烤烟地上部器官形态模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟草是我国重要的经济作物,其面积和总产量居世界第一位。烟草的形态结构比较简单,从形态结构特征分析可知,烟草是由许多叶元构成的,而叶元由节间、节及其上的附属器官(如叶子)组成,所以烟草的生长也可理解为叶元的产生与生长过程。
     本文以2006、2007年两年的试验资料和广泛搜集的相关信息资料为基础,根据植物的结构与功能反馈机制,以生长周期(GC)为时间步长,叶元为结构单元,建立了烟草生长的生理生态和形态结构的模拟模型,包括生长发育模型、同化物生产模型、同化物分配和积累模型、器官形态构建模型等。
     基于烟草生长过程中叶元数增加与积温变化呈线性相关关系,生长发育模型进行烟草生育进程的预测:基于烟草地上部净同化物增加与生长周期的变化关系,同化物生产模型进行同化物的估算。
     依据2006年试验和气象数据分析,求得发育参数DR值为75.76(℃-1),形态构建参数包括叶和节间形态参数,基于器官形态构建原理和2006试验数据,求得叶形态参数ξb的值为0.045 g/ cm2,叶长与鲜重的关系k i为11.328,拟合系数r为0.4153,节间形态系数be随节位上升出现两个峰值,节间形态系数β随节间位置的上升而上升。为了验证模型,分别以2007年第12个GC和20个GC的试验数据对模拟结果分别进行比较,试验数据与模拟结果总体上比较吻合,相关系数在0.735以上。
     采用某一时刻烟草植株地上部总重与生物量的比例来计算地上部的分配指数,采用地上部各器官的重量与地上部总重的比例来计算地上部各器官的分配指数,并以分配指数和生物量为基础模拟了烟草各器官干物重的变化动态。首次构建了地上部、绿叶、茎、分配指数与生长周期之间的动态关系,从而较真实地展示了随着烟草生育进程植株各器官分配指数的连续变化规律,提高了模型的解释性和机理性。
     通过连续观测烟草叶片的叶绿素含量的变化,综合分析了烟草叶片叶绿素含量随生育进程的变化规律及其与RGB的关系,并构建了基于叶绿素含量的烟草叶色变化模拟模型。烟草叶片叶绿素含量随生育进程的变化在生长初期和生长成熟期符合二次曲线的规律,叶色变化的第二阶段叶片叶绿素含量基本保持不变,不同叶位叶片在此阶段的叶绿素含量与叶位呈线性关系。采用分段函数描述了叶片叶绿素含量随生长周期进程的动态变化过程,并用线性方程定量描述了叶片色素含量与RGB的定量关系,叶片色素含量预侧值的模拟值与实测值的相关系数均在0.763以上。
     本研究实现了农学与计算机技术的结合,所建立的烟草地上部器官形态模型不但有较强的生物学意义和较高的模拟精度,而且具有系统性、机理性的特点。本研究可与根系模型挂接,使作物模型的研究更加完整。也可做为构建烟草虚拟生长的理论依据。
Tobacco is one of the important economic crops in china. Its area and total yield ranking first in the world. Its structure is relatively simple.Analysis of the structure indicates that tobacco is composed by many of architectural units.At the same time, the internode, the segmentl and on attached organ (for example leaf) composes the architectural unit.As a result, The growth of tobacco also be interpreted as the growth of architectural unit during the formation and growth.
     In this paper, based on the information of 2006 and 2007 years of test data and extensive collection of relevant information, according to plant structure and function of the feedback mechanisms, to the growth cycle GC for the time step, the structural unit of the architectural unit, a growth of tobacco Physiological ecology and morphology of the simulation model is made. The model is divided into development modules, the production of the assimilation module, the distribution of assimilation and accumulation of modules, Construction of organ morphology models and so on several sub-modules.
     Based on the linear correlation relations of the increased structural unit’s number and the accumulated temperature change in the tobacco growth process,the growth module carries on the forecast of the tobacco birth advancement.Based on the tobacco upside a net increase of assimilation products increase and the growth cycle change relations, the assimilation production module carries on the assimilation of the estimate products.
