超高温陶瓷B-C-Si-Zr-O部分体系相关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高温陶瓷材料(UHTCs)是指在超高温环境下具有优良力学、热学、抗热震和抗氧化性能的以金属锆和铪的碳化物和硼化物为主的陶瓷材料。超高温陶瓷材料是新型空间飞行器及运载工具、战略导弹研制中的关键材料,在空间技术发展和国防现代化进程中占有不可替代的地位。有关UHTCs的研究是目前材料界新兴的焦点研究课题。本论文结合国家自然科学基金重点项目(No:50632070):超高温陶瓷相图、材料制备与微结构控制的研究,通过实验测定和相图计算方法(CALPHAD)对B-C-Si-Zr-O五元系的部分相平衡关系进行了系统的研究:
     (1)重新评估了B-Zr和Si-Zr二元系的相图和热力学数据,运用CALPHAD技术重新对这两个体系进行了热力学优化与计算。所有计算结果都与实验数据吻合。
     (2)应用合金法,采用DSC测试方法和X-射线粉末衍射分析,实验测得B-Si二元系富硅端共晶反应温度为1636K;1253 K下成分为7 at.%B-93at.%Si的合金相组成为:B_3Si和Si端际固溶体。通过评估最新文献中有关相图和热力学性质的实验信息,重新优化计算了B-Si二元系,计算相图和热力学性质与实验数据相一致。在此基础上,根据文献报道的B-C-Si三元系的相平衡关系和零变量反应信息,优化计算了B-C-Si三元系,获得了一组合理自洽的热力学参数。计算得到的B-C-Si三元系的垂直截面、等温截面和零变量反应均与报道数据结果相吻合。
     (3)采用歧化反应方法制备了C-SiC-ZrC复合材料。实验确定了C-Si-Zr三元系在1473K的部分相平衡关系。根据本文实测和文献报道的相平衡关系的实验结果,优化计算了C-Si-Zr三元系。计算得到C-Si-Zr三元系的等温截面与实验结果相吻合。
     (4)优化和计算了B-C-Zr三元系相图。其中假想化合物ZrC_2和ZrB的0K形成焓(~(0K)H_(Zr:C)~(ZrB_2)和~(0K)H_(Zr:B)~(ZrC_x))通过第一原理计算得到。计算得到的B-C-Zr三元系等温截面和垂直截面均与实验数据吻合较好,计算的部分零变量反应与文献报道的计算结果一致。在相图热力学计算和局部平衡原理的基础上,通过计算比较界面处局部平衡时各相形成驱动力的大小和考虑界面组元扩散的因素,较好地解释了文献报道的液态锆与碳化硼界面反应产物以及反应机理。
     (5)采用合金法,借助金相、扫描电子显微镜和X-射线衍射分析等检测分析手段,实验测定了B-Si-Zr三元系在1253K下富Zr侧的相关系和电弧炉熔样的铸态相组成。根据本文实测数据和文献报道的相平衡关系和热力学数据,优化计算了B-Si-Zr三元系,获得了一组合理自洽的热力学参数。
     (6)采用固相反应法烧结制备了33.33 at.%B_2O_3-66.67 at.%ZrO_2和60 at.%B_2O_3-40 at.%ZrO_2两个样品,分别在1073K和623K温度退火7天。X-射线衍射显示退火后的样品中只有m_ZrO_2和B_2O_3两个相,没有出现新相,表明该二元系不存在中间化合物。然后,通过评估文献中有关相图和热力学数据,优化计算了B_2O_3-SiO_2-ZrO_2三元系的三个边际赝二元体系,计算相图和热力学性质与实验数据相一致。在此基础上,结合计算得到的边际二元系的热力学参数,直接外推计算了B_2O_3-SiO_2-ZrO_2赝三元体系。
     (7)采用最新报道的ZrO_2的晶格稳定性参数,采用双亚点阵离子溶液模型描述液相Gibbs能,成功优化和计算了Si-Zr-O、C-Si-O和C-Zr-O三元系。计算所得的Si-Zr-O和C-Si-O的等温截面与实验数据吻合较好。计算预测了C-Zr-O三元系的相关系图。
Ultra-high temperature ceramics(UHTCs) mainly refer to the early transition metal(e.g.,Zr,Hf) diborides or carbides with excellent mechanical,thermodynamic properties and thermal shock resistance, oxidation resistance under extremely high temperature conditions.The UHTCs are one class of key material in the study of new spacecraft and carrier and strategic missile,playing an important role in the development of space technology and modernization of national defense.At present, research with respect to UHTCs is an emerging focus in the field of materials.As part of the project "investigation of phase diagram,material preparation and microstructure control of UHTCs" supported financially by National Science Foundation of China(No.50632070),the partial phase equilibrium relationship of the B-C-Si-Zr-O quinary system was investigated through experimental measurements and CALPHAD approach in the present work.The thesis is comprised of seven parts:
     (1) The binary B-Zr and Si-Zr systems have been reassessed using the CALPHAD method on the basis of the available experimental data. The self-consistent thermodynamic parameters formulating Gibbs energies of various phases in these two binary systems have been obtained.Thermodynamic properties of liquid phases and intermetallics and phase diagrams have been calculated,which are in reasonable agreement with the reported experimental data.
     (2) Based on the critically assessed B-Si phase diagram,one alloy of Sirich side was selected and the temperature associated with the eutectic reaction was measured to be 1636 K by DSC.And the phase relations of alloy 7at.%B-93at.%Si at 1253K have been investigated by XRD method.The experimental result shows that this alloy consists of two phases,B_3Si and silicon solution.The B-Si system has been reassessed using a regular substitutional model for the liquid.This improved description can be used with confidence to obtain descriptions for higher order alloys.Thermodynamic description for the B-C-Si system has been developed based on critically reviewed experimental data.The calculated phase diagrams are in good agreement with available experimental data.
     (3) The reaction between Zr and SiC at 1473K in vacuum has been studied.A layered structure was observed after high temperature reactions between Zr and SiC complex.ZrC_x was formed next to the SiC.Thermodynamic description of the C-Si-Zr system was developed based on its constituent binaries and critically reviewed experimental data.The high-temperature Zr_5Si_3 phase and the ternary compound Zr_5Si_3C_x were described as one phase,using the model (Zr)_5(Si)_3(C,Va)_1.Reasonable agreement between the calculated and experimental data was achieved.
     (4) The phase diagram of B-C-Zr ternary system was thermodynamically assessed.Adopting the enthalpy of formation data at 0 K calculated by first-principles method for assumed compounds ZrC_2 and ZrB (~(0K)H_(Zr:C)~(ZrB_2) and ~(0K)H_(Zr:B)~(ZrC_x)),the calculated isothermal and isoplethic sections agree well with those of experiments,so do the most of the calculated invariant reactions.In order to simulate the solidification path of the ternary alloy,Scheil-Gulliver model has been employed. The solidification products are obtained by calculation coupling with experimental works.The calculation results show that the experiments can be simulated satisfactorily.
