003,94(4):273-284.
    [192] Oshima, M. Contributions to the study of fresh water fishes of the island of Formosa.Annals of the Carnegie Museum,1919,12(2-4):169-328
    [193] Ozaki A, Khoo S K, Yoshiura Y, et al. Identification of additional Quantitative Trait Loci(QTL) responsible for susceptibility to infectious pancreatic necrosis virus in rainbow trout.Fish Pathology,2007,42(3):131-140.
    [194] Ozaki A, Okamoto H, Yamada T, etc. Linkage analysis of resistance to Streptococcusiniaeinfection in Japanese flounder (Paralichthysolivaceus). Aquaculture,2010,308:S62-S67
    [195] Olson M, Hood L, Cantor C, et al. A common language for physical mapping of the humangensome. Science,1989,254:1434-1435
    [196] Palti Y, Shirak A, Cnaani A, etc. Detection of genes with deleterious alleles in an inbredline oftilapia (Oreochromisaureus). Aquaculture,2002,206(3):151-164
    [197] Paran I, Mchielmore RW. Development of reliable PCR based markers linked to downymildew resistance genes in lettuce. TheorAppl Genet,1993,85:985-993
    [198] Paran I, Kesseli R, Michelmore R. Identification of restriction fragment lengthpolymorphism and random amplified polymorphic DNA markers linked to downy mildewresistance genes in lettuce, using near-isogenic lines. Genome,1993,34:1021-1027
    [199] Palstra F P P F P, Ruzzante D E R D E. A temporal perspective on population structure andgene flow in Atlantic salmon (Salmo salar) in Newfoundland, Canada. Canadian Journal ofFisheries and Aquatic Sciences,2010,67(2):225-242.
    [200] Palti Y, Shirak A, Cnaani A, etc. Detection of genes with deleterious alleles in an inbredline of tilapia (Oreochromis aureus). Aquaculture,2002,206(3):151-164
    [201] Pasdar M, Philipp D P, Whitt G S. Linkage relationships of nine enzyme loci insunfishes(Lepomis;Centrarchidae). Genetics,1984,107:437-446
    [202] Peichel C L, Nereng K S, Ohgi K A, et al. The genetic architecture of divergence betweenthreespine stickleback species. Nature,2001,414(6866):901-905
    [203] Penman DJ, Harvey SC, Ezaz MT, etc. Mapping the early stages of sex chromosomeevolutionin the Nile tilapia, Oreochromisniloticus. Aquaculture,2005,247:28-28
    [204] Perry G M L, Danzmann R G, Ferguson M M, et al. Quantitative trait loci for upperthermal tolerance inoutbred strains of rainbow trout (Oncorhynchusmykiss). Heredity,2001,86(3):333-341.
    [205] Perry G M L, Ferguson MM, Sakamoto T, etc. Sex-linked quantitative trait loci forthermotolerance and length in the rainbow trout. Journal of Heredity,2005,96(2):97-107
    [206] Perry G M L, Martyniuk C M, Ferguson M M, et al. Genetic parameters for upper thermaltolerance and growth-related traits in rainbow trout (Oncorhynchus mykiss). Aquaculture,2005,250(1):120-128.
    [207] Piechel, C. L., Ross, J. A., Matson, C. K., Dickson, M., Grimwood, J.,Schmutz, J., Myers,R. M., Mori, S.,Schluter, D., Kingsley, D. M. The master sex-determination locus inthreespine sticklebacks is on a nascent Y chromosome. Current Biology,2004,14:1416-1424
    [208] Pickles R S A, Groombridge J J, Rojas V D Z, et al. Cross‐species characterisation ofpolymorphic microsatellite loci in the giant otter (Pteronura brasiliensis). MolecularEcology Resources,2009,9(1):415-417.
    [209] Poompuang S, Na-Nakorn U. A preliminary genetic map of walking catfish (Clariasmacrocephalus). Aquaculture,2004,232(1):195-203.
    [210] Postlethwait J H, Johnson S L, Midson C N, et al.A genetic linkage map for the zebrafish.Science,1994,699-699.
    [211] Primmer CR, M ller AP, Ellegren H. Resolving genetic relationships with microsatellitemarkers: a parentage testing system for the swallow Hirundorustica. Mol. Ecol.,1995,4:493–498.