     The use of a particular moment of the tobacco plant above-ground biomass and total weight to calculate the proportion of the allocation for the department of the ground, using the proportion of various organs of the ground and the total weight to calculate upside various organs assignment index, and simulated various organs of the dynamic changes of the tobacco dry weight at the foundation of the assigned index and the biomass. The models have constructed the dynamic relations of upside, green leaf, stem, assignment index and growth cycle for the first time. Thus it had demonstrated precisely along with various organs assignment index continuously change rule of the tobacco growth process and enhanced the model of rational explanation and the mechanism
     Based on 2006 test and analysis of meteorological data obtained the value for the development parameters DR is 75.76(℃·d).Morphology construction parameter including leaf and internode shape parameter respectively. Based on the principle of organ morphology and 2006 test data obtained parameters of leaf morphologyξb is 0.045 g/ cm2,the value of k i and r are 11.328 and 0.4153 respectively. The internode shape coefficient appears two peak values along with the location of knots rise.βrises along with the internode position rise. In order to confirm the model, Comparison with the test data of 12th GC and 20th GC and the simulated result carry on the separately,the tentative data is as a whole consistent with the analogue result.
     Through continuous observation of content of tobacco leaf chlorophyll , Comprehensive analysis of the tobacco leaf chlorophyll content with the reproductive process of change and its relationship with the RGB,and Construct the simulation model of tobacco leaf color changes based on the chlorophyll content of . Chlorophyll content of tobacco leaves with the reproductive process of change in early growth period and growth of the early maturity and growth in line with the laws of the Second Curve. Chlorophyll content essentially unchanged in the second phase of leaf color changes. The leaf chlorophyll content and leaf position are linear relationship at this stage.Using segment function to describes the leaf chlorophyll content with the growth cycle process of dynamic change process. And use of linear equations quantitative description of the leaf pigment content and the quantitative relationship RGB. The correlation coefficient of simulated value and measured all above in 0.763 .
     Application of internationally commonly used method of tested model, to test the simulated result of tobacco morphology, the results show that, Simulation of tobacco to form a better performance parameters of the growth and development of tobacco,and has a good agreement with the measured data. All of these note the use of this model to simulate the growth of the tobacco process to be effective.
引文
[1]高亮之,金之庆,郑国清等.小麦栽培模拟优化决策系统(WCSODS)[J].江苏农业学报,2000,16(2):65-72.
    [2]曹宏鑫,董玉红,孙立荣等.作物模拟技术在小麦栽培中应用的研究[J].中国农业科学,2003,36(3):342-348.
    [3]曹卫星,罗卫红.作物系统模拟及智能管理[M].华文出版社. 2001.
    [4]朱德峰,程式华等译.几种一年生作物生长的生态生理过程模拟[M].北京:中国农业科技出版社,1991。
    [5]赵四强译.农业气象中的数学模式[J],农业气象科学,1984,4(1).
    [6]高亮之著.农业系统学基础[M].南京:江苏科学技术出版社.1993.
    [7]马新明.棉花蕾铃发育及产量形成的模拟模型(COTMOD)[D].博士学位论文.1996.
    [8]高亮之,金庆之,黄耀等.水稻栽培计算机模拟优化决策系统.北京.中国农业科技出版社,1992.
    [9] Penning de Vries, F.T.W. et al. Simulation of ecophysiological processes in several annual crops. Simulation Monographs. Pudoc, Wageningen, The Netherlands. 1989.
    [10]曹卫星.国外小麦生长模拟研究进展.南京农业大学学报.1995,18 (1):10-14.
    [11] de Wit C T. Photosynthesis of leaf canopies. Wageningen, Netherlands: Inst Biol Chem Res Field Crops Herb. Agric Res Rep, 1965. 663.
    [12] Duncan W G, Loomis R S, Williams W A, et al. A model for simulating photosynthesis in plant communities. Hilgardia, 1967,38:181-205.
    [13] de Wit C T. Dynamic concepts in biology. In: Prediction and Management of Photosynthetic Productivity. Proceedings International Biological Program Plant Production Technical Meeting. Wageningen, Netherlands: PUDOC, 1970. 17-23.
    [14] De Wit C.T. et al Simulation of assimilation, respiration and transpiration of crops.Simulation Monographs. Pudoc, Wageningen. 1978.
    [15] van Keulen H. Simulation of water use and herbage growth in arid regions. In: Penning de Vries F W T, van Laar H H eds. Simulation Monographs. Wageningen, Netherlands: PUDOC, 1982. 176.
    [16] Penning de Vries F W T, Jansen D M, tenBerge H F Metal. Simulation of ecophysiological processes of growth in several annual crops. Simulation Monographs. Wageningen, Netherlands: PUDOC, 1989. 271.