     (5) By means of annealing method,metallography,scanning electron microscopy(SEM) and X-ray diffraction analysis(XRD),the isothermal section of Zr-rich region at 1253 K and phase constitution of the electric-arc melted cast-state sample were determined.On the basis of experimental information of the phase equilibrium relationship and thermodynamic properties from experimental measurement and literature report,the B-Si-Zr temary system was assessed and a set of thermodynamic parameters was obtained to reasonably describe the Gibbs energy of all the phases.
     (6) Powder samples 33.33 at.%B_2O_3-66.67 at.%ZrO_2 and 60 at.% B_2O_3-40 at.%ZrO_2 were sintered and prepared with solid state reaction,followed by annealing at 1073 K and 623 K,respectively, for seven days.As is shown from the X-ray diffraction analysis,there were only two phases m_ZrO_2 and B_2O_3 and no intermetallic compound existed in the binary system.Then,three constitutional pseudo-binary systems in the B_2O_3-SiO_2-ZrO_2 system were optimized by evaluating the experimental information of phase diagram and thermodynamic properties in literatures with which the calculated results agreed well.Incorporating the optimized thermodynamic parameters of the constitutional binary systems,the B_2O_3-SiO_2-ZrO_2 pseudo-ternary system was extrapolated.
     (7) Using the latest lattice stability parameter of ZrO_2,two-sublattice ionic solution model was adopted to describe the Gibbs energy of liquid phases,and then Si-Zr-O,C-Si-O and C-Zr-O ternary systems were assessed successfully.The calculated isothermal sections of Si-Zr-O and C-Si-O agreed well with those of experiments and the phase diagram of C-Zr-O ternary system was predicted through calculations.
引文
[1]周瑞发,韩雅芳和李树索,高温结构材料.2006,北京:国防工业出版社.
    [2]L.Scatteia,A.Riccio,G.Rufolo,ED.Filippis,A.D.Vecchio,and G.Marino,PRORA-USV SHS:Ultra high temperature ceramic materials for sharp hot structures.AIAA,(2005).
    [3]S.R.Levine,E.J.Opila,J.A.Lorincz,M.Singh,and R.C.Robinson,UHTC composites for leading edges.2004,NASA Glenn Research Center.
    [4]S.R.Levine,E.J.Opila,M.C.Halbig,James D.Kisera,M.Singh,and J.A.Salem,Evaluation of ultra-high temperature ceramics for aeropropulsion use.Journal of the European Ceramic Society,22(2002) 2757-2768.
    [5]邹武,陶瓷基复合材料应用研究“九五”国防预言项目论证报告[R].中国航天科技集团第四研究院第四十三所内部资料,(1996).
    [6]F.Doug,The Advanced Ceramics Industry "An increasingly strategic material"[R].2004,USACA.
    [7]Wuchina.Ultra-high temperature ceramics:materials for extreme environment applications 2008.http://www.engconfintl.Org/8ahorganization.html.
    [8]E.Rudy and S.Windisch,Ternary phase equilibria in transition Metal -Boron-Carbon-Silicon systems,Part Ⅱ,Vol ⅩⅢ,Report AFML-TR-65-2,Ⅱ,Vol ⅩⅢ.Air Force Materials Laboratory,Wright Patterson Air Force Base,OH.1966.
    [9]E.Rudy and J.Progulski,Planseeber.Pulvermetall.,15(13-45)(1967).
    [10]E.Rudy,D.P.Harmon,and C.E.Brukl,Tech.Rep.AFML-TR-65-2,Part Ⅴ(Air Force Materials Laboratory,Rsearch and Technology Division,Air Force systems Command,Wright Patterson Air Force Base,OH.(1969).
    [11]E.Rudy,D.P.Harmon,and C.E.Brukl,Tech.Rep.AFML-TR-65-2,Part Ⅰ Vol Ⅱ(Air Force Materials Laboratory,Research and Technology Division,Air Force System Command,Wright Patterson Air Force Base,OH).1965.
    [12]H.Bittemann and P.Rogl,Criticla assessment and thermodynamic calculation of the binary system hafnium-carbon(Hf-C).J.Phase Equilib.,18(4)(1997)344-356.
    [13]A.I.Gusev,Phase equilibria in the ternary Ti-B-C system.Russ.J.Phys. Chem.,71(7)(1997) 1049-1053.
    [14]W.Lengauer,D.Rafaja,G.Zehetner,and P.Ettmayer,The Hafnium nitrogen system:Phase equilibria and nitrogen diffusivities obtained from diffusion couples.Acta Mater.,44(8)(1996) 3331-3338.
    [15]P.Rogl and H.Bittermann,On the ternary system Hafnium+Boron+Carbon.J.Solid State Chem.,154(1)(2000) 257-262.
    [16]W.Hugosson,U.Jansson,B.Johansson,and O.Eriksson,Phase stability diagrams of transition metal carbides,a theoretical study.Chem.Phys.Lett.,333(6)(2001) 444-450.
    [17]P.Kroll,Hafnium nitride with thorium phosphide structure:Physical properties and an assessment of the Hf-N,Zr-N,and Ti-N phase diagrams at high pressures and temperatures.Phys.Rev.Lett.,90(12)(2003)No.125501.
    [18]P.Kroll,Assessment of the Hf-N,Zr-N and Ti-N phase diagrams at high pressures and temperatures:balancing between MN and M3N4(M=Hf,Zr,Ti)J.PHYS.COND.MATTER,16(14)(2004)S1235-S1244(1).
    [19]X.Y.Ma,C.R.Li,Z.M.Du,and W.J.Zhang,Thermodynamic assessment of the Ti-B system.J.Alloys Compd.,370(1-2)(2004)36-42.
    [20]X.Ma,C.Li,K.Bai,P.Wu,and W.J.Zhang,Thermodynamic assessment of the Zr-N system.J.Alloys Compd.,373(2004) 194-201.
    [21]S.Binder,W.Leagauer,P.Ettmayer,J.Bauer,J.Debuigne,and M.Bohn,Phase equilibria in the systems Ti-C-N,Zr-C-N and Hf-C-N.J.Alloys Compd.,217(1)(1995)128-136.
    [22]G.Girchner,G.Larbo,and B.Uhrenius,Distribution of chromium and manganese between ferrite and austenite using experimental measurements and thermodynamic calculations.Prakt.Metall.,8(11)(1971)641-654.
    [23]H.Hasene and T.Nishizawa,Application of phase diagrams in metallurgy and ceramics.Vol.2,NBS Special Pub.Nr.496,Washington D.C.1978,911-945.
    [24]Z.P.Jin,A study of the range of stability of phase in some ternary system.Scand.J.Metall.,10(6)(1981)279-287.
    [25]金展鹏,三元扩散偶及其在相图研究中的应用.中南矿冶学院学报,15(1)(1984)27-35.
    [26]J.-C.Zhao,M.R.Jackson,L.A.Peluso,and L.N.Brewer,A diffusion-multiple approach for mapping phase diagrams,hardness,and elastic modulus.JOM,54(7)(2002)42-45.
    [27]J.-C.Zhao,Reliability of the diffusion-multiple approach for phase diagram mapping.J.Mater.Sci.,39(12)(2004,)3913-3925.
    [28]J.-C.Zhao,The diffusion-multiple approach to designing alloys.Annu.Rev.Mater.Res.,35(1)(2005)51-73.
