稀土铝、镁合金热力学性质的第一原理计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一原理计算不依赖任何经验参数即可合理预测微观体系的状态和性质,准确地计算和预测稳定相、亚稳相甚至虚拟相的物理、化学性能,从而使材料研究者可以利用这些相的物理化学性能进行材料优化设计。Al-RE和Mg-RE二元合金是现代稀土轻合金研究的基础,然而关于这些合金的热力学性质、力学性质以及相关的热物理性能的研究很少,这阻碍了稀土铝、镁合金的进一步研究以及新型材料的设计和开发。为了加速对稀土铝、镁合金的研究,本文将用目前成熟的密度泛函理论对这些合金的热力学以及力学性质进行深入的计算研究。
     首先,本文利用第一原理计算获得了Al-RE和Mg-RE二元合金体系的558个金属间化合物的合金形成焓,准确地预测了34个Al-RE和Mg-RE二元合金体系中合金相的绝大多数基态结构;计算还预测了Mg-RE二元合金体系潜在的亚稳相,对于丰富与完善为铝基和镁基合金热力学数据库具有重要价值。
     其次,结合第一原理和德拜模型对B2-AlRE、C15-Al_2RE和L1_2-Al_3RE化合物的力学性质、电子结构以及热物理性能等进行了系统地计算和预测。晶格常数、弹性常数以及德拜温度等的计算值和实验值相符;体积模量和剪切模量之比B/G值显示:在B2-AlRE中,B2-AlEu和B2-AlYb呈脆性,其它化合物都呈延性;C15-Al_2RE和L1_2-Al_3RE化合物都呈脆性。
     再次,系统地计算和预测了B2-MgRE体系的力学性质、电子结构以及热物理性能等。晶格常数的计算值和实验值吻合;弹性常数和弹性模量的计算值和实验值进行比较发现B2-MgCe的C'值符合的很好,而B2-MgTm弹性常数的误差在25%以内;体积模量和剪切模量之比B/G值显示轻稀土部分的偏脆性,而重稀土部分的偏韧性。
     最后,结合第一原理方法、Miedema理论和计算相图方法(CALPHAD)对Mg-Eu体系进行了热力学优化。本文首先利用Miedema理论计算了Mg-Eu的液相混合焓,结合第一原理计算的化合物形成焓以及相图实验数据,选择合理的模型,用优化计算了Mg-Eu二元体系的相平衡关系,获得了一组合理的参数。
With the development of first-principles calculations independent of any empirical parameters,thermophysical properties of materials can be predicted which are important to set up a materials database.In order to accelerate materials design of Al- and Mg-base alloys to establish relative completed databases,thermodynamic and mechanical properties of some phases(including stable or metastable or hypothesized) in the Al-RE and Mg-RE systems were studied.
     Firstly,formation enthalpies of 558 intermetallic compounds in the Al-RE and Mg-RE binary systems were calculated by means of first-principles calculations.Thermodynamic stabilities of the studied phases are calculated and show good agreement with experiments. Moreover,lots of the potential phases were also predicted for the Mg-RE binary systems.
     Secondly,combining first-principle calculation with Debye model, mechanical properties,electronic structure and thermophysical properties of the B2-AlRE,C15-Al_2RE and Ll_2-Al_3RE were further predicted.The calculated lattice constants,elastic constants and Debye temperatures are coincident with the experimental data,and the calculated B/G ratios indicate that the B2-AlEu and B2-AlYb are brittle while other B2-AlRE are ductile,and the C15-Al_2RE and Ll_2-Al_3RE are all brittle.
     Thirdly,the mechanical properties,electronic structures and thermophysical properties of B2-MgRE have also been calculated.The calculated lattice constants agree with experimental data.Especially,the C' of B2-MgCe is in very good agreement with the experimental data. Although the calculated elastic constant of B2-MgTm differs from experimental data for about 25%,it is still acceptable.In addition,the B/G ratios were calculated indicating that the Mg-early RE compounds are slightly brittle and the others are slightly ductile.
     Lastly,with the help of first-principles calculations,Miedema's method and CALPHAD technique,the Mg-Eu binary system has been thermodynamically assessed.As a starting step,the Miedema's method and first-principles calculation are respectively used to determine the mixing enthalpy of liquid Mg-Eu alloys and formation enthalpies of intermetallic compounds.Then,using the CALPHAD technique,the Mg-Eu binary system has been described.Consequently,a set of self-consistent thermodynamic parameters have been obtained.
引文
[1]D.Raabe,Computational materials science,New York,Wiley-VCH,1998,13-18
    [2]熊家炯 主编,材料设计-二十一世纪新材料丛书,天津,天津出版社,2000,1-10
    [3]张邦维,胡望宇,舒小林,嵌入原子方法理论及其在材料科学中的应用,长沙,湖南大学出版社,2003,1-7
    [4]A.R.Miedema,R.Boom,F.R.De Boer,On the heat of formation of solid alloys,J.Less-common met.,1975,42,283-298
    [5]A.R.Miedema,F.R.De Boer and R.Boom,Model predictions for the enthalpy of formation of transition metal alloys,Calphad,1977,1,341-359
    [6]M.S.Daw and M.I.Baskes,Semiempirical,quantum mechanical calculation of hydrogen embrittlement in metals,Phys.Rev.Lett.,1980,50,1285-1288
    [7]M.S.Daw and M.I.Baskes,Embedded atom method:Derivation and application to impurities,surfaces and other defects in metals,Phys.Rev.B,1984,29,6443-6453
    [8]W.K.Heisenberg,Quantum-theoretical re-interpretation of kinematical and mechanical relations,Z.Phys.,1925,33,879-893
    [9]E.Schr(o|¨)dinger,Quantisierung als Eigenwertproblem I,Ann.der.Phys.,1926,79,361-376
    [10]P.Hohenberg and W.Kohn,Inhomogeneous electron gas,Phys.Rev.B,1964,136,864-871
    [ll]W.Kohn and L.J.Sham,Self-consistent equations including exchange and correlation effects,Phys.Rev.A,1965,140,1133-1138
    [12]G.L.Oliver and J.P.Perdew,Spin-density gradient expansion for the kinetic energy,Phys.Rev.A,1979,20,397-403
    [13]H.Stoll,C.M.E.Pavlidou and H.Preuss,On the calculation of correlation energies in the spin-density functional formalism,Theor.Chim.Acta,1978,49,143-149
    [14]A.D.Becke,Density-functional exchange-energy approximation with correct asymptotic behavior,Phys.Rev.A,1988,38,3098-3100
    [15]J.P.Perdew,J.A.Chevary,S.H.Vosko,K.A.Jackson,M.R.Pederson,D.J.Singh and C.Fiolhais,Atoms,molecules,solids,and surfaces:Applications of the generalized gradient approximation for exchange and correlation,Phys.Rev.B,1992,46,6671-6687
    [16]J.P.Perdew,Y.Wang,Accurate and simple analytic representation of the electron-gas correlation energy,Phys.Rev.B,1992,45,13244-13249
    [17]J.P.Perdew,K.Burke and Y.Wang,Generalized gradient approximation for the exchange-correlation hole of a many-electron system,Phys.Rev.B,1996,54,16533-16539
    [18]J.P.Perdew,K.Burke and M.Ernzerhof,Generalized gradient approximation made simple,Phys.Rev.Lett.,1996,77,3865-3868
    [19]J.P.Perdew,Density-functional approximation for the correlation energy of the inhomogeneous electron gas,Phys.Rev.B,1986,33,8822-8824
    [20]C.Lee,W.Yang and R.G.Parr,Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,Phys.Rev.B,1988,37,785-789
    [21]李震宇,贺伟,杨金龙,密度泛函理论及其数值方法新进展,化学进展,2005,17,192-202
    [22]M.C.Payne,M.P.Teter,D.C.Allan,T.A.Arias,and J.D.Joannopoulos,Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients,Rev.Mod.Phys.,1992,64,1045-1097
    [23]R.M.Martin,Electronic structure:basic theory and practical methods,Cambridge,Cambridge University Press,2004,1-25
    [24]S.M.Reimann and M.Manninen,Electronic structure of quantum dots,Rev.Mod.Phys.,2002,74,1283-1342
    [25]A.E.Mattsson,Density functional theory:In pursuit of the "Divine" functional,Science,2002,298,759-760
    [26]D.H.Zhang,M.A.Collins and S.Y.Lee,First-principles theory for the H+H_2O,D_2O reactions,Science,2000,290,961-963
    [27]G.Ceder,Y.M.Chiang,D.R.Sadoway,M.K.Aydinol,Y.I.Jang,B.Huang,Identification of cathode materials for lithium batteries guided by first-principles calculations,Nature,1998,392,694-696
    [28]G.Ceder.Computational materials science-predicting properties from scratch,Science,1998,280,1099-1100
    [29] W.F. King and P.H. Cutler, A first principle pseudopotential calculation of the elastic shear constants of beryllium, Phys. Lett. A, 1968,28,289-290
    [30] W.F. King and P.H. Cutler, A first principle calculation of the total binding energy and c/a ratio of magnesium, Phys. Lett. A, 1970, 32, 395-396