    [212] Qin Y, Liu X, Zhang H, et al. Genetic mapping of size-related quantitative trait loci (QTL)in the bay scallop (Argopectenirradians) using AFLP and microsatellite markers.Aquaculture,2007,272(1):281-290.
    [213] Quillet M C, Madjidian N, Griveau Y, et al. Mapping genetic factors controlling pollenviability in an interspecific cross in Helianthus sect. Helianthus. TAG Theoretical andApplied Genetics,1995,91(8):1195-1202.
    [214] Sakamoto T, Danzmann R G, Gharbi K, et al. A microsatellite linkage map of rainbow trout(Oncorhynchus mykiss) characterized by large sex-specific differences in recombinationrates.Genetics,2000,155:1331-1345.
    [215] Sanetra M, Henning F, Fukamachi S, et al. A microsatellite-based genetic linkage map ofthe cichlid fish, Astatotilapia burtoni (Teleostei): a comparison of genomic architecturesamong rapidly speciating cichlids. Genetics,2009,182(1):387-397.
    [216] Schlotterer C., Tautz D. Slippage synthesis of simple sequence DNA. Nucleic AcidsResearch,1992,20:211-215.
    [217] Schofield, P.J., Williams, J.D., Nico, L.G., Fuller, P.,Thomas, M.R.(2005)Foreignnonindigenous carps and minnows (Cyprinidae) in the United States-A guide to theiridentification, distribution, and Biology: U.S. Geological Survey Scientific InvestigationsReport2005-5041.
    [218] Shapiro, M. D., Marks, M. E.,Peichel, C. L.,Blackman, B. K.,Nereng, K. S.,Jónsson,B.,Schluter, D., Kingsley, D. M.Genetic and developmental basis of evolutionary pelvicreduction in threespine sticklebacks. Nature,2004,428:717-723.
    [219] Singer A, Perlman H, Yan Y, et al. Sex-specific recombination rates in Zebrafish (Daniorerio).Genetics,2002,160:649-657.
    [220] Somorjai IML, Danzmann RG, Ferguson MM. Distribution of temperaturetolerancequantitative trait loci in Arctic charr (Salvelinusalpinus) and inferred homologiesin rainbowtrout (Oncorhynchusmykiss). Genetics,2003,165(3):1443-1456
    [221] Stemshorn K C, Nolte A W, Tautz D. A genetic map of Cottus gobio (Pisces, Teleostei)based on microsatellites can be linked to the physical map of Tetraodon nigroviridis.Journal of evolutionary biology,2005,18(6):1619-1624.
    [222] Sun X, Liang L. A genetic linkage map of common carp (Cyprinus carpio L.) Andmapping of a locus associated with cold tolerance. Aquaculture,2004,238(1):165-172.
    [223] Sundin K, Brown KH, Drew RE, etc. Genetic analysis of a development rate QTL inbackcrosses of clonal rainbow trout, Oncorhynchus mykiss. Aquaculture,2005,247:75-83
    [224] Tan Y.D., Wan C., Zhu Y., Liu C., Xiang Z.&Deng H.An amplified fragmentlengthpolymorphismmap of the silkworm. Genetics,2001,157:1277–84
    [225] Rassrnann K, Sch tterer C, Tautz D. Isolation of simple sequence loci for use inpolymerase chain reaction-based DNA fingerprinting. Electrophoresis,1991,12:113–118
    [226] Reid D P, Szanto A, Glebe B, et al. QTL for body weight and condition factor in Atlanticsalmon (Salmosalar): comparative analysis with rainbow trout (Oncorhynchusmykiss) andArctic charr (Salvelinusalpinus). Heredity,2004,94(2):166-172
    [227] Rexroad C E, Palti Y, Gahr S A, et al. A second generation genetic map for rainbow trout(Oncorhynchus mykiss). BMC genetics,2008,9(1):74.
    [228] Rico C.,Ibrahim K M,Rico I, Hewitt G M. Stock composition in North Atlanticpopulations of whiting using microsatellite markers. Journal of Fish Biology,1997,51:462–475
    [229] Robison B D, Wheeler P A, Sundin K, et al. Composite interval mapping reveals a majorlocus influencing embryonic development rate in rainbow trout (Oncorhynchus mykiss).Journal of Heredity,2001,92(1):16-22.