    [29]J.-C.Zhao,Combinatorial approaches as effective tools in the study of phase diagrams and composition structure-property relationships.Prog.Mater.Sci.,51(2006)557-631.
    [30]A.A.Kodentsov,G.F.Bastin,and F.J.J.v.Loo,The diffusion couple technique in phase diagram determination.J.Alloys Compds,320(2001) 202-217.
    [31]H.H.Xu,Y.Du,and C.Y.Tang,Isothermal section at 950 of the Co-Nb-Ti system.Mater.Sci.Eng.A,412(1-2)(2005) 336-341.
    [32]H.S.Liu,Y.M.Wang,L.G.Zhang,Q.Chen,F.Zheng,and Z.P.Jin,Determination of phase relations in the Co-Cu-Ti system by the diffusion triple technique.J.Mater.Res.,21(10)(2006) 2493-2503.
    [33]M.A.Dayananda,An examination of a multicomponent diffusion couple.J.Phase Equil.Diffusion,27(6)(2006) 572-581.
    [34]乔芝郁,相图计算研究的进展,材料与冶金学报,2005,4,83-90.
    [35]郝士明,材料热力学,化学工业出版社,北京2003,333-350.
    [36]M.Hillert,Phase Equilibria,Phase Diagrams and Phase Transformations:Their Thermodynamic Basis,Cambridge University Press,1998.
    [37]N.Saunders and A.P.Miodownik,CALPHAD(Calculation of Phase Diagrams):A Comprehensive Guide,1998:Pergamon Materials Series.
    [38]L.Kaufman and H.Bemstein,Computer Calculation of Phase Diagrams.1970,New York:Academic Press.
    [39]冯端,师昌绪,刘治国等著,材料科学导论.2001.
    [40]L.Kaufman,P.E.A.Turchi,W.M.Huang,and Z.K.Liu,Thermodynamics of the Cr-Ta-W system by combining the ab initio and CALPHAD methods.CALPHAD,25(2002) 419-433.
    [41]K.Chvatalova,J.Houserova,M.Sob,and J.Vrestal,First-principles calculations of energetics of sigma phase formation and thermodynamic modelling in Fe-Ni-Cr system.J.Alloys Compd.,378(2004) 71-74.
    [42]R.Arroyave,D.Shin,and Z.K.Liu,Ab initio thermodynamic properties of stoichiometric phases in the Ni-Al system.Acta Mater.,53(2005)1809-1819.
    [43]J.Houserova,J.Vrestal,and M.Sob,Phase diagram calculations in the Co-Mo and Fe-Mo systems using first-principles results for the sigma phase.CALPHAD, 29(2005) 133-139.
    [44] G Ghosh, V.D. Walle, and M.A. Olson, Phase stability of the Hf-Nb system: rom first-principles to CALPHAD. CALPHAD, 26(2002) 491-511.
    [45] H. Ohtani, M. Yamano, and M. Hasebe, Thermodynamic analysis of the Co-Al-C and Ni-Al-C systems by incorporating ab initio energetic calculations into the CALPHAD approach. CALPHAD, 28(2004) 177-190.
    [46] H. Okamoto, B-Zr (boron-zirconium) J. Phase Equilib., 14 (1993) 261-262.
    [47] P. Rogl and P.E. Potter, A critical review and thermodynamic calculation of the binary system: zirconium-boron. Calphad, 12(2) (1988) 191-204.
    [48] H. Duschanek and P. Rogl, in: "Phase Diagrams of Ternary Metal-Boron-Carbon Systems", P. Rogl, ASM, Materials Park, 1998, pp.445-485.
    [49] E. Rudy and S. Windisch, Techn. Rept. AFML-TR-65-2, pt. I, vol. Ⅷ, Wright Patterson AFB, Ohio, 1966,1-33.
    [50] K.P. Portnoi, V.M. Romashov, and L.I. Vyroshina, Poroshkov. Metall., 91(1970) 68-71.
    [51] K.I. Portnoi and V.M. Romashov, Poroshk Met., 5(1972) 48-56(in Russian); TR: Soy. PowderMetalL Met. Ceram., 11(5) (1972) 378-384.
    [52] Y. Champion and S. Hagege, A study of composite interfaces in the Zr-ZrB2 system. J. Mater. Sci. Lett., 11(1992) 290-293.
    [53] Y. Champion and S. Hagege, Experimental determination and symmetry related analysis of orientation relationships in heterophase interfaces: a case study in the Zr-B system Acta mater., 44 (10) (1996) 4169- 4179.
    [54] Y. Champion, S. Hagege, and M. Masse, Structural analysis of phases and heterophase interfaces in the zirconium-boron system. J. Mater. Sci. Lett.,33(16) (1998) 4035-4041.
    [55] B. Callmer, L. Tergenius, and J.O. Thomas, X-ray powder profile refinement of zirconium in beta-rhombohedral. J. Solid State Chem., 26 (1978) 275-279.
    [56] F.W. Glaser and B. Post, System zirconium- boron. Trans. AIME (1953) 1117-1118.
    [57] H. Nowotny, E. Rudy, and F. Benesovsky, Untersuchungen in den Systemen: Zirkonium -Bor - Kohlenstoff und Zirkonium -Bor - Stichstoff. Monatsh. Chem., 91(5) (1960) 963-974.
    [58] O.I. Shulishova and I.A. Shcherbak, Izv. Akad. Nauk SSSR, Neorg. Mater., 3(8) (1967) (1495-1497) in Russian; TR: Inorg. Mater., 3(8) (1967) 1304-1306.
    [59] J.S. Haggerty, J.L. O'Brien, and J.L. Wenckus, J. Cryst. Growth, 3/4(1969)291-293.
    [60] J.M. Leitnaker and M.G Bowman, J. Phys. Chem., 36(2) (1962) 350-358.
    [61] GK. Johnson, E. Greenberg, J.T. Margrave, and W.N. Hubbard, J. Chem. Eng. Data, 12(1967) 133-135.
    [62] E.J. Huber, E.L. Head, and C.E. Holly, J. Phys. Chem., 68(1964) 3040-3045.
    [63] O.C. Trulson and H.W. Goldstein, Mass spectrometric study of zirconium diboride. J. Phys. Chem., 69(1965) 2531-2537.
    [64] C.B. Alcock, K.T. Jacob, S. Zador, O.v. Goldbeck, H. Nowotny, K. Seiffert, and O. Kubaschewski, "Zirconium:Physico-Chemical Properties of its Compounds and Alloys". Ed. O. Kubaschewski, Atomic energy review, Special Issue No.6,I.A.E.A. Vienna(Austria). (1976).
    [65] L. Kaufman and Metall. Soc. AIME, Inst. Metals Div., Rep., 13(1964) 193.
    [66] M. Mihalkovi(?) and M. Widom, Ab initio calculations of cohesive energies of Fe-based glass-forming alloys. Phys. Rev. B, 70(2004) 144107.
    [67] H. Okamota, The Si-Zr (Silicon-Zirconium) system. Bull. Alloy phase Diag., 11(5) (1990) 513-519.