    [31] Y. Wang, S. Curtarolo, C. Jiang, R. Arroyave, T. Wang, G Ceder, L.Q. Chen and Z.K. Liu, Ab initio lattice stability in comparison with CALPHAD lattice stability, Calphad, 2004, 28, 79-90
    [32] M.H.F. Sluiter, Ab initio lattice stabilities of some elemental complex structures, Calphad, 2006, 30, 357-366
    [33] S. Curtarolo, D. Morgan and G. Ceder, Accuracy of ab initio methods in predicting the crystal structures of metals: A review of 80 binary alloys, Calphad, 2005, 29,163-211
    [34] S. Curtarolo, A.N. Kolmogorov and F.H. Cocks, High-throughput ab initio analysis of the Bi-In, Bi-Mg, Bi-Sb, In-Mg, In-Sb, and Mg-Sb systems, Calphad, 2005, 29,155-161
    [35] L. Kaufman, P.E.A. Turchi, W. Huang and Z.K. Liu, Thermodynamics of the Cr-Ta-W system by combining the Ab Initio and CALPHAD methods, Calphad, 2001, 25,419-433
    [36] R. Arroyave, D. Shin and Z.K. Liu, Modification of the thermodynamic model for the Mg-Zr system, Calphad, 2005,29, 230-238
    [37] Y. Zhong, M. Yang and Z.K. Liu, Contribution of first-principles energetics to Al-Mg thermodynamic modeling, Calphad, 2005,29, 303-311
    [38] R. Arroyave and Z.K. Liu, Thermodynamic modelling of the Zn-Zr system, Calphad, 2006, 30,1-13
    [39] D. Shin, R. Arroyave and Z.K. Liu, Thermodynamic modeling of the Hf-Si-O system, Calphad, 2006, 30, 375-386
    [40] S. Shang, T. Wang and Z.K. Liu, Thermodynamic modelling of the B-Ca, B-Sr and B-Ba systems, Calphad, 2007, 31,286-291
    [41] M. Palumbo, F.J. Torres, J.R. Ares, C. Pisani, J.F. Fernandez, M. Baricco, Thermodynamic and ab initio investigation of the Al-H-Mg system, Calphad, 2007, 31,457-467
    [42] G. Ghosh and G.B. Olson, Integrated design of Nb-based superalloys: Ab initio calculations, computational thermodynamics and kinetics, and experimental results, Acta Mater., 2007,55, 3281-3303
    [43] 丁大同,固体理论讲义,南开大学出版社, 2001, 182-188
    [44] 黄昆、韩汝琦, 固体物理,高等教育出版社. 1988, 122-132
    [45] P. Ravindran, L. Fast, P.A. Korzhavyi and B. Johansson, Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi_2, J. Appl. Phys, 1998, 84,4891-4904
    [46] M. Dacorogna, J. Ashkenazi and M. Peter, Ab initio calculation of the tetragonal shear moduli of the cubic transition metals, Phys. Rev. B, 1982,26,1527-1537
    [47] J.M. Wills, O. Eriksson, P. Soderlind and A.M. Boring, Trends of the elastic constants of cubic transition metals, Phys. Rev. Lett., 1992, 68, 2802-2805
    [48] P. Soderlind, O. Eriksson, J.M. Wills and A.M. Boring, Theory of elastic constants of cubic transition metals and alloys, Phys. Rev. B, 1993,48, 5844-5851
    [49] N.E. Christensen, "Force theorem" and elastic constants of solids, Solid State Commu., 1984,49,701-705
    [50] N.E. Christensen, Deformation potentials and internal strain parameter of silicon, Solid State Commu., 1985, 50,177-180
    [51] M.F. Prestavoine, G Robert, M.H. Nadal and S. Bernard, First-principles study of the relations between the elastic constants, phonon dispersion curves, and melting temperatures of bcc Ta at pressures up to 1000 GPa, Phys. Rev. B, 2007, 76, 104104(11)
    [52] G Stenuit and S. Fahy, First-principles calculations of the mechanical and structural properties of GaN_xAs_(1-x): Lattice and elastic constants, Phys. Rev. B, 2007,76,035201(7)
    [53] J. Zhao, J.M. Winey and Y.M. Gupta, First-principles calculations of second- and third-order elastic constants for single crystals of arbitrary symmetry, Phys. Rev. B, 2007, 75,094105(7)
    [54] H. Kimizuka, S. Ogata, J. Li and Y. Shibutani, Complete set of elastic constants of a-quartz at high pressure: A first-principles study, Phys. Rev. B, 2007, 75, 054109(6)
    [55] P. Soderlind, A. Landa, B. Sadigh, L. Vitos and A. Ruban, First-principles elastic constants and phonons of δ-Pu, Phys. Rev. B, 2004, 70,144103(5)
    [56] X. Huang, I.I. Naumov and K.M. Rabe, Phonon anomalies and elastic constants of cubic NiAl from first principles, Phys. Rev. B, 2004, 70,064301(7)
    [57] O. Beckstein, J.E. Klepeis, GL. Hart and O. Pankratov, First-principles elastic constants and electronic structure of α-Pt_2Si and PtSi, Phys. Rev. B, 2001, 63, 134112(12)
    [58] L. Fast, J.M. Wills, B. Johansson and O. Eriksson, Elastic constants of hexagonal transition metals: Theory, Phys. Rev. B, 1995, 51, 17431-17438
    [59] A. Al-Ghaferi, P. M(?)llner, H. Heinrich, G. Kostorz and J.M.K. Wiezorek, Elastic constants of equiatomic Ll_0-ordered FePd single crystals, Acta mater., 2006, 54, 881-889
    [60] Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu and J. Meng, Crystal structures and elastic properties of superhard IrN_2 and IrN_3 from first principles, Phys. Rev. B, 2007, 76, 054115(15)
    [61] Y.L. Page, P. Saxe, Symmetry-general least-squares extraction of elastic coefficients from ab initio total energy calculations, Phys. Rev. B, 2001, 63, 174103(8)
    [62] G. Pei, C. Xia, Y. Dong, B. Wu, T. Wang and J. Xu, Studies of magnetic interactions in Mn-doped β-Ga_2O_3 from first-principles calculations, Scripta Mater., 2008, 58, 943-946
    [63] J. Wang, J. Wang, Y. Zhou and C. Hu, Phase stability, electronic structure and mechanical properties of ternary-layered carbide Nb4AlC3: An ab initio study, Acta Mater., 2008, 56,1511-1518
    [64] GY. Gao, K.L. Yao, Z.L. Liu, J. Zhang, Y. Min and S.W. Fan, A first-principles study of half-metallic ferromagnetism in binary alkaline-earth nitrides with rock-salt structure, Phys. Lett. A, 2008, 372,1512-1515
    [65] I.R. Shein, V.L. Kozhevnikov and A.L. Ivanovskii, First-principles calculations of the elastic and electronic properties of the cubic perovskites SrMO_3 (M = Ti, V, Zr and Nb) in comparison with SrSnO_3, Solid State Sci., 2008,10,217-225
    [66] A. Bouhemadou, R. Khenata, M. Chegaar and S. Maabed, First-principles calculations of structural, elastic, electronic and optical properties of the antiperovskite AsNMg_3, Phys. Lett. A, 2007, 371, 337-343
    [67] B. Xiao, J. Feng, J.C. Chen and L. Yu, Crystal structures and electronic properties of MC_2 (M = Mg, Ca, Sr, Ba) by comparative studies based on ab-initio calculations, Chem. Phys. Lett., 2007,448, 35-40
    [68] C. Zhang, Z. Zhang, P. Wang, Y. Wang, J. Dong and N. Xing, First-principles study of electronic structure of V_2A1C and V_2A1N, Solid State Commu., 2007,144, 347-351
    [69] J. Hafner, Atomic-scale computational materials science, Acta Mater., 2000, 48, 71-92
    [70]C.Jiang,L.Q.Chen and Z.K.Liu,First-principles study of constitutional point defects in B2 NiAl using special quasirandom structures,Acta Mater.,2005,53,2643-2652
    [71]M.E.Eberhart,D.P.Clougherty,Looking for design in materials design,Nature Mater.,2004,3,659-661
    [72]G.B.Olson,Designing a New Material World,Science,2000,288,993-998
    [73]S.Yip,Synergistic science,Nature Mater.,2003,2,3-5
    [74]C.Jiang,Site preference of transition-metal elements in B2 NiAl:A comprehensive study,Acta Mater.,2007,55,4799-4806
    [75]C.Blawert,N.Hort and K.U.Kainer,Automotive applications of magnesium and its alloys,Trans.Indian Inst.Met.,2004,57,397-408
    [76]K.U.Kainer(Ed),Magnesium-Alloys and Technology,Weinheim,WILEY-VCH Verlag GmbH & Co.KG aA,2003
    [77]L.L.Rokhlin,Magnesium Alloys Containing Rare Earth Metals:Structure and Properties,2nd Edition.,2003