    [17] Hijmans R J, Guiking-Lens I M, van Diepen C A. WOFOST, user guide for the WOFOST 6.0 crop growth simulation model. Wageningen, Netherlands: Technical document 12, DLO Winand Staring Centre, 1994,145.
    [18] Driessen P M, Konijn N T. Land-use System Analysis. Wageningen, the Netherlands: Wageninge Agricultural University, 1992.
    [19] Baker, D. N., Lambert, J. R. & McKinion, J. M., GOSSYM: A simulator of cotton crop growth and yield, S. C. Expt. Bull. Technical Bulletin No.1089, S. C. Agricultural Experiment Station, December, 1983.
    [20] Stepleton, H. N. et al, COTTON: A computer simultion of cotton growth, Arizona Agr.Exp. Station Tech. Bull., 1973, 206:124.
    [21] Duncan, W. G., SIMCOT: A simulation of cotton growth and yield,in Proc. worshop on tree growth dynamics and modelling, Duke University, Oct.,1972, 115-118.
    [22] Ritchie J T, Otter S. Description and performance of CERES-Wheat: A user-oriented wheat yield model, USDA-ARS, ARS-38, 1985. 159-175.
    [23] Ritchie J T, Alocijia E C, Uehara G. IBSNAT/CERES Rice Model. Agrotechnology Transfer, 1986. 3:1-5.
    [24] Jones C A, Kiniry J R. CERES-Maize: A Simulation Model of Maize Growth and Development. Texas A&M University Press, College Station, TX. 1986.
    [25] Carberry P S, Muchow R C, Mc Cown R L. Testing the CERES-Maize simulation model in a semi-arid tropical environment. Field Crops Res, 1989, 20: 297-302.
    [26] Hodges T, Bother D, Sakomoto C, Haug J H. Using the CERES-Maize model to estimate production for the U.S. Corn belt. Agric and Forest Meteorol, 1987, 40: 293-303.
    [27] Larrabee J, Hodges T. NOAA-AISC user′s guide for implementing CERES-maize model for large area yield estimation. Agrostars Software Documentation, 1985. 20.
    [28] Williams J R, Jones C A, Kiniry J R, et al. The EPIC crop growth model. Transactions of the ASAE, 1989, 32: 497-511.
    [29] Pisani A L Du. The CERES-Maize model as a potential tool for drought assessment in South Africa. Water South Africa, 1987, 13: 59-163.
    [30] Liu W T H, Bother D M, Sakamoto C M. Application of CERES-Maize to yield prediction of a Brazilian maize hybrid. Agric and Forest Meteorol, 1989, 45: 99-104.
    [31] Wilkerson G G, Jones J W, Boote K J, et al. Modeling soybean growth for crop management. Transactions of the ASAE, 1983, 26: 63-73
    [32] Boote K J, Jones J W, Hoogenboom G, et al. PNUTGROV 1.02, Penut Crop Growth Simulation Model, User.s Guide. Fl. Agric. ExSta, Journal No.8420. Univ. of Florida, Gainesville,1989.
    [33] Hoogenboom G, Jones J W, Boote K J. Modeling growth, development and yield of grain legumes using SOYGRO, PNUTGRO, and BEAN- GRO: A review. Transactions of the ASAE, 1992, 35(6): 2043-2056.
    [34] Gijzen H, Dayan E. HORTISM: a model for greenhouse crops and greenhouse climate. Acta Hort. , 1998,456: 441-450.
    [35] Jones JW, Dayan E, Allen LH, et al. A dynamic tomato growth and yield model (TOMGRO). Transactions of the ASAE, 1991, 34(2):663-672.
    [36]高亮之,金之庆.中国不同类型水稻生育期的农业气象生态模式及其应用.农业气象,1982,8(2):1-8.
    [37]高亮之,金之庆,黄耀等.水稻计算机模拟模型及其应用之一:水稻钟模型-水稻发育的计算机模型.中国农业气象,1989,10(2):3-10.
    [38]戚昌翰,殷新佑,谢华蔼.水稻产量形成的生长日历模拟模型的初步研究[J],江西农业大学学报,1991,39-43.
    [39]戚昌翰.水稻生长日历模型与研究论文集[C].江西农业大学学报,1991(增刊).
    [40]戚昌翰,殷新佑.水稻生长日历模拟模型调控决策支持系统(RICAM/RICOS)研究[J].江西农业大学学报,1996,18(增刊).