    [68] C. Gueneau, C. Servant, I. Ansara, and N. Dupin, Thermodynamic assessment of the Si-Zr system. Calphad, 18(3) (1994) 319-327.
    [69] Y.A. Kocherzhinskii, O.G Kulik, and E.A. Shiskin, Akad. Nauk. Ukr. SSR, Metallofiz., 64(1976) 48-52.
    [70] V.S. Sundavtsova and G.I. Btalin, Inorg. Mater.(USSR), 21(5) (1985) 676-679.
    [71] V.T. Witusiewicz, I. Arpshofen, H.J. Seifert, F. Sommer, and F. Aldinger, Enthalpy of mixing of liquid and undercooled liquid ternary and quaternary Cu-Ni-Si-Zr alloys. J. Alloys Compd., 337(2002) 155-167.
    [72] A.T. Dinsdale, SGTE data for pure elements. CALPHAD, 15(4) (1991) 317-425.
    [73] O. Redlich and A. Kister, Algebaric representation of thermodynamic properties and the classification of solution. Ind. Eng. Chem., 40(2) (1948) 345-348.
    [74] Y.M. Muggianu, M. Gambino, and J.P. Bros, A new solution model. J. Chem. Phys., 72(1965) 83-88.
    [75]L.S.Brook,The vapor pressure of Polonium.J.Am.Chem.Soc.,77(1955)2133.
    [76]B.Sundman,B.Jansson,and J.-O.Andersson,The Thermo-Calc databank system.CALPHAD,9(2)(1985)153-190.
    [77]I.Barin,Thermochemical data of pure substances.3rd ed.Trans.N.L.Cheng,S.T.Niu,G.Y.Xu,et al.Beijing:Science Press.(2003) 1854.
    [78]S.V.Meschel and O.J.Kleppa,Standard enthalpies of formation of some 4d transition metal silicides by high temperature direct synthesis calorimetry.J.Alloy Compd.,274(1998) 193-200.
    [79]S.Hayun,N.Frage,and M.P.Dariel,The morpholigy of ceramic phases in BxC-SiC-Si infiltrated composites.J.Solid State Chem.,179(2006)2875-2879.
    [80]S.Hayun,D.Rittel,N.Frage,and M.P.Dariel,Static and dynamic mechanical properties of infiltrated B_4C-Si.Mater.Sci.Eng.,A487(2008)405-409.
    [81]W.Kowbel,C.Bruce,and J.C.Withers,Low cost oxidation resistant C-C_composites,in high temperature cetamic matrix composites,W.Krenkel,R.Naslain,and H.Schneider,Editors.2006.
    [82]J.Grobner,H.L.Lukas,and F.Aldinger,Thermodynamic calculation of the ternary system Al-Si-C.CALPHAD,20(20)(1996)247-254.
    [83]B.Kasper.(Thesis) Max Plank Institute-PML,Stuttgart,Germany,1996.
    [84]S.Lim and H.Lukas,B-Si.In:I.Ansara,AT Dinsdale,Rand MH.editors.COST 507,vol.2 Luxembourg:European Communities:p.77(1998).
    [85]T.Tokunaga,K.Nishio,and M.Hasebe,Thermodynamic study of phase equilibria in the Ni-Si-B system.J.Phase Equilib.,22(3)(2001)291-299.
    [86]T.Tokunaga,K.Nishio,H.Ohtani,and M.Hasebe,Phase equilibria in the NI-Si-B system.Mater.Trans.,,44(9)(2003)1651-1654.
    [87]A.I.Zaitsev and A.A.Kodentsov,Thermodynamic properies and phase equilibria in the Si-B system.J.Phase Equilib.,22(2)(2000)126-135.
    [88]R.W.Olesinski and G.J.Abbaschian,The B-Si system.Bull.Alloys Phase Diagrams,5(5)(1984)478-484.
    [89]C.Brosset and B.Magnusson,The silicon-boron system.Nature,187(1960)54-55.
    [90]A.I.Zaitsev,Thermodynamic Properties and phase equilibria in the Si-B system.Russ.J.Gen.Chem.,72(2)(2002)183-192.
    [91] B. Armas, G. Male, D. Salanoubat, C. Chatillon, and M. Allibert, Determination of the boron - rich side of the B -Si phase diagram. J.Less-Common Met., 82(1981) 245-254.
    [92] GV. Samsonov and V.M. Sleptsov, Investigation of the solubility of boron in silicon. Zh. Neorg. Khim., 8(1963) 2009-2011 (in Russian): Translated in Russ.J. Inorg. Chem, 8 pp. 1047-1048 (1963).
    [93] J. Hesse, Loeslichkeit und ausscheidungskinetik von bor in polykristallinem silizium (Solubility and kinetics of precipitation of boron in polycrystalline silicon). Z. Metallkd, 59(1968) 499-502(in German).
    [94] H.J. Seifert and F. Aldinger, Phase equilibria in the Si-B-C-N system. Struct. Bond., 10(2002) 1-58.
    [95] W. A. Knarr, (Thesis) University of Kansas, USA, 1959.
    [96] E. Lungschneider, H. Reimann, and W.J. Quadakkers, Ber. Dt. Keram. Ges., 56(1979)301.
    [97] B. Armas, C. Chatillon, and M. Allibert, Determination des activites dans le system Bore - Silicium par spectrometrie de masse differentielle. Rev. Int. Hautes Temper. Refract., 18(1981) 153-165 (in French).
    [98] A.K. Biletskii, A.A. Scheretskii, V.T. Vitusevich, and V.T. Shumihin, Metals, 3(1988)66-68.
    [99] R. Noguchi, K. Suzuki, F. Tsukihashi, and N. Sano, Thermodynamic f boron in a silicon melt. Metall. Mater. Trans. B, 25B(1994) 903-907.
    [100] Y.O. Esin, S.P. Kolesnikov, B.M. Baev, and A.F. Ermakov, Entalpij obrazovanya zhidkikh splavov kremnya s Borom (Ethalpies formation of liquid alloys of silicon with boron). Tezisy Nauchn. Soobshch. Vses. Konf. Str. Svoistvam Met. Shlakovykh Rasplavov, 3rd ed., 2(1978) 182-183.
    [101] P. Dorner, L.J. Gauckler, H. Krieg, H.L. Lukas, G. Petzow, and J. Weiss, On the calculation and representation of multicomponent system. CALPHAD, 3(4)(1979)241-257.
    [102] T.A. Chubinidze, A.L. Oklei, and M.A. Zhurin, Reaction energy in the Si-B system. Izv. Akad. Nauk SSR, Metally, 3(1982) 199-201.
    [103] S.P. Gordienko, Enthalpies of formation for boron silicides. Powder Metall. Met. Ceram., 34(11-12) (1995) 660-662.
    [104] A.S. Bolgar, A.V.Blinder, and V.B.Muratov, "Thermodynamic properties of boron silicides," in Silicides and their application in technology: Collection of Scientific Papers [in Russian], Inst. Probl. Materialoved., Akad. Nauk UkrSSR,Kiev, 78-86, (1990).