    [78]郭旭涛、李培杰、熊玉华、刘树勋、曾大本,稀土在铝、镁合会中的应用,材料工程,2004,8,60-64
    [79]郭旭涛、李培杰、曾大本,稀土耐热镁合金发展现状及展望,铸造,2002,2,68-71
    [80]刘光华,稀土固体物理学,北京:机械工业出版社,1997
    [81]P.E.沙林,金属材料中的稀土元素,材料工程,1993,1,1-5
    [82]R.Ferro,A.Saccone,G Borzone,铝、镁合金中的稀土,中国稀土学报,1997,15,262-273
    [83]P.Villars,L.D.Calvert,"Pearson's Handbook of Crystallographic Data for Intermetallic Phases",vol.1-4,ASM International,Materials Park(OH-USA),1991
    [84]T.B.Massalski et al.,Binary Alloy Phase Diagrams,ASM International,Materials Park,OH,1995
    [85]G.Cacciamani,P.Riani,G.Borzone,N.Parodi,A.Saccone,R.Ferro,A.Pisch,R.Schmid-Fetzer,Thermodynamic measurements and assessment of the Al-Sc system,Intermetallics,1999,7,101-108
    [86]S.Liu,Y.Du,H.Chen,A thermodynamic reassessment of the Al-Y system,Calphad,2006,30,334-340
    [87] S. Liu, Y. Du, H. Xu, C. He, J.C. Schuster, Experimental investigation of the Al-Y phase diagram, J. Alloys Compd., 2006,414, 60-65
    [88] F. Yin, X. Su, Z. Li, M. Huang, Y. Shi, A thermodynamic assessment of the La-Al system, J. Alloys Compd., 2000, 302, 169-172
    [89] F. Sommer, M. Keita, H.G. Krull and B. Predel, Thermodynamic investigations of Al-La alloys, J. Less-Common Metals, 1988, 137,267-275
    [90] G. Cacciamani and R. Ferro, Thermodynamic Modeling of Some Aluminium-Rare Earth Binary Systems: Al-La, Al-Ce and Al-Nd, Calphad, 2001,25,583-597
    [91] M.C. Gao, N. Unlu, G.J. Shiflet, M. Mihalkovic and M. Widom, Re-assessment of Al-Ce and Al-Nd Binary Systems Supported By Critical Experiments and First-Principles Energy calculations, Met. Mat. Trans. A, 2005, 36, 3269-3279
    [92] F. Yin, X. Su, Z. Li, P. Zhang, A thermodynamic assessment of the Pr-Al system, Z. Metal., 2001, 92,447-450
    [93] A. Saccone, G. Cacciamani, D. Maccio, G. Borzone and R. Ferro, Contribution to the study of the alloys and intermetallic compounds of aluminium with the rare-earth metals, Intermetallics, 1998, 6, 201-215
    [94] S. De Negri, A. Saccone, G. Cacciamani, R. Ferro, The Al-R-Mg (R=Gd, Dy, Ho) systems. Part Ⅰ: experimental Investigation, Intermetallics, 2003, 11, 1125-1134
    [95] G. Cacciamani, S. De Negri, A. Saccone, R. Ferro, The Al-R-Mg (R=Gd, Dy, Ho) systems. PartⅡ: Thermodynamic modelling ofthe binary and ternary systems, Intermetallics, 2003,11,1135-1151
    [96] G. Cacciamani, A. Saccone, S. De Negri and R. Ferro, The Al-Er-Mg ternary system Part Ⅱ: Thermodynamic modeling, J. Phase Equilib., 2002,23,29-37
    [97] F.G. Meng, L.G. Zhang, H.S. Liu, L.B. Liu, Z.P. Jin, Thermodynamic optimization of the Al-Yb binary system, J. Alloys Compd., 2008, 452, 279-282
    [98] A. Pisch, R. Schmid-Fetzer, G. Cacciamani, P. Riani, A. Saccone, R. Ferro, Mg-rich phase equilibria and thermodynamic assessment of the Mg-Sc system, Z. Metallkd., 1998, 89,474-477
    [99] Q. Ran, H.L. Lukas, G. Effenberg, G. Petzow, Thermodynamic optimization of the Mg-Y system, Calphad, 1988,12,375-381
    [100] O.B. Fabrichnaya, H.L. Lukas, G. Effenberg, F. Aldinger, Thermodynamic optimization in the Mg-Y system, Intermetallics, 2003,11,1183-1188
    [101] C. Guo, Z. Du, Thermodynamic assessment of the La-Mg system, J. Alloys Compd., 2004, 385,109-113
    [102] G. Cacciamani, A. Saccone, R. Ferro, Calphad XXII-Salou, Spain, 1993
    [103] C. Guo, Z. Du, Thermodynamic assessment of the Mg-Pr system, J. Alloys Compd., 2005, 399,183-188
    [104] S. Gorsse, C.R. Hutchinson, B. Chevalier, J.F. Nie, A thermodynamic assessment of the Mg-Nd binary system using random solution and associate models for the liquid phase, J. Alloys Compd., 2005,392,253-262
    [105] C. Guo, Z. Du, Thermodynamic assessment of the Mg-Nd system, Inter. J. Mater. Res., 2006, 97,130-135
    [106] B.R. Jia, L.B. Liu, D.Q. Yi, Z.P. Jin, J.F. Nie, Thermodynamic assessment of the Al-Mg-Sm system, J. Alloys Compd., 2008,459,267-273
    [107] G. Cacciamani, S. De Negri, A. Saccone, R. Ferro, The Al-R-Mg (R=Gd, Dy, Ho) systems. Part Ⅱ: Thermodynamic modelling of the binary and ternary systems, Intermetallics, 2003,11, 1135-1151
    [108] C. Guo, Z. Du, Thermodynamic optimization of the Mg-Tb and Mg-Yb systems, J. Alloys Compd., 2006,422,102-108
    [109] Z. Du, G. Ling, H. Liu, Thermodynamic assessment of the Dy-Mg system, Z. Metallkd., 2004, 95,1115-1119
    [110] G. Cacciamani, A. Saccone, S. De Negri, R. Ferro, The Al-Er-Mg ternary system Part Ⅱ: Thermodynamic modeling, J. Phase Equilib., 2002,23, 38-50
    [111] Z. Du, H. Liu, G. Ling, Thermodynamic assessment of the Mg-Tm system, J. Alloys Compd., 2004, 373,151-155
    [112] M.C. Gao, N. Unlu, G.J. Shiflet, M. Mihalkovic, and M. Widom, Reassessment of Al-Ce and Al-Nd Binary Systems Supported by Critical Experiments and First-Principles Energy Calculation, Metall. Mater. Trans. A, 2005, 36A,3269-3279
    [113] M.C. Gao, A.D. Rollett and M. Widom, Lattice stability of aluminum-rare earth binary system: A first-principles approach, Phys. Rev. B, 2007, 75, 174120(8)
    [114] Y.F. Wang, W.B. Zhang, Z.Z. Wang, et. al., First-principles study of structural stabilities and electronic characteristics of Mg-La intermetallic compounds, Comp. Mater. Sci., 2007,41,78-85
    [115]D.W.Zhou,P.Peng,J.S.Liu,Electronic structure and stability of Mg-Ce intermetallic compounds from first-principles calculations,J.Alloys Compd.,2007,428,316-321
    [116]W.Klement,R.H.Wilens,P.Duwez,Non-crystalline structure in solidified gold-silicon alloys,Nature,1960,187,869-870
    [117]H.S.Chen,Glassy metals,Rep.Prog.Phys.,1980,43,353-433
    [118]A.Inoue,Amorphous,Nanoquasicrystalline and nanocrystalline alloys in Al-based systems,Prog.Mater.Sci.,1998,43,365-520
    [119]A.Inoue,K.Ohtera,T.Masumoto,New amorphous Al-Y,Al-La,and Al-Ce alloys prepared by melt spinning,Jpn.J.Appl.Phys.,1988,27,736-739
    [120]A.Inoue,T.Zhang,K.Kita,T.Masumoto,Mechanical strengths,thermal stability and electrical resistivity of aluminum-rare earth metal binary amorphous alloys,Mater Trans,JIM,1989,30,870-878
    [121]A.Inoue,K.Ohtera,A.P.Tsai,T.Masumoto,New amorphous alloys with good ductility in Al-Y-M and Al-La-M(M equals Fe,Co,Ni or Cu) system,Jpn.J.Appl.Phys.,1988,27,280-282
    [122]A.Inoue,K.Ohtera,T.Masumoto,New amorphous alloys with good ductility in Al-Ce-M(M=Nb,Fe,Co,Ni or Cu) systems,Jpn.J.Appl.Phys.,1988,27,1796-1799
    [123]H.Y.Hsieh,B.H.Toby,T.Egami,Y.He,S.J.Poon,G.J.Shiflet,Atomic structure of amorphous Al_(90)Fe_xCe_(10-x),J.Mater.Res.,1990,5,2807-2812
    [124]H.Y.Hsieh,T.Egami,Y.He,S.J.Poon,G.J.Shiflet,Short range ordering in amorphous Al_(90)Fe_xCe_(10-x),J.Non-Crystal.Solids,1991,135,248-254
    [125]P.Rizzi,M.Baricco,S.Borace,L.Battezzati,Phase selection in Al-TM-RE alloys:Nanocrystalline Al versus intermetallics,Mater.Sci.Eng.A,2001,304-306,574-578
    [126]D.B.Miracle,O.N.Senkov,A geometric model for atomic configurations in amorphous Al alloys,J.Non-Crystal.Solids,2003,319,174-191
    [127]K.F.Kelton,T.K.Croat,A.K.Gangopadhyay,L.Q.Xing,A.L.Greer,M.WeTland,X.Li and K.Rajan,Mechanisms for nanocrystal formation in metallic glasses,J.Non-Crystal.Solids,2003,317,71-77
    [128]J.Antonowicz,Time-resolved X-ray diffraction study of nanocrystallization in Al-based metallic glasses,J.Non-Crystal.Solids,2005,351,2383-2387