    [230] Rodriguez M, LaPatra S, Williams S, etc. Genetic markers associated with resistance toinfectious hematopoietic necrosis in rainbow and steelhead trout (Oncorhynchus mykiss)backcrosses. Aquaculture,2004,241:93-115
    [231] S.Lorenz., S.Brenna-Hansen, T.Moen, etal.BAC一based upgradingand Physicalintegrationof a genetic SNP map inAtlanticsalmon.Animal Genetics,2009,41(l):48-54
    [232] Sahai-Maroof M A, Zhang Q, Neale D B, et al. Associations between nuclear loci andchloroplast DNA genotypes in wild barley. Genetics,1992,131:225-231
    [233] Sakamoto T, Danzmann R G, Okamoto N, et al. Linkage analysis of quantitative trait lociassociated with spawning time in rainbow trout (Oncorhynchusmykiss). Aquaculture,1999,173(1):33-43.
    [234] Sax K. The association of size difference with seed-coat pattern and pigmentation inphaseolusulgaris. Genitics,1923,(8):552-560.
    [235] Scalfi, M., Troggio, M., Piovani, P., Leonardi, S., Magnaschi, G., Vendramin, G.G.,Menozzi, P. A RAPD, AFLP and SSR linkage map, and QTL analysis in European beechFagussylvatica L. Theor. Genet,2004,108:433-441.
    [236] Serpion, J., Kucuktas, H., Feng, J., Liu, Z. Bioinformatic mining of type I microsatellitesfrom expressed sequence tags of channel catfish (Ictaluruspunctatus).MarineBiotechnology,2004,6:364-377.
    [237] Shi, W. G., Zhang, M. Y., Liu, K., Xu, D. P.,Duan, J.R.Stress of hydraulic engineering onfisheries in the lower reaches of the Yangtze River and compensation. Journal of LakeSciences,2009,21:10–20(in Chinese with English abstract).
    [238] Shimoda N, Knapik E W, Ziniti J, et al. Zebrafish genetic map with2000microsatellitemarkers. Genomics,1999,58(3):219-232.
    [239] Singer A, Perlman H, Yan Y L, et al. Sex-specific recombination rates in zebrafish(Daniorerio). Genetics,2002,160(2):649-657.
    [240] Smith C T, Elfstrom C M, Seeb L W, et al. Use of sequence data from rainbow trout andAtlantic salmon for SNP detection in Pacific salmon. Molecular Ecology,2005,14(13):4193-4203.
    [241] Somorjai I M L, Danzmann R G, Ferguson M M. Distribution of temperature tolerancequantitative trait loci in Arctic charr (Salvelinus alpinus) and inferred homologies inrainbow trout (Oncorhynchus mykiss). Genetics,2003,165(3):1443-1456.
    [242] Sun X, Liang L. A genetic linkage map of common carp (Cyprinuscarpio L.) And mappingof a locus associated with cold tolerance. Aquaculture,2004,238(1):165-172.
    [243] Takahashi Y, Shomura A, Sasaki T, et al. Hd6, a rice quantitative trait locus involved inphotoperiod sensitivity, encodes the α subunit of protein kinase CK2. Proceedings of theNational Academy of Sciences,2001,98(14):7922-7927.
    [244] Tanksley S D, Ganal M W, Martin G B. Chromosome landing: a paradigm for map-basedgene cloning in plants with large genomes. Trends in Genetics,1995,11(2):63-68.
    [245] Tanyolac, B., Ozatay, S., Kahraman, A.,&Muehlbauer, F.). Linkage mapping of lentil(Lens culinaris L.) genome using recombinant inbred lines revealed by AFLP, ISSR,RAPD and some morphologic markers. J Agric Biotech Sustain Dev,2010,2:001-006.
    [246] Tao W J, Boulding E G. Associations between single nucleotide polymorphisms incandidate genes and growth rate in Arctic charr (Salvelinus alpinus L.). Heredity,2003,91(1):60-69.
    [247] Thornsberry J M, Goodman M M, Doebley J, et al. Dwarf8polymorphisms associate withvariation in flowering time. Nature genetics,2001,28(3):286-289.
    [248] Thoday J. M Location of polygenes.Nature,1960,191:368-370.