    [105] E. Gugel, R. Kieffer, G Leimer, and P. Ettmayer, INVESTIGATIONS IN THE TERNARY SYSTEM BORON-CARBON-SILICON. Nat. Bur. Stand. (U. S.), Spec. Publ. ;No. 364, 505-13(1972).; From 5. materials research symposium on solid state chemistry;Gaithersburg, Md. (18 Oct 1971). See NBS-SPEC.-PUBL-364;CONF-711019., (1972).
    [106] D.R. Secrist, Phase equilibria in the system Boron Carbode Silicon Carbide. J. Am. Ceram. Soc., 47 (3) (1964) 127-130.
    [107] P.T.B. Shaffer, The SiC in the system SiC-B_4C-C. Mat. Res. Bull., 4(1969) 213-220.
    [108] A. Lipp and M. Roder, Verbindungen im system B-C-Si bzw. B-Si. Z.Anorg. Allg. Chemie., 344(5-6) (1966) 225-229.
    [109] H. Werheit, U. Kuhlmann, M. Laux, and R. Telle, Solid solutions of silicon in boron-carbide-type crystals. J. Alloys Compd., 209(1994) 181-187.
    [110] GV. Samsonov and V.M. Sleptsov, Poperednij variant diagrami sistemo Bor- Kremnij (Preliminary variation of the diagram of the boron-silicon system).Dopov. Akad. Nauk Ukr. RSR, 8(1962) 1066-1068.
    [111] S. Lim and H. Lukas, B-Si. In: I. Ansara, AT Dinsdale, Rand MH. editors. COST 507, vol.2 Luxembourg:European Communities:p.77, (1998).
    [112] G Will, A. Kirfel, and A. Gupta, Electron density and bonding in B_(13) C_2. J. Less-Common Met., 67(1) (1979) 19-29.
    [113] D.R. Armsrong, J. Bolland, P.G Perkins, G Will, and A. Kirfel, The nature of the chemical bonding in boron carbide.. Acta Cryst., B39(1983) 324-329.
    [114] U. Kuhlmann and H. Werheit, Distribution of carbon atoms on the boron carbide structure elements. J. Alloys Compd., 189(1992) 249-258.
    [115] H. Werheit and U. Kuhlmann, On the insertion of carbon atoms in B12 icosahedra and the structural anisotropy of B-rhombohedral boron and boron carbide. J. Alloys Compd., 204(1994) 197-208.
    [116] T.M. Duncan, The distribution of carbon in bonron carbides: A ~(13)C nuclear magnetic resonance study. J.Am.Chem. Soc, 106(8) (1984) 2270-2275.
    [117] D.R. Tallant, T.L. Aselage, A.N. Campbell, and D. Emin, Boron carbide structure by Raman spectroscopy. Physic. Revi. B, 40(8) (1989) 5649.
    [118] H.J. Seifert and F. Aldinger, Phase equilibria in the Si-B-C-N system. Struct. Bond., 10(2002) 1-58.
    [119] B.G Arabey, Vzaimodeystvie v Sisteme Si-B (Interaction in the Si-B system). Izv. Akad. Nauk. SSSR Neorg. Mater., 15(5) (1979) 1589-1592 (in Russian).
    [120] C.L. Pandat 7.0- Phase Diagram Calculation Software for Multicomponent System, 437 S. Yellowstone Drive, Suite 217, Madison, WI 53719, USA. 2007.
    [121] S. Goujard, L. Vandenbulcke, C. Bernard, G Blondiaux, and J.L. Debrun, Thermodynamic and experimental study of the chemical vapor codeposition in the silicon - boron - carbon system at 1400 K. J. Electrochem. Soc, 141(2)(1994)452461.
    [122] S. Goujard, L. Vandenbulcke, and C. Bernard, Thermodynamic study of the chemical vapour deposition in the Si-B-C-H-Cl system CALPHAD, 18(4) (1994)369-385.
    [123] M.W. Chase, C.A. Davies, D.J. Frurip, R.A. McDonald, and A.M. Syverud, Janaf Thermochemical Tables. 3rd Edition, J. Phys. Chem. Ref. Data ed. Vol. H(Suppl.1). 1985. 1-1856
    [124] B.J. Lee, N.M. Hwang, and H.M. Lee, Prediction of interface reaction products between Cu and varous solder alloys bu thermodynamic calculation. Acta Metall., 45(5) (1997) 1867-1874.
    [125] 赵媛和江莞, By priviate communication, (2008).
    [126] P. Villars, A. Prince, and H. Okamoto, Handbook of Ternary alloy phase diagrams. 1997.
    [127] M. Deyerler and S. Bauereisen, Design, manufacturing, and performance of C/SiC mirrors and structures. SPIE, 3132(1997) 171-182.
    [128] M. Imuta and J. Gotoh, Development of high temperature materials including CMCs for space applications. J. Key Engineering Mater., 164-165(1999) 439-444.
    [129] U. Papenburg and W. Pfrang, Optical and optomechanical ultralightweight C/SiC components. SPIE, 3782 (1999) 141-156.
    [130] J. Lang, Uncooled C/SiC composite chamber tested successfully in rocket combustion lab,Research and Technology reports, 2003, NASA Glenn's.
    [131] F. Doug, The Advanced Ceramics Industry, an increasingly strategic material. 2004, USACA.
    [132] Http://www.schafercorp.com.
    [133] J. Fuller and M.D. Sacks, Guest Editorial&colon: Ultra-high temperature ceramics. J. Mater. Sci., 39(19) (2004) 5885-5885.
    [134] T. S. Wang, (Thesis), Damage control of carbon fiber in precursor infiltration pyrolysis and preparation of C/SiC composites thruster. 2005, National University of Defense Technology Changsha, China.
    [135] L.E. Toth, Refractory Materials, Transition Metal Carbides. Vol. 7. 1971: Academic Press, New York.
    [136] A.F. Guillermet, Analysis of thermochemical properties and phase stability in the zirconium-carbon system. J. Alloys Compd., 217(1995) 69-89.
    [137] H.M. Chen, Z. Feng, H.S. Liu, L.B. Liu, and Z.P. Jin, Thermodynamic assessment of B-Zr and Si-Zr binary systems. J. Alloys Compd., 468(2009) 209-216.
    [138] Y. Kim, A.J. Thorn, M.K. Meyer, and M. Akinc, Evaluation of A{sub 5}Si{sub 3}Z{sub x} intermetallics for use as high temperature structural materials.1993 Sep 01, Ames Lab., IA (United States): USDOE, Washington, DC (United States), p. Size: 33 p.
    [139] L. Brewer and O. Krikorian, Reactions of refractory silicides with carbon and nitrogen. J. Electrochem. Soc, 103(1956) 38-51.
    [140] H. Nowotny, B. Lux, and H. Kudielka, Das verhalten metallreicher, hochschmelzender Silizide gegeniiber Bor, Kohlenstoff, Stichstoff und Sauerstoff. Monatsh. Chem., 87(1956) 447-470.
    [141] A.E. Mchale, Phase equilibria Diagrams, phase diagrams for ceramists.Vol.X. 1994: Edited and Published by The American Ceramic Society,. 21.
    [142] E. Rudy, C-Si-Zr phase diagram. Ternary phase equibilria in transition metal-boron-carbon-silicon systems, Part V, compendium of phase diagram data, E. Rudy, 1969, AFML-TR-65-2, Part Ⅴ,, Ad 689843,1. May 1969.