    [129]A.P.Shpak,V.N.Varyukhin,V.I.Tkatch,V.V.Maslov,Y.Y.Beygelzimer,S.G. Synkov, V.K. Nosenko and S.G. Rassolov, Nanostructured Al_(86)Gd_6Ni_6Co_2 bulk alloy produced by twist extrusion of amorphous melt-spun ribbons, Mater. Sci. Eng. A, 2006,425, 172-177
    [130] H.W. Yang, J.Q. Wang, Evidence of structure relaxation prior to nanocrystallization in an Al-based metallic glass, Scripta Mater., 2006, 55, 359-362
    [131] W.H. Wang, Roles of minor additions in formation and properties of bulk metallic glasses, Prog. Mater. Sci., 2007, 52, 540-596
    [132] G Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 1996, 54,11169-11186
    [133] G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 1996,6,15-50
    [134] P.E. Bl(?)chl, Projector augmented-wave method, Phys. Rev. B, 1994, 50, 17953-17979
    [135] G. Kresse, J. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 1999, 59, 1758-1775
    [136] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev.B, 1972,13,5188-5192
    [137] P. Vinet, J.H. Rose, J. Ferrante, J.R. Smith, Universal features of the equation of state of solids, J. Phys.: Condens Matter, 1989, 1, 1941-1963
    [138] J. Haglund, F.F. Guillermet, G. Grimvall, M. Korling, Theory of bonding in transition-metal carbides and nitrides, Phys. Rev. B, 1993,48, 11685-11691
    [139] C.K. Saw, B.J. Beaudry, C. Stassis, Location of deuterium in a-scandium, Phys. Rev.B, 1983,27,7013-7017
    [140] O.N. Carlson, J.A. Haefling, F.A. Schmidt, F.H. Spedding, Preparation and refining of yttrium by Y-Mg alloy process, J. Electrochemical Soc, 1960, 107, 540-545
    [141] F.H. Spedding, J.J. Hanak and A.H. Daane, High temperature allotropy and thermal expansion of the rare earth metals, J. Less-Common Metals, 1961, 3, 110-124
    [142] A.W. Hull, Crystal structures of Ti, Zr, Ce, Th, and Os, Phys. Rev., 1921, 18, 88-89
    [143] K.A.jr. Gschneidner, R.O. Elliot, R.R. McDonald, Effects of alloying additions on the gamma-alpha transformation of cerium. Part I. Pure cerium, J. Phys. Chem. Solids, 1962,23, 555-566 [144] R.J. Birgeneau, J. Als-Nielsen, E. Bucher, Neutron Scattering from fcc Pr and Pr_3Tl, Phys. Rev., 1972, 6, 2724-2729
    [145] C.E. Lundin, A.S. Yamamoto, J.F. Nachman, Allotropy in same rare-earth metals at high pressure, Acta Metal., 1965, 13,149-154
    [146] V.I. Tkach, V.F. Bashev, A.B. Lysenko, I.S. Morishnichenko, Formation of a metastable samarium modification during quenching from the melt, Fizika Metallovi Metal., 1979,48, 183-185
    [147] N.L. Shi, D. Fort, Preparation of samarium in the double hexagonal close packed form, J. Less-Common Metals, 1985, 113,21-23
    [148] A.H. Daane, R.E. Rundle, H.G. Smith, F.H. Spedding, The crystal structure of samarium, Acta Crystal., 1954, 7,532-535
    [149] B.J. Beaudry, B.E. Palmer, The lattice parameters of La, Ce, Pr, Nd, Sm, Eu and Yb, J. Less-Common Metals, 1974, 34, 225-231
    [150] S.Yamaguchi, The cubic phase of gadolinium, Kristall., 1982, 27, 798-799
    [151] A.E. Curzon, H.G. Chlebek, The observation of face centered cubic Gd, Tb, Dy, Ho, Er and Tm in the form of thin films and their oxidation, J. Phys. F, 1973, 3, 12-15
    [152] K.W. Herrmann, Some physical - metallurgical properties of Sc, Y, and the rare earth metals, Iowa State College Journal of Science, 1956, 31,439-440
    [153] A.E. Miller, A.H. Daane, The high-temperature allotropy of some heavy rare-earth metals, Trans. Metal. Soc. Aime, 1964,230, 568-572
    [154] F.H. Spedding, A.H. Daane, K.W. Herrmann, High temperature allotropy and thermal expansion of the rare earth Metals, Acta Crystal., 1956, 9, 559-563
    [155] M.J. Pechan, C. Stassis, Magnetic structure of holmium, J. Appl. Phys., 1984, 55,1900-1902
    [156] I.R. Harris, G.V. Raynor, Some observations on the crystal structure of the rare-earth metals and alloys, J. Less-Common Metals, 1969,17, 336-339
    [157] F. Seitz and D. Turnbull, solid state physics: advance in research and applications, volume 16, New York and London, Academic press, 1964
    [158] I.N. Pyagai, A.V. Vakhobov, Izv. Akad. Nauk. SSR. Met., 1990, 5, 55, translated in Russ Metall 1990 (15):50
    [159] S.V. Meschel and O.J. Kleppa, in Metallic Alloys: Experimental and Theoretical Perspectives, edited by J.S. Faulkner and R.G. Jordan, Netherlands, Kluwer, 1994
    [160] W.G. Jung, O.J. Kleppa, L. Topor, Standard molar enthaplies of formation of PdAl, PtAl, ScAl_(1.78), YA1_2 and LaAl_2, J. Alloys Compd., 1991,176, 309-318
    [161] M. Asta, S.M. Foiles, and A.A. Quong, First-principles calculations of bulk and interfacial thermodynamic properties for fcc-based Al-Sc alloys, Phys. Rew. B, 1998,57,11265-11275
    [162] R.L. Snyder, Ph.D. Thesis, Iowa State University of Science and Technology, Ames, Iowa, USA, 1960, p. 46
    [163] S.V. Meschel, O.J. Kleppa, Standard enthalpies of formation of 4d aluminides by direct synthesis calorimetry, J. Alloys Compd., 1993,191, 111-116
    [164] V.S. Timofeev, A.A. Turchanin, A.A. Zubkov, LA. Tomilin, Enthalpies of formation for the Al-Y and Al-Y-Ni intermetallic compounds, Thermochim. Acta, 1997,299, 37-41
    [165] G. Borzone, A.M. Cardinale, N. Parodi, G. Cacciamani, Aluminium compounds of the rare earths: enthalpies of formation of Yb-Al and La-Al alloys, J. Alloys Compd., 1997,247,141-147
    [166] S.V. Meschel and O.J. Kleppa, Standard enthalpies of formation of 5d aluminides by high-temperature direct synthesis calorimetry, J. Alloys Compd., 1993,197,75-81
    [167] V. Kober, I.F. Nichkov, S.P. Raspopin, V.A. Nauman, Phase Composition and Thermodynamic Properties of La-Al Alloys , Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 1977, 5, 83-86
    [168] S.H. Zhou, R.E. Napolitano, Phase equilibria and thermodynamic limits for partitionless crystallization in the Al-La binary system, Acta Mater., 2006, 54, 831-840
    [169] G. Borzone, G. Cacciamani and R. Ferro, Heats of formation of aluminum-cerium intermetallic compounds, Metall. Trans. A, 1991, 22, 2119-2123
    [170] F. Sommer and M. Keita, Determination of the enthalpies of formation of intermetallic compounds of aluminium with cerium, erbium and gadolinium, J. Less-Common Met., 1987,136,95-99
    [171] V. Kober, I.F. Nichkov, S.P. Raspopin, A. Bogdanov, Thermodynamic Properties of Cerium-Aluminum Compounds , Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 1982, 5,101-102
    [172] C. Colinet, A. Pasturel, and K.H.J. Buschow, Molar enthalpies of formation of LnAb compounds, J. Chem. Thermodyn., 1985, 17,1133-1139
    [173] V. Kober, I.F. Nichkov, S.P. Raspopin, A. Bogdanov, Thermodynamic Properties of the Pr-Al Compounds, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 1983,3, 58-60
    [174] R. Ferro, G. Borzone, N. Parodi, G. Cacciamani, On the thermochemistry of the rare earth compounds with the p-block elements, J. Phase Equilib., 1994, 15, 317-329
    [175] G. Borzone, A.M. Cardinale, G. Cacciamani, R. Ferro, On the thermochemistry of the Nd-Al alloys, Z. Metallkd., 1993 , 84, 635-640
    [176] G. Borzone, A.M. Cardinale, A. Saccone, R. Ferro, Enthalpies of formation of solid Sm-Al alloys, J. Alloys Compd., 1995,220, 122-125