    [41]戚昌翰,殷新佑.水稻生长日历模拟模型(RICAM)调控决策系统(RICOS)研究[J].江西农业大学学报,1994,16(4):323-32.
    [42]邹应斌,唐秋澄.水稻苗情东台计算机模拟(IV):水稻苗情动态模拟与模拟栽培[J].湖南农学院学报,1993,19(增刊):30-36.
    [43]骆世明,郑华.水稻高产栽培中应用计算机模拟的研究[J].广东农业科学,1990(3):14-17.
    [44]潘学标.COTGROW-棉花生长发育模拟模型[J].棉花学报,1996,8(4):180-188.
    [45]夏北成.麦田生态系统的计算机模拟及最优控制[M].北京:北京大学出版社,1999.
    [46]冯立平,高亮之.小麦发育期动态模拟模型的研究[J].作物学报,1997,23(4)418-424.
    [47]陈国庆,朱艳,曹卫星.小麦叶鞘和节间生长过程的模拟研究.麦类作物学报,2005,25(1):71-74.
    [48]侯加林,王一鸣,丛晓燕等.番茄叶序发育动态模拟模型.农业机械学报,2006,37(7):101-103.
    [49]张立桢,曹卫星,张思平.棉花蕾铃生长发育和脱落的模拟研究.作物学报,2005,31(1):70-76.
    [50]谭子辉,朱艳,姚霞等.冬小麦麦穗生长过程的模拟研究.麦类作物学报,2006,26(4):93-97.
    [51]李卫国,朱艳,戴廷波等.水稻籽粒直链淀粉含量的生态模型研究.应用生态学报,2005,16:491-495.
    [52] Room PM ,Hanan JS, P rusinkiewicz P. Virtual plants: new perspectives for ecologists, pathologists and agricultural scientists. Trends in Plant Science, 1996, 1 (1) : 33-38.
    [53] de Reffye P, Edelin C, F ranqon J , et al. P lants models faithful to botanical structure and development [J]. Computer Graph ics, 1998, 22 (4) : 151-158.
    [54] KurthW. Morphological models of p lant grow th: possibilities and ecological relevance [J]. Ecological Modeling,1994, 75—76: 299-308.
    [55]郭焱.虚拟植物与虚拟农业.农业信息学(曹卫星主编).中国农业出版社.2005,127-152.
    [56] Lindenmayer A.Mathematical models for cellular interactions in development[J].J Theoret Biol,1968,18: 280-315.
    [57] Mandelbrot.B.B, The fractal geometry of nature[M], Freeman, San Fransisco,1982
    [58]王东生,曹磊.混浊、分形及其应用[M].湖南:中国科学技术大学出版社,1996
    [59]曾文曲,王向阳.分形理论与分形的计算机模拟[M].沈阳:东北大学出版社
    [60] DeReffye P, Edelin C, Francon Jetal. Plant models faithful to botanical structure and development[J]. Computer Graphics, 1988, 22(4):151-158.
    [61] Bouchon J, de Reffye P, Barthelemy D. Model is ationet Simulation del' Architecture des Vegetaux. Paris, INRA[C],1997.
    [62] GodinC, CarglioY.A multiscale model of plant topological structures[J]. JtheorBio,1998, 84(3): 146.
    [63]赵星,de Reffye Philippe,熊范纶等.虚拟植物生长的双尺度自动机模型[J],计算机学报,2001, 24(6):608-615.
    [64] Prusinkiewicz PW,Remphrey W R,Davidson CG,et al. Modeling the architecture of expanding Fraxinus pennsylvanica shoots using L-systems[J].Can J Bot,1994,72:701-714.
    [65] Ivanov N, Boissard P, Chapron M, Andrieu.B. Computer stereo plotting for 3-D reconstruction of a maize canopy. Agric. For. Meteorol. 1995.75: 85-102.
    [66] Andrieu B, Ivanov N, Boissard P. Simulation of light interception from a maize canopy model constructed by stereo plotting. Agric for Meteorol, 1995, 75: 103-119.
    [67] Jaeger M,de Reffye P.Basic concepts of computer simulation of plant growth [J].Biosci,1992,17(3):275-291.
    [68] de Reffy P,Edelin C,Francon J,et al.Plant models faithful to botanical structure and development [J].Computer Graphics,1988,22(4):151-158.
    [69] Godin C,Guedon Y,Costes E,et al.Measuring and analyzing plants with the AMAPmod software[A].In:Michale Wicz.M T.Plants to Ecosystems-Advances in Computational Life Sciences[C].Melbourne:CRIRO Australia,1997.53-84.