    [143] J.C. Schuster, Structural ceramics joiningⅡ. Ceram. Trans., 35(1993) 43-57.
    [144] Y.Z. Wang and A.H. Carim, Ternary phase equilibria in the Zr-Si-C system. J. Am.Ceram.Soc, 78(3) (1995) 662-666.
    [145] T. Fukai, M. Naka, and J.C. Schuster, Bonding and interfacial structures of SiC/Zr joints. Trans. JWRI., 25(1) (1996) 59-62.
    [146] K. Bhanumurthy and R. Schmid-Fetzer, Interface reactions between SiC/Zr and development of zirconium base composites by in-sititute solid state.Scripta Mater, 45(2001) 547-553.
    [147] S. Wang, Z.H. Chen, Q.S. Ma, H.-F. Hu, and W.-W. Zheng, Effect of fiber surface state on mechanical properties of C_f/Si-O-C composites. Mater. Sci.Eng., A, 407(2005) 245-249.
    [148] GH. Gulliver, J. Inst. Met, 9(1913) 120-157.
    [ 149] E. Scheil, Z. Metallkd, 34(1942) 70-72.
    [150] P. Bardhan and R.N. Mcnally, Review fusion - casting and crystallization of high temperature materials. J. Mater. Sci., 15(1980) 2409-2427.
    [151] H. Nowotny, E. Rudy, and F. Benesovsky, Untersuchungen in den Systemen: Hafnium - Bor -Kohlenstoff und Zirkonium -Bor-Kohlenstoff. Monatsh. Chem., 92(2) (1961) 393-402.
    [152] E. Rudy and S. Windisch, Ternary Phase Equilibria in Transition Metal - Boron - Carbon - Silicon Systems. 1966, Air Force Materials Laboratory, Wright Patterson Air Force Base, Ohio. p. 207.
    [153] Y.V. Levinskiy and S.E. Salibekov, Interaction of Titanium, Zirconium and Hafnium Diborides with Carbon. Russ. J. Inorg. Chem., 10(3) (1965) 319-320(1965) translated from Zh. Neorg. Khim.
    [154] H. Duschanel and P. Rogl, Zr-B-C, in Phase diagrams of ternary Metal - Boron - Carbon ternary systems. 1998, Asm Intl. p. 445-485.
    [155] S.S. Ordan'yan, A.I. Dmitriev, K.T. Bizhev, and E.K. Stepanenko, Interacion in the system B_4C - ZrB_2. Powder Metall. Met. Ceram., 27(1) (1988) 38-40.
    [156] A.V. Kovalev, E.M. Dudnik, O.N. Grigor'ev, T.I. Shaposhnikova, and I.S. Martsynyuk, Directionally solidified eutectic of the B_4C -ZrB_2 system. Powder Metall. Met. Ceram., 39(1-2) (2000) 63-66.
    [157] S.S. Ordan'yan and V.I. Unrod, Reactions in the system ZrC - ZrB_2. Powder Metall. Met. Ceram., 14(5) (1975) 393-395.
    [158] 陶小马和杨永杰. By private communication, 2009.
    [ 159] H. Duschanek.(Thesis) Univ. Wien Austria. 1998.
    [160] L. Brewer and H. Haraldsen, The thermodynamic stability of refractory Borides. J. Elect. Chem. Soc, 102(7) (1959) 399-406.
    [161] R.W. Bene, A kinetic model for solid-state silicide nucleation. J. Appl. Phys., 61(1987)1826-1833.
    [162] T. Nishizawa and A. Chiba, Phenomenological consideration on inter-phase equilibrium in a diffusion couple. J. Jpn. Inst. Met., 34(1970) 629-636.
    [163] U. G(?)sele and K.N. Tu, Growth kinetics of planar binary diffusion couples. J. Appl. Phys., 53(1982) 3252-3260.
    [164] W.L. Johnson, Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials. Prog. Mater. Sci., 30(1986) 81-134.
    [ 165] F.M. d'Heurle, Nucleation of a new phase from the interaction of two adjacent phases. J. Mater. Res., 3(1988) 167-195.
    [166] L.A. Clevenger and C.V. Thompson, Nucleation-limited phase selection during reactions in Ni/Si multilayer thin films. J. Appl. Phys., 67(1990) 1325-1333.
    [167] C.V. Thompson, On the role of diflusion in phase selection during reactions at interfaces. J. Mater. Res., 7(1992) 367-373.
    [168] W.K. Choi and H.M.Lee, Prediction of primary intermetallic compound formation during interfacial reaction between Sn-base solder and Ni substrate. Scripta Mater., 46( 2002) 777-781.
    [169] K. Zeng and J.K. Kivilahti, Use of muticomponent phase diagrams for predicting phase evolution in solder/conductor systems. J. Electron. Mater., 30(2001)35-44.
    [170] K.J. R(?)nk(?), v.F.J.J. Loo, and J.K. Kivilahti, The local nominal composition-useful concept for microjoining and interconnection. Scripta Mater., 37(1997) 1575-1581.
    [171] J. Burke, The kinetics of phase transformations in metals, translated from English by K. Hirano and H. Hori (Kyoritsu, Tokyo) ed. 1972.
    [172] W.B. Johnson, A.S. Nagelberg, and E. Breval, Kinetics of formation of a platelet reinforced ceramic composite prepared by the directed reaction of zirconium with boron carbide. J. Am. Ceram. Soc, 74(9) (1991) 2093-2011.
    [173] E. Brecal and W.B. Johnson, Microstructure of platelet reinforced ceramics prepared by the directed reaction of zircunium with boron carbide. J. Am. Ceram. Soc, 75(8) (1992) 2139-2145.
    [174] A.K. Woo, C.H. Kim, and E.S. Kang, Fabrication and microstructural evaluation of ZrB2/ZrC/Zr composites by liquid infiltration. J. Mater. Sci., 29(1994)5309-5315.
    [175] E. Parthe and J.T. Norton, Das Dreistoffsystem Zirkonium -Silicium-Bor. Mh. Chem., 91(6) (1960) 1127-1133.
    [176] H. Nowotny, B. Lux, and H. Kudielka, Das Verhalten metallreicher, hochschmelzender Silizide gegenuber Bor, Kohlenstoff,Stickstoff und Sauerstoff. Mh. Chem., 87(1956) 447-470.
    [177] W.C. Beard, W.C. Butterman, D.E. Koopman, H.E. Wenden, and W.R. Foster, "Research on Phase Equilibria between Boron Oxides and Refractory Oxides, Including Silicon and Aluminum Oxides," Quqarterly Progress Report No. 9, October 1, 1961-December 31, 1961, Technical Report, Ohio State University Research Foundation, Columbus, OH, January 15. 1962.
    [178] A.V. Bleininger and P. Teetor, Trans. Am. Ceram.Soc, 14(1912) 210-217.
    [179] GW. Morey and E. Ingerson, The Melling of danburite: a study of liquid immiscibility in the system CaO-B_2O_2-SiO_2. Am. Mineralogist, 22(1) (1937) 37-48.