    [177] V. Kober, I.F. Nichkov, S.P. Raspopin, V.A. Nauman, Phase Composition and Thermodynamic Properties of Al-Gd Alloys, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 1979, 22, 144-146
    [178] C. Colinet, A. Pasturel, and K.H.J. Buschow, Cohensive properties in the Al-Gd system, Physica B & C, 1988,150, 397-403
    [179] A. Pastural, C. Colinet, A. Gu(?)gan and J.C. Achard, Thermodynamic study of the valence state of ytterbium in YbAl_2 and YbAl_3 compounds, J. Less-Common Met., 1983,90,21-29
    [180] K. Gschneidner, A. Russell, A. Pecharsky, J. Morris, Z.H. Zhang, T. Lograsso, D. Hsu, C.H. Chester Lo, Y.Y. Ye, A. Slager and D. Kesse, A family of ductile intermetallic compounds, Nat. Mater., 2003,2, 587-560
    [181] J.R. Morris, Y.Y. Ye, Y.-B. Lee, B.N. Harmon, K.A. Gschneidner, Jr. and A.M. Russell, Ab initio calculation of bulk and defect properties of ductile rare-earth intermetallic compounds, Acta Mater., 2004, 52, 4849-4857
    [182] A. A. Yakunin and G.V. Borisova, The structure of Ce-Al alloys quenched from the liquid state, sov. non-ferrous met. Res., Trans. Izv. vuz, tsvetn. Metal., 1970, 7,230-236
    [183] N.C. Baenziger and J.L. Moriarty, Jr., Gadolinium and dysprosium intermetallic phase Ⅱ .Laves phase and other structure types, Acta Crystal., 1961,14, 948-950
    [184] N.I. Kripjakevich and I.I. Zaluckjj, Crystal chemistry of some aluminium-rare earth systems, Voprosy Teorii i Primeneniya Redkozem Metal., Akad. Nauk SSSR, 1964,1963,144-145
    [185] O.J.C. Runnalls and G.W. Lorimer, Preparation, identification and crystal structure of SmAl, J. Less-Common Met., 1965, 8, 75-77
    [186] T. Dagerhamn, X-ray studies on the yttrium-aluminium system, Arkiv. foer. Kemi., 1967,27,363-380
    [187] J.C. Schuster, J. Bauer, Ternary systems Sc-Al-N and Y-Al-N, J. Less-common Met, 1985, 109,345-350
    [188] R.D. Grinthal, W.A.D.C. Tech. Rept., 53-190, Part VI, May 1958
    [189] C.W. Stillwell and E.E. Jukkola, The Crystal Structure of NdAl, J. Am. Chem. Soc, 1934, 56, 56-57
    [190] M.J. Mehl, B.M. Klein and D.A. Papaconstantopoulos, in Intermetallic Compounds: Principles and Applications, edited by J. H. Westbrook and R. L. Fleischer (Wiley, London, 1994),Vol. 1
    [191] O. Schob, E. Parthe, AB compounds with Sc Y and Rare Earth metal 1 Scandium and Yttrium compounds with CrB and CsCl structure, Acta Crystal., 1965,19,214-224
    [192] D. Nguyen-Manh, D.G. Pettifor, Electronic structure, phase stability and elastic moduli of AB transition metal aluminides, Intermetallics, 1999, 7, 1095-1106
    [193] Y.F. Ouyang, B.W. Zhang, Z.P. Jin, S.Z. Liao, Formation enthalpies of rare earth-aluminum alloys and intermetalic compounds, Z. Metallkd., 1996, 87, 802-805
    [194] E.I. Gladyshevskii, P.I. Kripyakevich et al, Kristal., 6,1961,267
    [195] A.T. Aldred, Trans. Metal. Soc. AIME, 224 (1962) 1082
    [196] J.L. Moriarty jr., J.E. Humphreys, R.O. Gordon, N.C. Baenziger, X-ray examination of some rare-earth-containing binary alloy systems, Acta Crystal., 1966,21,840-841
    [197] J.S. Schilling, S. Methfessel, R.N. Shelton, LaAg under hydrostatic pressure: superconductivity and phase transformation, Solid State Commun., 1977, 24, 659-664
    [198] K.A. Gschneidner, Jr., Rare Earth Alloys (D. Van Nostrand Company, Inc., Princeton, New Jersey, 1961), P. 278
    [199] C.C. Chao, H.L. Luo and P. Duwez, CsCl-Type Compounds in Binary Alloys of Rare-Earth Metals with Gold and Silver, J. Appl. Phys., 1963, 34,1971-1973
    [200] J.A. Gotaas, J.S. Kouvel, T.O. Brun, J.W. Cable, Quadrupolar coupling and structural instability in PrAg_(1-x)Cu_x, J. Mag. Mag. Mater., 1983, 36,208-212
    [201] H. Ushizaka, S. Murayama, Y. Miyako, Y. Tazuke, Magnetic properties and phase diagram of mixed crystal Ce_(1-x)Nd_xAg, J. Phys. Soc. Japan, 1984, 53, 1136-1144
    [202] U. Koebler, W. Kinzel, W. Zinn, Magnetic phase diagram of GdAg_(1-x)Zn_x, J. Mag. Mag. Mater., 1981,25,124-134
    [203] P. Morin, J. Pierre, Thermal expansion and magnetostriction in rare-earth equiatomic compounds with Cu, Ag, Zn, Phys. Stat. Sol. (a), 1974, 21,161-166
    [204] E. Gebhardt and M. Von Erdberg, Das system Silber-Holmium, J. Less-Common Met., 1966,11,141-147
    [205] E. Gebhardt, I. Elssner, J. Hoehler, Das system silber-erbium (Silver-Erbium System), J. Less-Common Met., 1969,19, 329-335
    [206] P. Morin and D. Schmitt, Magnetic properties of TmAg, J. Mag. Mag. Mater., 1982,28,188-192
    [207] A. Palenzona, The ytterbium-silver system, J. Less-Common Met., 1970, 21, 443-446
    [208] Y. Sutou, T. Omori, R. Kainuma, N. Ono, K. Ishida, Enhancement of superelasticity in Cu-Al-Mn-Ni shape-memory alloys by texture control, Metall. Mater. Trans. A, 2002, 33,2817-2824
    [209] C.T. Liu, C.L. White, J.A. Horton, Effect of boron on grain-boundaries in Ni_3Al, Acta Metall., 1985, 33,213-229
    [210] #12
    [211] H.M. Ledbetter, Estimation of Debye temperatures by averaging elastic coefficients, J. Appl. Phys., 1973,44,1451-1454
    [212] A.V. Hershey, The elasticity of an isotropic aggregate of anisotropic crystals, J. Appl. Mech., 1954,21,236-240
    [213] S.F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag., 1954,45, 823-843
    [214] H.M. Yoo, T. Takasugi, S. Hanada, O. Izumi, Slip modes in B2-type intermetallic alloys, Mater. Trans. JIM, 1990, 31,435-442
    [215] V.L. Moruzzi, J.F. Janak and K. Schwarz, Calculated thermal properties of metals, Phy. Rev. B, 1988, 37, 790-799
    [216] M.A. Blanco, E. Francisco, V. Luana, GIBBS: Isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Comp. Phys. Commun., 2004,158, 57-72
    [217] A. Dinsdale, SGTE data for pure elements, Calphad, 1991,15, 317-425
    [218] Q. Chen and B. Sundman, Calculation of debye temperature for crystalline structures-a case study on Ti, Zr, and Hf, Acta mater., 2001,49, 947-961
    [219] M.W. Chase, I. Ansara, A. Dinsdale, G. Eriksson, G. Grimvall, L. Hoglund and H. Yokokawa, Group 1: heat capacity models for crystalline phases from O K to 6000 K, Calphad, 1995,19,437-447
    [220] S.A. Ostanin and V.Y. Trubitsin, Calculation of the P-T phase diagram of Zr in different approximations for the exchange-correlation energy, Phys. Rev. B, 1998,57,13485-13490
    [221] J.M. Sanchez, J.P. Stark and V.L. Moruzzi, First-principles calculation of the Ag-Cu phase diagram, Phys. Rev. B, 1991,44, 5411-5418
    [222] S. Baroni, P. Giannozzi and A. testa, Green's-function approach to linear response in solids, Phys. Rev. Lett., 1987, 58,1861-1864
    [223] K. Kunc and R.M. Martin, Ab initio force constants of GaAs: A new approach to calculation of phonons and dielectric properties, Phys. Rev. Lett., 1982, 48, 406-409
    [224] W. Frank, C. Elsasser, M. Fahnel, Ab initio force-constant method for phonon dispersions in alkali metals, Phys. Rev. Lett., 1995, 74, 1791-1794
    [225] P. Debye, Z(?)r Theorie der spezifischen Wannen, Ann. d. Physik, 39, 1912, 789-839
    [226] G. Leibfried and W. Ludwig, in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic, New York, 1961) Vol.12,275
    [227] G.A. Alers, in Physical Acoustics, edited by W.P. Mason(Academic, New York, 1965) Vol. Ⅲ-B, 1.