    [70] Smith GS, Curtis JP, Edwards CM.A method for analyzing Plant architecture as it relates to fruit qualibty using three-dimensional cornputer graphics .Annals of Botany. 1992, 70: 265-269.
    [71]郭焱,李保国.玉米冠层三维结构研究.作物学报,1998,24(6):1006-1009.
    [72]郭焱,李保国.玉米冠层的数学描述与三维重建研究.应用生态学报,1999,10(1):39-41.
    [73]宋有洪,郭焱,李保国.基于器官生物量构建植株形态的玉米虚拟模型[J].生态学报,2003,23(12):2579-2586.
    [74]展志岗,王一鸣,Philippe de Reffye ,胡包钢。冬小麦植株生长的形态构造模型研究[J]。农业工程学报,2001,17(9):6-10.
    [75]严美春,曹卫星,罗卫红等.小麦地上部器官建成模拟模型的研究.作物学报,2001,27:222-229.
    [76]石春林,金之庆,曹卫星.水稻植株的虚拟生长[J].江苏农业学报,2006,22,2()105-108
    [77]杨娟,赵明,潘学标.基于NURBS和VC++6.0的棉花生长可视化研究.农业工程学报,2006,22(10):159-162.
    [78]董乔雪,王一鸣,Jean Francois BARCZI.番茄的结构-功能模型:基于有限态自动机的3D形态构建.中国生态农业学报,2006,14(4):195-199.
    [79] Diggle AJ. ROOTMAR a model in three-dimensional coordinates of the growth and structure of fibrous root systems[J] .Plant and Soil. 1988. 105: 169-178.
    [80] Bengough AG,Mackenzie CJ,Diggle AJ.Relations between root length densities and root intersections with horizontal and vertial plants using root growth modeling in 3-dimensions[J].Plant and Soil,1992,145:245-252.
    [81] Pages L, Jordan M O, Picard D. A simulation model of the three-dimensional architecture of the maize root system. Plant and Soil, 1989,119:147-154.
    [82] Fitter A H, Stickland T R, Harvey M L, Wilson G W. Architectural analysis of plant root systems.Ⅰ. Architectural correlates of exploitation efficiency. New Phytol,1991,118:375-382.
    [83]冯斌,杨培岭.植物根系的分形及计算机模拟[J].中国农业大学学报,2000,5(2):96-99.
    [84]Clausnitzer V, Hopmans JW.Simultaneous modeling of transient three-dimensional root growth and soil water flow[J].Plant and Soil,1994,164:299-314.
    [85]金明观,王天铎.玉米根系生长及向水性的模拟[J] .植物学报,1996, 38( 5) : 384-390.
    [86]陈德清.冬小麦根系的分形分析和生长模拟[D].北京:中国农业大学.1996
    [87] Lynch JP,Nielsen KL,Davis RD,et al.Sim Root:Modeling and visualization of root system [J].Plant and Soil,1997,188:139-151.
    [88]陈晓远,高志红,罗远培.考虑土壤水分影响的小麦根、冠干物质积累及其相互关系模型.生态学报,2005,25(8):1921-1927.
    [89]马新明,杨娟,熊淑萍等.烟草根系生长发育模拟模型的建立.中国农业科学,2005,38(2):2421-2427.
    [90]张吴平,李保国.棉花根系生长发育的虚拟研究.系统仿真学报,2006,18:283-286.
    [91]余斌.计算机2000年问题及烟草生产企业对策仁[J].烟草科技,1999, (2): 19-21.
    [92]郑业鲁.现代信息技术及其在农业中的应用[J].广东农业科学,1999,(6):43-45.
    [93]程彪,“中国烟草科教网”信息资源的配置和组织[J].中国烟草科学,1999, (2): 42-43.
    [94]杜新民.信息技术在农业上的应用[J].农业网络信息,2005, (12):11-13.
    [95]严伟才.皖南烟草栽培管理智能决策与咨询系统的研究[D].合肥:安徽农业大学, 2005.
    [96]严伟才,黄义德,王敬儒,等.安徽省皖南地区优质烟叶栽培管理专家系统的研究[J].安徽农业科学,2004,32(4):772-774.
    [97] Wann M, Paker C D, Lucas H L, A Dynamic Model for Plant Growth:a Simulation of Dry Matter Accumulation for Tobacco[J].Photosynthetica,1978,12 (2): 121 -136.