    [249] Tokuko U,Takayuki K,Yoshihiko T,Nagamitsu T,Yoshimaru H,Ratnam W.Developmentand polymorphism of simple sequence repeat DNA markers for Shoreacurtisii and otherDipterocarpaceaeSpecies.Heredity,1998,81:422-428
    [250] Toth, G., Gaspari, Z., and Jurka, J. Microsatellites in different eukaryotic genomes:surveyand analysis. Genome Research,2000,10:967-981
    [251] Varshney R K, Prasad M, Roy J K, et al. Identification of eight chromosomes and amicrosatellite marker on1AS associated with QTL for grain weight in bread wheat. TAGTheoretical and Applied Genetics,2000,100(8):1290-1294.
    [252] Vignal A, Milan D, SanCristobal M, et al. A review on SNPand other types of molecularmarkers and their use in animal genetics. Gent SelEvol,2002,34:275-305
    [253] Voorrips R E. MapChart: software for the presentation of linkage maps and QTLs. Journalof Genetics,2002,93:77-78.
    [254] Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting. NuclAcids Res,1995,23:4407-4414
    [255] Wang C M, Bai ZY, He XP, etc. A high-resolution linkage map for comparative genomeanalysisand QTL fine mapping in Asian seabass, Latescalcarifer. BMC genomics,2011,12:174
    [256] Wang C M, Lo L C, Zhu Z Y, et al. Mapping QTL for an adaptive trait: the length of caudalfin in Latescalcarifer. Marine Biotechnology,2011,13(1):74-82.
    [257] Wang C M, Zhu Z Y, Lo L C, et al. A microsatellite linkage map of Barramundi, Latescalcarifer. Genetics,2007,175(2):907-915.
    [258] Wang D G, Fan J B, Siao C J, et al. Large-scale identification, mapping, and genotyping ofsingle-nucleotide polymorphisms in the human genome. Science,1998,280:1077-1082
    [259] Wang H, Nussbaum-Wagler T, Li B, et al. The origin of the naked grains of maize. Nature,2005,436(7051):714-719.
    [260] Wang S, Bao Z M, Pan J, Zhang L L, et al. AFLP linkage map of an intraspecific corss inChlamysfarreri. Journal of Shellfish Research,2004,23:491-499.
    [261] Wang Z, weber J L, Zhong G, Tanksley S D. Survey of plant short tandem DNA repeats.Theoretical and Applied Genetics,1994,88:1-6.
    [262] Wang Z,Wu X, Ren Q, et al. QTL mapping for developmental behavior of plant height inwheat (Triticumaestivum L.). Euphytica,2010,174(3):447-458.
    [263] Watanabe T, Fujita H, Yamasaki K, et al. Preliminary study on linkage mapping based onmicrosatellite DNA and AFLP markers using homozygous clonal fish in ayu (Plecoglossusaltivelis). Marine Biotechnology,2004,6(4):327-334. Weber J. L., Wong C. Mutation ofhuman short tandem repeats. Human Molecular Genetics,1993,2: l122-ll28.
    [264] WeiJiang, LijieZhang, BoNa, et al. Mappingand characterizationoftwo relevance networksfrom SNP next term and gene levels.ProgressinNatural Science,2009,19(5):653-657
    [265] Welsh J., Mclelland M. Fingerprinting genomes using PCR with arbitary primers,Nucleotide Acids Research,1990,18:7213-7218.
    [266] Williams K. et al. DNA polymorphisms amplified by arbitary primers are useful as geneticmarkers. Nucleotide Acids Research,1990,18(22):6531-6535.
    [267] Woram R A, McGowan C, Stout J A, et al. A genetic linkage map for Arctic char(Salvelinus alpinus): evidence for higher recombination rates and segregation distortion inhybrid versus pure strain mapping parents. Genome,2004,47(2):304-315.
    [268] Wringe B F, Devlin R H, Ferguson M M, et al. Growth-related quantitative trait loci indomestic and wild rainbow trout (Oncorhynchusmykiss). BMC genetics,2010,11(1):63.
    [269] Wu K S, Jones R, Danncherger L, Scolnik PA. Detection of microsatellite polymorphismswithout cloning.Nucl.Acids. Res.,1994,22(15):3527-3258
    [270] Wu R, Lin M. Functional mapping—how to map and study the genetic architecture ofdynamic complex traits. Nature Reviews Genetics,2006,7(3):229-237.