    [228] O.L. Anderson, in Physical Acoustics, edited by W.P. Mason(Academic, New York, 1965) Vol. Ⅲ-B, 43
    [229] G. Grimvall, Thermophysical Properties of Materials, North-Holland, Amsterdam, 1986
    [230] X.M. Tao, Y.F. Ouyang, H.S. Liu, F.J. Zeng, Y.P. Feng, Z.P. Jin, Ab initio calculations of mechanical and thermodynamic properties for the B2-based A1RE, Comp. Mater. Sci., 2007,40,226-233
    [231] J.W. Ross and J. Crangle, Magnetization of Cubic Laves Phase Compounds of Rare Earths with Cobalt, Phys. Rev., 1964,133 ,A509-A510
    [232] M.J. McDermott and K.K. Marklund, Partial quenching of rare earth moment in cubic Laves intermetallic compounds, J. Appl. Phys., 1969,40,1007-1008
    [233] A. Ormeci, F. Chu, J.M. Wills, T.E. Mitchell, R.C. Albers, D.J. Thoma, and S.P. Chen, Total-energy study of electronic structure and mechanical behavior of C15 Laves phase compounds: NbCr_2 and HfV_2, Phys. Rev. B, 1996, 54, 12753-12762
    [234] J. Roth, Shock waves in complex binary solids: Cubic Laves crystals, quasicrystals, and amorphous solids, Phys. Rev. B, 2005, 71,064102(11)
    [235] J.J. Liu, W.J. Ren, Z.D. Zhang, D.Li, J. Li, X.G. Zhao, W. Liu, and S.W. Or, Spin configuration and magnetostrictive properties of Laves compounds Tb_XDy_(0.7-X)Pr_(0.3)(Fe_(0.9)B_(0.1))_(1.93) (0.10    [236] Z. Wu, N.L. Saini, S.I. Agrestin, D.D. Castro, A. Bianconi, A. Marcelli, et al., Ru K-edge absorption study on the La_(1-X)Ce_XRu_2 system, J. Phys: Cond. Matter, 2000, 12, 6971-6978
    [237] N. Nagasako, A. Fukumoto, K. Miwa, First-principles calculations of C14-type Laves phase Ti-Mn hydrides, Phys. Rev. B, 2002, 66,155106(9)
    [238] S. Hong, C.L. Fu, Hydrogen in Laves phase ZrX_2 (X=V, Cr, Mn, Fe, Co, Ni) compounds: Binding energies and electronic and magnetic structure, Phys. Rev. B, 2002, 66, 094109(6)
    [239] H. Uchida, Y. Matsumura, H. Uchida, H. Kaneko, Progress in thin films of giant magnetostrictive alloys, J. Magn. Magn. Mater., 2002,239, 540-545
    [240] C.T. Liu, J.H. Zhu, M.P. Brady, C.G. McKamey, L.M. Pike, Physical metallurgy and mechanical properties of transition-metal Laves phase alloys, Intermetallics, 2000,8,1119-1129
    [241] A. Furrer, H.G. Purwins, Magnetic excitations in NdAl_2, Phys. Rev. B, 1977, 16, 2131-2140
    [242] J.S. Abell, A. del Moral, R.M. Ibarra and E.W. Lee, The magnetostriction of PrAl_2 and TbAl_2, J. Phys. C: Solid State Phys., 1983,16, 769-781
    [243] C.E. Olsen, G. Arnold and N. Nereson, Magnetic Properties of PrAl_2, J. Appl. Phys., 1967, 38,1395-1396
    [244] W. Wiedemann and W. Zinn, Mossbauer effect study of ferromagnetism and ferromagnetic relaxation in ErAl_2, Phys. Lett. A, 1967,24, 506-508
    [245] G.F. Zhou and H. Bakker, Mechanically induced structural and magnetic changes in the GdAl_2 Laves phase, Phys. Rev. B, 1995, 52, 9437-9445
    [246] P.J. von Rannke, V.K. Pecharsky and K.A. Gschneidner, Jr., Influence of the crystalline electrical field on the magnetocaloric effect of DyAl_2, ErAl_2, and DyNi_2, Phys. Rev. B, 1998, 58,12110-12116
    [247] X.Q. Chen, W. Wolf, R. Podloucky and P. Rogl, Ab initio study of ground-state properties of the Laves phase compounds TiCr_2, ZrCr_2, and HfCr_2, Phys. Rev. B, 2005, 71, 174101(11); X.Q. Chen, W. Wolf, R. Podloucky, P. Rogl and M. Marsman, Ab initio study of ground-state properties of the Laves-phase compound ZrMn_2, Phys. Rev. B, 2005, 72, 054440(11)
    [248] E. Orgaz, The electronic structure of the Laves phase intermetallics LnM2 (Ln=Y, La-Lu, M=Mg, Al) and the LaMg_2H_7 and CeMg_2H_7 hydrides, J. Alloys Compds., 2001, 322,45-54
    [249] J.H. Zhu, C.T. Liu, L.M. Pike, P.K. Liaw, Enthalpies of formation of binary Laves phases, Intermetallics, 2002,10,579-595
    [250] F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, A.K. Niessen, In: F.R. de Boer, D.G. Pettifor, eds Cohesion in metals: transition metal alloys, vol. 1 Amsterdam: North Holland Physics; 1989.