    [98] LEVINS, DAVID.User's Manual for a Simulation Modei of Genetic Control of the Tobacco Budworm [M].Mississippi State:Agricultural and Forestry Press,2000.
    [99] C.E. Maim J.M. Davis,Thomas Keever. Forecasting Transport of Spores and Spread of Tobacco Blue Mold [M] , Departments of Plant Pathology and Marine, Earth and Atmospheric Sciences,2001.
    [100] Mcneil S D, Rhodes D, Russell B L, etal.Metabolic Modeling identifies Key Constraints on an Engineered Glycine Betaine Synthesis Pathway in Tobacco[J].Plant Physio1,2000,( 124):153-162.
    [101] Thomas Keever. The endogenous choline supply limits glycine betaine synthesis in transgenic tobacco expressing choline mono oxygenase. Plant [J]. 1998, 16: 487-496.
    [102]王凤龙,时焦等烟草病毒病预测预报模型的初步研究[J].植保技术与推广.1997, 17 (4):10-12.
    [103]程功,刘济,李跃峰,等.烤烟配方施肥专家系统的研究与应用[J].河南农业大学学报,1997,31(2):165-169.
    [104]熊淑萍.烟草生长发育动态模拟模型系统Tobacco-DSMS的研究[D].郑州:河南农业大学,2003.
    [105]庞全,杨翠容.烟叶初烤计算机控制系统[J].农业工程学报,1997, (4): 174-178.
    [106]陈仲华.微型烟叶烘烤专家系统的设计[J].云南师范大学学报,1998,18(3):49-53.
    [107]潘建斌,冯朝岭,王丽娟,等.烟叶烘烤自控专家系统的研究与应用[J].河南农业大学学报,2005,39(3):297-299.
    [108]阎瑞琼,韩力群,陈晋尔.计算机技术在烟叶检测与分级领域的应用[J].烟草科技,2001,(3):13-15.
    [109] J. K. M. MacCormac. On-line image processing for tobacco grading inZimbabwe[J].IEEE,1993:327-331.
    [110] CHO,H.K. PAEK,K. H. Feasibility of grading dried burley tobacco leaves using machine vision[J]. Journal of the Korean Society for Agricultural Machinery,1997,22(1):30-40.
    [111]张建平.烟叶品质的计算机辅助检验与分级—分级模型的建立与训练[J].农业工程学报,1996,(7):180-183.
    [112]周文,韩力群.计算机图像处理技术在烤烟烟叶形状特征提取中的应用[J].烟草技,2000,(1):12-13.
    [113]杨云江,吴春,赵先平,等.管理信息系统和网络技术在烟草行业中的应用[J].贵州大学学报,2003,20(4):431-434.
    [114]朱广廉,钟诲文,张爱琴.植物生理学实验[M].北京:北京大学出版社,1990.5l-54;245-252.
    [115] IBARRA J G, TAO Y,NEWBERRY B L, et al. Learning vector quantization for color classification of diseased air sacs in chicken carcasses[J].Transation of the ASAE,2002,45(5):1629-1635.
    [116] TIAN L F, SLAUGHTER D C .Environmentally odaptive segmentation algorithm for outdoor images segmentation[J].Computer&Election.In Agric. 1998, 21 (3): 153-168.
    [117]雷咏雯,危常州,冶军,等.计算机辅助叶色分析进行棉花氮素营养诊断的初步研究[J].石河子大学学报:自然科学版,2004,22(4):113-116.
    [118] PETER C S, JOHN A L.Calibrating corn color from aerial photographs to predict sidedress nitrogen need [J].Agron ,2002,94:397-404.
    [119]张京平,彭争,汪剑.苹果水分与CT值相关性的研究[J].农业工程学报,2003,19(2):180-182.
    [120]贾良良.应用数字图像技术与土壤植株测试进行冬小麦氮素营养诊断[D].北京:中国农业大学资源与环境学院,2003,6:16.
    [121]朱念德.植物学(形态解剖部分).广州:中山大学出版社,2000.
    [122]张银锁,宇振荣,Driessen P M.环境条件和栽培管理对夏玉米干物质积累、分配及转移的试验研究。作物学报,2002, 28(1): 104-109.
    [123]刘国顺.烟草栽培学.北京:中国农业出版社.2003:241.
    [124] Singels A, Bezuidenhout C N. A new method of simulating dry matter partitioning in the Canegro sugarcane model. Field Crops Research,2002, 78: 151-164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700