    [180] GW. Morey, J. Soc. Glass Technol., The ternary system Na_2O-B_2O_3-SiO_2 35(167) (1951) 270-283.
    [181] M. Fo(?)x, Solubility of the oxides at 1200℃ in molten boric anhydride. Compt.Rend., 206(5) (1938) 349-350.
    [182] Abd-El-Moneim, Abou-El-Azm, and H. Moore, Study of reaction rates between silica and other oxides at various temperature. J. Soc. Glass Technol., 37( 176) (1953)129-154T.
    [183] E.M. Levin and GM. Ugrinic, J. Res. Natl. Bur. Std., 51(1) (1953) 37-56, RP2430.
    [184] E.M. Levin and GW. Cleek, Shape of liquid immiscibility volume in the system Barium Oxide-Boric Oxide-Silica. J. Am. Ceram. Soc, 41(5) (1958)175-179.
    [185] V. Dimbleby, F.W. Hodkin, M. Parkin, and WES. Turr, Study of the melting and working properties of Boric Oxide. Glasses with special reference to the Sodium Borosilicates. J. Soc. Glass Technol., 7(25) (1923) 57-73.
    [186] E. Jenckel, Character of the transformation point. Glastech. Ber., 16(6) (1938) 191-195.
    [187] T.J. Rockett and W.R. Foster, Phase relations in the system boron oxide-silica. J. Am. Ceram. Soc, 48(2) (1965) 75-80.
    [188] M. Pichavant, A study of the system SiO_2-B_2O_3 at 1 kbar. The phase diagram and a thermodynamic interpretation. Bull. Mineral, 101(1978) 498.
    [189] R.J. Charles and F.E. Wagstaff, Metastable immiscibility in the B_2O_3-SiO_2 System. J. Am. Soc, 51(1) (1968) 16-20.
    [190] R.L. Hervig and A. Navrotsky, Thermochemistry of sodium borosilicate glasses. J. Am. Ceram. Soc, 68(6) (1985) 314-319.
    [191] C.T. Zhang and C.L. Ji, J. Northeast Univ. of Technol., 11(1) (1990) 8-12 (in Chinese).
    [192] Z.C. Wang, Y. Su, and S.X. Tong, Activity of SiO_2 in {(1-x)B_2O_3+xSiO_2} determined by (slag +metal) equilibrium at the temperature 1723 K, using (0.25Cu +0.75 Sn) as metal solvent. J. Chem. Thermodynamics, 28(1996) 1109-1113.
    [193] M. Boike, K. Hilpert, and F. Muller, Thermodynamic activities in B_2O_3-SiO_2 melts at 1475 K. J. Am. Ceram. Soc, 76(11) (1993) 2809-2812.
    [194] R.F. Geller and S.M. Lang, SiO_2-ZrO-2 phase diagram. J. Am. Ceram. Soc, 32, Suppl. (1949) 157
    [195] N.A. Toropov and F.Y. Galakhov, Liquation in the system ZrO_2-SiO_2. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 2(1956) 153-156.
    [196] W.C. Butterman and W.R. Foster, Zircon stability and the ZrO_2-SiO_2 phase diagram. Am. Mineral., 52(1967) 881-885.
    [197] D.N. Kamaev, S.A. Archugov, and GG Mikhailov, Study and thermodynamic analysis of the ZrO_2-SiO_2 system. Russ. J. Appl. Chem., 78(2) (2005) 200-203.
    [198] H.B. Barlett, J. Am. Ceram. Soc, 14(1932) 837-843.
    [199] A. Gaudon, A. Dauger, A. Lecomte, B. Soulestin, and R. Guinebretiere, Phase separation in sol-gel derived ZrO_2-SiO_2 nanostructured materials. J. Eur. Ceram. Soc, 25(2005) 283-286.
    [200] A. Kaiser, M. Lobert, and R. Telle, Thermal stability of zircon (ZrSiO_4).Journal of the European Ceramic Society, (2008).
    [201] R.F. Geller and S.M. Lang, SiO_2-ZrO_2 phase diagram. J. Am. Ceram. Soc., 32, Suppl. (1949)157
    [202] A. Cocco and N. Schromek, Stability of ZrSiO_4 at high temperatures. Ceramica (Milan), 12(1958)45-48.
    [203] C.E. Curtis and H.G Sowman, Investigation of the thermal dissociation, reassociation, and synthesis of Zircon. J. Am. Ceram. Soc, 36 (6) (1953) 190-8
    [204] E. Rosen and A. Muan, Stability of zircon in the temperature range 1180℃ to 1366℃. J. Am. Ceram. Soc, 48 (11) (1965) 603-604
    [205] H.S.C. O'Neill, Free energy of formation of zircon and hafnon. Am. Mineral., 91(2006)1134-1141.
    [206] V.H. Stott and A. Hilliard, Zircon Refractories. Trans. Brit. Ceram. Soc.,48(4) 133-143(1949); Ceram. Abstr., 1950, March, p.48f.
    [207] R.W.G. Wyckoff, Crystal Structure, 3, ed. s. ed. 1963: Wiley, New York.
    [208]J.P.Coughlin and E.G.King,High-temperature heat contents of some zirconium-containing substances.J.Am.Chem.Soc.,72(5)(1950) 2262-2265.
    [209]R.C.Newton,C.E.Manning,J.M.Hanchar,and R.J.Finch,Gibbs free energy of formation of zircon from measurement of solubility in H_2O.J.Am.Ceram.Soc.,88(7)(2005) 1854-1858.
    [210]R.D.Schuiling,L.Vergouwen,and H.V.d.Rijst,Gibbs energies of formation of zircon(ZrSiO_4),thorite(ThSiO_4),and phenacite(BeSiO_4).Am.Mineral.,61(1-2)(1976) 166-168.
    [211]A.J.G.Ellison and A.Navrotsky,Enthalpy of formation of zircon.J.Am.Ceram.Soc.,75(6)(1992) 1430-1433.
    [212]J.M.Ferry,R.C.Newton,and C.E.Manning,Experimental determination of the equilibria:rutile+magnesite=geikielite+CO_2 and zircon+2 magnesite=baddeleyite+forsterite+2 CO_2.Am.Mineral.,87(2002)1342-1350.
    [213]J.L.Fleche,Thermodynamical functions for crystals with large unit cells such as zircon,coffinite,fluorapatite,and iodoapatite from ab initio calculations.Phys.Rev.B,65(2002) 245116.
    [214]R.Terki,G.Bertrand,and H.Aourag,Full potential investigations of structural and electronic properties of ZrSiO_4.Microelectron.Eng.,81(2005) 514-523.
    [215]E.W.Washburn and E.E.Libman,Approximate determination of melting point diagram of system zirconia-silica.J.Am.Ceram.Soc.,3(1920) 634-640.
    [216]N.Zhimowa,Melting diagram of system ZrO_2-SiO_2.Z.Anorg.Allgem.Chem.,218(1934) 193-200.
    [217]M.R.Anseau,J.P.Biloque,and P.Fierens,Some studies on the thermal stability of zircon.J.Mater.Sci.,11(3)(1976) 578-582.