    [251] X.Q. Chen, W. Wolf, R. Podloucky, P. Rogl, Comment on "Enthalpies of formation of binary Laves phases" [Intermetallics, 2002, 10, 579-595], Intermetallics, 2004,12, 59-62
    [252] V.N. Rechkin, L.K. Lamikhov, T.I. Samsonova, Crystal structures of some scandium aluminides, Kristall, 1964, 9, 325-327
    [253] M. Croft and H.H. Levine, Volume mismatch substitution in two Ce compounds, J. Appl. Phys., 1982, 53, 2122-2126
    [254] E. Ruderer, R. Schefzyk, H. Biesenkamp, W. Kl(?)mke, S. Horn and F. Steglich, Intermediate valence and kondo effect in Ce_(1-x)Sc_xAl_2,, J. Magn. Magn. Mater., 1984,45,219-228
    [255] M. Asta and V. Ozolins, Structural, vibrational, and thermodynamic properties of Al-Sc alloys and intermetallic compounds , Phys. Rev. B, 2001, 64, 094104(14)
    [256] B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Sticht, J. Harris, P.C. Schmidt, Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases, Intermetallics, 2003,11,23-32
    [257] H. Anton and P. C. Schmidt, Theoretical investigations of the elastic constants in Laves phases, Intermetallics, 1997, 5,449-465
    [258] B.A. Rao, C.V. Reddy, K. Saryanarayana Muthy, P. Kistaiah, High temperature lattice parameters and thermal expansion of Y_(1-x)Ce_xAl_2(x=0,0.15,1) intermetallics, J. Less-Comm. Met., 1987, 134,91-97
    [259] M. Shiga, H. Wada, H. Nakamura, K. Yoshimura, Y. Nakamura, Characteristic spin fluctuations in Y(Mn_(1-x)Al_x)_2 J. Phys. F, 1987,17,1681-1694
    [260] J. Heimann, K. Kaczmarska, et al, Electrical resistivity and magnetic properties of the RE_(1-x)Gd_xAl_2 lavers phase (for RE: La, Lu, Y), J. Magn. Magn. Mater., 1982,27,187-194
    [261] R.J. Schiltz, Jr., J.F. Smith, Elastic constants of some MAl_2single crystals, J. Appl. Phys., 1974,45, 4681-4685
    [262] B.A. Rao, P. Kistaiah, N.R. Reddy, K. Satyanarayana, Thermal expansion of lanthanum dialuminide, J. Mater. Sci. Lett., 1982, 1,432-434
    [263] M.S. Wire, GR. Stewart and R.B. Roof, Properties of some pseudobinary alloys based on UAl_2, J. Magn. Magn. Mater., 1985, 53,283-289
    [264] I. Vedel, A.M. Redon, J.M. Mignot and J.M. Leger, Absence of discontinuity in the pressure-volume dependence of CeAl_2 andCeIn_3, J. Phys. F, 1987, 17, 849-856
    [265] H. Bartholin, A. Waintai, G. Parisot, F. Kervella and J.P. Senateur, Effect of pressure on the crystal lattice parameters of CeAl2, PrAl_22, YbAl_2 and CeS, Phys. Stat. Solidi. A, 1980, 61 A, K87-K90
    [266] B.A. Rao, P. Kistaiah, N.R. Reddy and K. Satyanarayana, X-ray studies of the thermal expansion of CeAl_2and HoAl_2, J. Less-Comm. Met., 1983, 95,93-97
    [267] J.H. Wernick, S.E. Haszko and D. Dorsi, Pseudo-binary systems involving rare earth laves phases, J. Phys. Chem. Solids, 1962,23, 567-572
    [268] A.O. dos Santos, J.C.P. Campoy, A.A. Coelho, S. Gama, L.P. Cardoso, Synchrotron radiation multiple diffraction in the characterization of the PrAl_2 magnetocaloric compound, J. Magn. Magn. Mater., 2004,272-276,2154-2156
    [269] G. Canneri, A. Rossi, Gazz. Chim. Ital., 63 (1933) 182
    [270] O.E. Martin and K. Girgis, Crystalline and magnetic structures in REAl_xGa_(2-x) systems (RE = Nd, Er; 0    [271] J.H. Wernick, S. Geller, Rare-earth compounds with the MgCu_2structure, Trans. Metall. Soc. AIME, 1960,218, 866-868
    [272] F. Casteels, P. Diels and A. Cools, An investigation of the aluminium-rich alloys in the aluminium-samarium-uranium and aluminium-dysprosium-uranium ternary systems: I. The aluminium-uranium-samarium system, J. Nucl. Mater., 1967,24,87-94
    [273] A. Iandelli, Crystallographic studies of the systems MAl_2-MGa_2 (M = Yb, Ca, Eu, Sr), J. Less-Comm. Met, 1987,135,195-198
    [274] T. Penney, B. Barbara, T.S. Plaskett, H.E. King Jr. and S.J. LaPlaca, Elastic properties of intermediate valence, kondo and state valence RAl_2 compounds, Solid State Commun., 1982,44,1199-1204
    [275] barski and A. Chelkowski, X-ray study of ordering on crystallographic sites in intermetallic alloys Gd(Al_(1-x)Mn_x)_2, J. Less-Comm. Met., 1978, 57, 125-131
    [276] A.H. Millhouse, H.G Purwins and E. Wallker, Elastic neutron diffraction study of TbAl_2 and HoAl_2, Solid State Commun., 1972,11, 707-712
    [277] M.M. Abd-el-Aal, A.S. Ilyushin, A.V. Pechennikov, Y.R. Sharapov and V.I. Chechnerikov, The structure and magnetic properties of compounds of the Dy_(1-x)Gd_xAl_2 system, Moscow Univ. Phys. Bull., 1987,42,126-29
    [278] N. Nereson, C. Olsen and G. Arnold, Magnetic Properties of PrAl_2 and ErAl_2, J. Appl. Phys., 1968, 39,4605-4609
    [279] S.E. Hassko, Intermediate phases with MgCu_2 structure, Trans. Metall. Soc. AIME, 1960,218,958-958
    [280] T.I. Jones, L.R. Norlock and R.R. Boucher, Some observations on aluminum -thulium alloys, J. Less-Comm. Met., 1963, 5,128-133
    [281] L.R. Harris, R.C. Mansey, R.R. Raynor, Rare earth intermediate phases: Ⅲ. The cubic laves phases formed with aluminium and cobalt, J. Less-Comm. Met., 1965,9, 270-280
    [282] A. Iandelli, A. Palenzona, Magnetic susceptibility and expansion coefficient of the intermetallic compounds YbAl_2 and YbAl_3, J. Less-Comm. Met., 1972, 29, 293-297
    [283] A. Pasturel, C. Colinet, A. Guegen, J.C. Achard, Thermodynamic study of the valence state of ytterbium in YbAl_2 and YbAl_3 compounds, J. Less-Comm. Met., 1983,90,21-27
    [284] S.V. Meschel, O.J. Kleppa, Standard enthalpies of formation of some neodymium and gadolinium carbides, silicides and germanides by high-temperature direct -synthesis calorimetry, J. Alloys Compds., 1995, 217, 235-239
    [285] M. Godet and H.G. Purwins, Mode softening in CeAl_2, Solid State Commun., 1977,21,761-763
    [286] B. L(?)thi and C. Lingner, Magnetoelasticity, rotational invariance and magnetoacoustic birefringence in CeAl_2, Z. Phys. B, 1979, 34,157-163
    [287] C. Lingner and B. L(?)thi, Elastic and magneteolastic effects in TmAl_2 and other REAl_2 compounds, J. Magn. Magn. Mater., 1983, 36,86-88
    [288] M. Godet and H.G. Purwins, Crystal-field effects on the elastic constants of single crystals of PrAl_2 and NdAl_2, Helv. Phys. Acta, 1976,49, 821-828
    [289] M. Godet, Elastic constants of TbAl_2, Helv. Phys. Acta, 1974,46, 770-771
    [290] M. Godet and H.G. Purwins, Magneto-elastic effects on the elastic constants of HoAl_2, Helv. Phys. Acta, 51, 1978, 178-181
    [291] T. Penney, B. Barbara, R.L. Melcher, T.S. Plaskett, H.E.King and S.J. LaPlaca, in: Valence Fluctuations in Solids, ed. L.M. Falicov, W. Hanke and M.B. Maple, North-Holland, Amsterdam, 1981, 341.