    [271] Woods I G, Wilson C, Friedlander B, et al. The zebrafish gene map defines ancestralvertebrate chromosomes. Genome research,2005,15(9):1307-1314.
    [272] Xia J H, Liu F, Zhu Z Y, et al. A consensus linkage map of the grass carp(Ctenopharyngodonidella) based on microsatellites and SNPs. BMC genomics,2010,11(1):135.
    [273] Xu Y, Crouch J H. Marker-assisted selection in plant breeding: from publications topractice. Crop Science,2008,48(2):391-407.
    [274] Yan J, Tang H, Huang Y, et al. Dynamic analysis of QTL for plant height at differentdevelopmental stages in maize (Zea mays L.). Chinese Science Bulletin,2003,48(23):2601-2607.
    [275] Yano M, Katayose Y, Ashikari M, et al. Hd1, a major photoperiod sensitivity quantitativetrait locus in rice, is closely related to the Arabidopsis flowering time geneconstans. ThePlant Cell Online,2000,12(12):2473-2483.
    [276] Yue, G.H., Ho, M.Y., Orban, L., Komen, J. Microsatellites within genes and ESTs ofcommon carp and their applicability in silver crucian carp. Aquaculture,2004,234:85-98
    [277] Zabeau M, Vos P. Selective restriction fragment amplification: a general method for DNAfingerprints. European Patent Application,1993, Number:92402629.7, PublicationNumber EP0534858A1.
    [278] Zamir D, Tadmor Y. Unequal segregation of nuclear genes in plants. Botanical Gazette,1986:355-358.
    [279] Zimmerman A M, Wheeler P A, Ristow SS, et al. Composite interval mapping revealsthree QTL associated with pyloric caeca number in rainbow trout, Oncorhynchus mykiss.Aquaculture,2005,247(1):85-95.
    [280] Zeng Z B. Precision mapping of quantitative trait loci.Genetics,1994,136:1457-1468
    [281] Zeng Z B. Theoretical basis for seperation of multiple linked gene effects in mapping ofqutitative trait loci. Proc. Natl. Acad. Sci,1993,90:10972-10976
    [282] Zietkewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeatanchored polymerase chain reaction amplification. Genomics,1994,20:176-183
    [283] Zhang, L., Yang, G., Guo, S., Wei, Q., Zou, G.Construction of a genetic linkage map forsilver carp (Hypophthalmichthysmolitrix). Animal Genetics,2010,41:523-530.
    [284] Zhang K.P., Zhao L., Tian J.C., Chen G. F., Jiang X. L., Liu B. A Genetic Map Constructedusing a doubled haploid population derived from two elite Chinese common wheatvarieties. Journal of integrative plant biology,2008,50(8):941–950
    [285] Zhang WK, Wang YJ, Luo GZ, et al. QTL mapping of ten agronomic traits on the soybean(Glycine max L. Merr.) genetic map and their association with EST markers. Theor ApplGenet,2004,108(6):1131-1139
    [286] Zhang Y, Xu P, Lu C, et al. Genetic linkage mapping and analysis of muscle fiber-relatedQTLs in common carp (Cyprinuscarpio L.). Marine Biotechnology,2011,13(3):376-392.
    [287] Zhao L, Shao C, Liao X, et al. Twelve novel polymorphic microsatellite loci for theYellow grouper (Epinephelusawoara) and cross-species amplifications. ConservationGenetics,2009,10(3):743-745.
    [288] Zheng C, Chang R, Qiu L, et al. Identification and characterization of a RAPD/SCARmarker linked to a resistance gene for soybean mosaic virus in soybean. Euphytica,2003,132(2):199-210.
    [289] Zheng X, Kuang Y, Zhang X, et al. A genetic linkage map and comparative genomeanalysis of common carp (Cyprinuscarpio L.) using microsatellites and SNPs. Moleculargenetics and genomics,2011,286(3):261-277
    [290] Zhu, X.D.,Geng, B., Li, J., Sun, X.W.Analysis of genetic diversity among silvercarppopulations in the middle and lower Yangtse River using thirty microsatellite markers.Hereditas (Beijing),2007,29:705–13(in Chinese with English abstract).
    [291] Zivy M, Devaux P, Blaisonneaux J. Segregation distortion and linkage studies inmicrospore-deriveddouble halploid lines of Hordeumvulgarel. Thero. Appl. Genet.,1992,83(7):919-924

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700