    [218]R.Klute,Phasenbeziehungen im System Al_2O_3-Cr_2O_3-ZrO_2-SiO_2 unter besonderer Berucksichtigung des korundhaltigen Bereiches,Diplomarbeit RWTH Aachen Germany,Lehrstuhl Fur Technische Mineralogies(Chair of Applied Mineralogy),Supervisor:E.Woermann.1982.
    [219]Y.Kanno,Thermodynamic and crystallographic discussion of the formation and dissociation of zircon.J.Mater.Sci.,1989(24)(1989) 2415-2420.
    [220]R.S.Pavlik,H.J.Holland,and E.A.Payzant,Thermal decomposition of zircon refractories.J.Am.Ceram.Soc.,84(12)(2001) 2930-2936.
    [221]武莉,[博士论文],碱金属碱土金属硼酸盐体系化合物结构及性质,中国科学院物理研究所,北京,2005.
    [222]王其坤,By private communication.2008.
    [223]C.Wang,M.Zinkevich,and F.Aldinger,The Zirconium-Hafnia system:DTA measurements and thermodynamic calculations.J.Am.Ceram.Soc.,89(12)(2006) 3751-3758.
    [224]B.Hallstedt,Thermodynamic Assessment of the Silicon-Oxygen System.CALPHAD,16(1992) 53-61.
    [225]余浩,[博士论文],碱金属和碱土金属硼酸盐相图研究,中南工业大学,1999.
    [226]H.Yu,Q.Chen,and Z.p.Jin,Thermodynamic assessment of the CaO-B_2O_3system.CALPHAD,23(1999)101-111.
    [227]J.H.Hildebrand and R.L.Scott,Solubility of Nonelectrolytes.3d ed.,1964,New York:Dover Publications,Inc.35.
    [228]L.S.Darken and R.W.Gurry.Physical chemistry of metals.1953:McGraw-Hill Book Co.,Inc.265.
    [229]V.M.Danilenko,T.V.Andreeva,and Y.M.Goryacher,Inorg.,Mater.(USSR),18(2)(1982) 11-13.
    [230]G.Boret,R.Modar,and C.Bernard,J.Electrochem.Soe.,138(9)(1991)2830-2835.
    [231]S.S.Kim and T.H.S.Jr.,Calculation of subliquidus miscibility gaps in the Li_2O-B_2O_3-SiO_2.Ceram.Int.,26(2000)769-778.
    [232]S.A.Decterov,V.Swamy,and I.-H.Jung,Thermodynamic modleing of the B_2O_3-SiO_2 and B_2O_3-Al_2O_3 systems.Int.J.Mat.Res,98(10)(2007) 987-994.
    [233]H.Kim and P.C.McIntyre,Spinodal decomposition in amorphous metal-silicate thin films:Phase diagram analysis and interface effects on kinetics.J.Appl.Phys.,92(9)(2002) 5094-5102.
    [234]A.Kaiser,M.Lobert,and R.Telle,Thermal stability of zircon(ZrSiO_4).J.Eur.Ceram.Soc.,(2008).
    [235]王其坤,[Thesis],先驱体浸渍裂解工艺制备C_f/UHTC/SiC复合材料及其性能研究,国防科技大学,2008,
    [236]W.G.Fahrenholtz and G.E.Hilmas,NSF-AFOSR joint workshop on future ultra-high temperature materials:http://nsf.gov/mps/dmr/reports.jsp.
    [237]R.Beyers.[Thesis],Sranford University,1989.
    [238]K.Maex and M.v.Rossum,Properties of metal silicides,IMEC,Leuven,Belgium:An INSPEC publication.15.
    [239]S.Q.Wang and J.W.Mayer,Reactions of Zr thin films with SiO_2 substrates.J. Appl. Phys., 64(9) (1988) 4711-4716.
    [240] K.J. Hubbard and D.G Schlom, Thermodynamic stablibity of binary oxides in contact with silicon. J. Mater. Res., 11(11) (1996) 2757-2776.
    [241] D.G Schlom and J.H. Haeni, A Thermodynamic approach to selecting alternative gate dielectrics. MRS Bulletin, 27(3) (2002) 198-204.
    [242] M. Gutowski, J. E.Jaffe, C.L. Liu, M. Stoker, R.I. Hegde, R.S. Rai, and P.J. Tobin, Thermodynamic stability of high-K dielectric metal oxides ZrO_2 and HfO_2 in contact with Si and SiO_2. Appl. Phys. Lett., 80(11) (2002) 1897-1899.
    [243] M. Copel, M. Gribelyuk, and E. Gusev, Structure and stability of ultrathin zirconium oxide layers on Si(001). Appl. Phys. Lett., 76(4) (2000) 436-438.
    [244] C. Wang, M. Zinkevich, and F. Aldinger, On the thermodynamic modeling of the Zr-O system. CALPHAD, 28(3) (2004) 281-292.
    [245] C. Wang, H.M. Chen, F. Zheng, L.B. Liu, and Z.P. Jin, Thermodyanmic calculation of Si-Zr-0 system. Submitted to Journal of alloys and compounds, (2009).
    [246] J.P. Abriata, J. Garces, and R. Versaci, The O-Zr. (Oxygen-Zirconium) system. Bull. Alloy, phase Diag., 7(1986) 116-124.
    [247] R.F. Domagala and D.J. Mcpherson, System zirconium-oxygen. Trans. AIME, 200(1954)238-246.
    [248] E. Gebhardt, H.D. Seghezzi, and W. Durrschenabel, Reswarch on the system Zirconium-Oxygen. J. Nucl.Mater., 4(225) (1961) 255-268.
    [249] B. Holmberg and T. Dagerham, X-Ray studies on solid solutions of oxygen in Capalpha/Zirconium. Acta Chem. Scand., 15(1961) 919-925.
    [250] R.J. Ackerman, S.P. Garg, and E.G. Rauh, High-temperature phase diagram for the system Zr. J. Am. Ceram. Soc, 60(7-8) (1977) 341-345.
    [251] R.J. Ackerman, S.P. Garg, and E.G Rauh, The lower phase boundary of ZrO_2. J. Am. Ceram. Soc, 61(5-6) (1978) 275-276.
    [252] E.G Rauh and S.P. Garg, The ZrO_(2-x) (cubic)-ZrO_(2-x) (cubic+tetragonal) phase boundary. J. Am. Ceram. Soc, 63(3-4) (1980) 239-240.
    [253] D. Shin and Z.K. Liu, Phase stability of hafnium oxide and zirconium oxide on silicon substrate. Scripta Mater., 57(2007) 201-204.
    [254] M. Nagamori, I. Malinsky, and A. Claveau, Thermodynamics of the Si-C-O system for the production of silicon carbide and metallic silicon. Metallurgical Transctions B, 17B(1986) 503-514.
    [255]W.A.Krivsky and J.R.Schuhmann,Derivation of phase diagram for the silicon oxygen carbon system.Trans.TMS-AIME,221(1961) 898-904.
    [256]T.Rosenqvist and J.K.Tuset,Discussion of "Thermodynamics of the Si-C-O system for the production of silicon carbide and metallic silicon".Metall.Trans.B,18B(1987)471-472.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700