    [292] K.H.J. Buschow, Philips Res. Rep., 1965, 1965, 20337
    [293] H. Siethoff, Debye temperature, self-diffusion and elastic constants of intermetallic compounds, Intermetallics, 1997, 5, 625-632
    [294] R.E. Hungsberg and K.A. Gschneidner, Jr., Low temperature heat capacity of some rare earth aluminum Laves phase compounds: YAl_2, LaAl_2 and LuAl_2, J. Phys. Chem. Solids, 1972, 33,401-407
    [295] F. Chu, Y. He, D.J. Thoma, T.E. Mitchell, Elastic constants of the C15 laves phase compound NbCr_2, Scripta Met. Mater., 1995, 33,1295-1300
    [296] M.R. Ibarra, E.W. Lee and A. del Moral, Thermal expansion and forced volume magnetostriction in DyAl_2, Solid State Commun., 1986, 57, 695-697
    [297] C.A. Luengo, M.B. Maple and W.A. Fertig, Specific heat of the superconducting-Kondo system (La, Ce)Al2, Solid State Commun., 1972, 11, 1445-1450
    [298] Y. Harada and D.C. Dunand, Creep properties of Al_3Sc and Al_3(Sc, X) intermetallics, Acta mater., 2000,48,3477-3487
    [299] M. Yamaguchi, Y. Umakoshi, and T. Yamane, in High Temperature Ordered Intermetallic Alloys Ⅱ, ed. N. S. Stolo., C.C. Koch, C.T. Liu and O. Izumi. MRS, 1986,81,275
    [300] J.H. Schneibel, and W.D. Porter, in High Temperature Ordered Intermetallic Alloys Ⅲ, ed. C.T. Liu, A.I. Taub, N.S. Stolo and C.C. Koch. MRS, 1988, 133, 335
    [301] S. Srinivasan, P.B. Desch and R.B. Schwarz, Metastable phases in the Al_3X (X = Ti, Zr, and Hf) intermetallic system, Scripta metall. mater., 1991, 25, 2513-2516
    [302] J.C. Foley, J.H. Perepezko, and D.J. Skinner, Formation of metastable Ll_2-Al_3Y through rapid solidification processing, Mater. Sci. Eng. A, 1994, 179-180, 205-209
    [303] J.P. Nic, S. Zhang, and D.E. Mikkola, in High Temperature Ordered Intermetallic Alloys IV, ed. L.A. Johnson, D.P. Pope and J.O. Stiegler. MRS, 1990,213,697
    [304] S. Zhang, J. P. Nic, and D. E. Mikkola, New cubic phases formed by alloying Al_3Ti with Mn and Cr, Scripta metall. mater., 1990, 24, 57-62
    [305] J. H. Schneibel, J. A. Horton, and W. D. Porter, Bend ductility, creep strength and physical properties of extruded chromium-modified Al_3Ti, Mater. Sci. Eng. A, 1992,152,126-131
    [306] M. Yamaguchi, Y. Umakoshi, and T. Yamane, Plastic deformation of the intermetallic compounds Al_3Ti, Phil. Mag. A, 1987, 55, 301-315
    [307] Y. Umakoshi, M. Yamaguchi, T. Yamane, and T. Hirano, Deformation and improvement of ductility of the intermetallic compounds Al_3V and Al3(V,Ti), Phil. Mag. A, 1988,58,651-666
    [308] C.L. Fu, Electronic, elastic, and fracture properties of trialuminide alloys Al_3SC and Al_3Ti, J. Mater. Res., 1990, 5, 971-979
    [309] E.E. Havinga, V. Vuchtjhn and K.H.J. Buschow, Relative stability of various stacking orders in close-packed metal structure, Philips Res. Repts., 1969, 24, 407-426
    [310] J.F. Cannon and H.T. Hall, Effect of high pressure on the crystal structures of lanthanide trialuminides, J. Less-Common Met., 1975,40, 313-328
    [311] J.L. Moriarty, R.O. Gordon and J.E. Humphreys, Some new intermetallic compounds of holmium and erbium with Ag, Au, Pt, Al, In, Tl, and Ge, Acta Crystallogr., 1965,19,285-265
    [312] J.H.N. van Vucht and K.H.J. Buschow, The structures of the rare-earth trialuminides, J. Less-Common Met., 1965,10,98-107
    [313] X.G Lu and Y. Wang, Calculation of the vibrational contribution to the Gibbs energy of formation for Al_3SC, Calphad, 2002,26, 555-561
    [314] R.W. Hyland and R.C. Stiffler, Determination of the elastic constants of polycrystalline Al_3Sc, Scripta Metall. Mater., 1991,25,473-477
    [315] B.L. Mordike, T. Ebert, Magnesium: Properties - applications - potential, Mater. Sci. Eng. A, 2001, 302, 37-45
    [316] W. Hu, H. Xu, X. Shu, X. Yuan, B. Gao and B. Zhang, Calculation of thermodynamicproperties of Mg-RE (RE = Sc, Y, Pr, Nd, Gd, Tb, Dy, Ho or Er) alloys by ananalytic modified embedded atom method, J. Phys. D: Appl. Phys., 2000,33,711-718
    [317] A.K. Niessen, F.R. de Boer, R. Boom, P. de Chatel, W.C.M. Martens, A.R. Miedema, Model predictions for the enthalpy of formation of transition metal alloys Ⅱ, Calphad, 1983, 7, 51-70
    [318] Y.F. Ouyang, B.W, Zhang, S.Z. Liao and Z.P. Jin, The study of thermodynamic properties of rare earth-magnesium alloys, Rare Met. Mater. Eng., 1995, 24, 32-37
    [319] J.F. Smith, D. Bailey, D.B. Novotny, J.E. Davison, Thermodynamics of formation of yttrium-magnesium intermediate phases, Acta Metall., 1965, 13, 889-895
    [320] I.N. Pyagai, E.Z. Khasanova, A.V. Vakhobov, O.V.Zhikhareva, Heat of Formation of the Intermetallic Compound Magnesium Ytterbium (Mg_2Yb) at 298 K, Dokl Akad Nauk Tadzh SSR, 1990, 33,602-604
    [321] F. Bonhomme, K. Yvon, Synthesis and crystal structure refinement of cubic Mg_(6.8)Y, J. Alloys Compd., 1996, 232,271-273
    [322] J.E. Pahlman and J.F. Smith, Thermodynamic of formation of compounds in the Ce-Mg, Nd-Mg, Gd-Mg, Dy-Mg, Er-Mg, and Lu-Mg binary system in the temperature 650 to 930 K, Metall. Trans., 1972, 3,2423-2432
    [323] W. Klemm, H. Kock and W. M(?)hlpfordt, Europium as an alkaline earth metal, Angew. Chem. Int., 1964,3,704-705
    [324] G. Cacciamani, G. Borzone, R. Ferro, Thermo. Alloys, Marseille (F) 2-5, 1996, 65
    [325] S.K. Pasha, M. Sundareswari, M. Rajagopalan, Ab initio study of the electronic structure of some B2 intermetallic compounds, Physica B, 2004, 348,206-212
    [326] P. Morin, J. Rouchy, Y. Miyako, T. Nishioka, Quadrupolar interactions in cubic Ce intermetallics, J. Magn. Magn. Mater., 1988, 76-77, 319-320
    [327] M. Giraud, P. Morin, J. Rouchy and D. Schmitt, Magnetic and quadropolar properties of the TmMg compound, J. Magn. Magn. Mater., 1986, 59, 255-265
    [328] W. Muhlpfordt and W. Klemm, Zur Kenntnis des systems Magnesium-Europium Ⅲ. Das Zustandsdiagramm des systems Mg-Eu, J. Less-Common Met., 1969,17,127-129
    [329] L.L. Rokhlin, Magnesium alloys containing rare earth metals: structure and properties, 2nd Edition. CRC Press, 2003
    [330] H.W. Zandbergen, G. Van Tendeloo, D.B. De Mooij, and K.H J.Buschow, Crystal structure of EuMg4, J. Less-Common Met., 1989,154, 375-380
    [331] W. Muhlpfordt, Zur Kenntnis des Systems Magnesium-Europium V. (Eu_3Mg_(14))Mg_x mit 1.7>x>1: Eine intermetallische Phase mit Kanalstruktur, Z. Anorg. Allg. Chem., 1997, 623, 985-989
    [332] W. Muhlpfordt, Zur Kenntnis des Systems Magnesium - Europium. IV. Die Kristallstruktur von Mg_5Eu, Z. Anorg. Allg. Chem., 1970, 374,174-185
    [333] J. Erassme and H. Lueken, Strontium and europium polynuclear units in intermetallic compounds with magnesium structural refinements and relationships, Acta Cryst. B, 1987,43,244-250
    [334] L. Kaufman, H. Bernstain. Computer calculation of phase diagram, New York: Academic Press, 1970
    [335] N. Saunders, A.P. Modwnik, CALPHAD~a comprehensive guide. Lausanne Switzerland: Pergamon Press, 1998
    [336] H. Okamoto, Phase diagrams of binary magnesium alloys, ASM International, Metals park, OH, 1988,1-3
    [337] J.L. Meijering. Retrograde solubility curves especially in alloy solid solutions. Philips Res. Rep., 1948,3,281
    [338] P.I. Kripyakevich and V.I. Evdokimenko, Visn. Lviv. Derzh. Univ., Ser. Khim., 1969,11,3
    [339] H. Lueken and J. Erassme, Ferrimagnetic ordering in ternary compounds of Europium, strontium and magnesium with "Th_2Ni_(27)"-type structure, J. Less-Common Met., 1985, 111, 101-107
    [340] A. Iandelli and A. Palenzona, Atomic size of rare earths in intermetallic compounds. MX compounds of CsCl type, J. Less-Common Met., 1965, 9,1-6
    [341] K.H.J. Buschow, R.C. Sherwood, F.S.L. Hsu and K. Knorr, Magnetic properties of rare-earth magnesium compounds of the type RMg_2, J. Appl. Phys., 1978, 49, 1510-1512
    [342] H. Graaf, W.J. Huiskamp, R.C. Thiel, H.T. LeFever and K.H.J. Buschow, Mossbauer effect and magnetic properties in EuMg_5 and Eu_2Mg_(17), Physica B+ C, 1979,98,60-64
    [343] J.O. Andersson, T. Helander, L.H. Hoglund, P.F. Shi, B. Sundman, Thermo-Calc & DICTRA, computational tools for materials science, Calphad, 2002,26,273-312

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700