掺杂Ti的NaAlH_4相关系和缺陷热力学的第一原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在没有催化剂情况下,配位氢化物的吸放氢动力学性能通常很差。原因有两种:一是热力学上可实现但动力学势垒过高;二是需要的热力学驱动力过高。前者可通过添加合适的催化剂实现可逆吸放氢;而对后者则无法通过降低动力学势垒实现。对配位氢化物的吸放氢热力学性能,如吸放氢可逆性和去稳定问题、微观吸放氢机理和催化机理的研究,是新型高容量配位氢化物储氢材料研究的几个焦点问题。
     环境对氢化物的稳定性和吸放氢行为有影响。化学势可考察环境变化对氢化物自由能的影响,并能结合实验平衡氢压分析吸放氢热力学性质,它还是一个能贯穿宏观和微观的物理量。虽然容量还不够高,NaAlH_4无疑是研究高容量配位氢化物的最好样板材料,本文以NaAlH_4为对象,建立和采用化学势平衡相图描述吸放氢热力学性能。从该相图可知氢化物稳定存在的化学势范围;可直接读出氢化学势最低的吸放氢临界点;可从吸放氢临界点的相平衡关系导出吸放氢反应方程;从吸放氢点的氢化学势值还可以直接得到氢化物和环境交换氢分子需耗费的能量,进而得到吸放氢反应的反应焓。另外,通过它还可为结合化学环境研究氢化物的各种缺陷形成焓打下基础。
     本文还提出以某种氢化物的实验范霍夫线为基准,通过比较0K下吸放氢临界点推导另外未知氢化物平衡氢压的方法,它可以结合第一性原理方法和实验方法的优势。以NaAlH_4的实验范霍夫线为基准得到LiAlH_4平衡氢压的准确度比直接用第一性原理方法情况提高。用这种方法可以快速而较为准确的估计得到新型配位氢化物的平衡氢压,这对在热力学上初步筛选出具有吸放氢可逆性的新型高容量配位氢化物储氢材料有重要意义。
     本文首次采用化学势平衡相图研究添加过渡金属(TM)对NaAlH_4的去稳定问题。研究发现,通过形成Al化学势低的TM-Al合金,降低吸放氢临界点的Al化学势,可间接提高氢的化学势。通过这种方法可以方便比较不同过渡金属对NaAlH_4的去稳定能力,还可讨论在不同TM化学势下的吸放氢热力学性质,这是一般传统方法所不具备的。
     Ti等催化剂催化NaAlH_4的微观机理与NaAlH_4的微观吸放氢机理有关,但这些都尚未达成共识。我们认为NaAlH_4分解的第一步是某种含H空位的形成,可通过系统计算NaAlH_4本征缺陷进行研究。由于NaAlH_4具有宽禁带,我们对缺陷计算既考虑了缺陷形成的原子化学环境也考虑了电子的化学环境。研究发现,在导致NaAlH_4分解的空位中,AlH_3空位无论在体内还是在表面能最低的(001)表面都有最高的形成概率;AlH_3空位是“AlH_(5+)空位”结构,而AlH_5被认为是Na3AlH6形成的前驱体;脱出的AlH_3分子在吸放氢临界点下很容易失稳分解。因此NaAlH_4分解的AlH_3中间态机制是很有可能存在的。
     本文还系统的计算了在吸放氢临界点化学环境下,在NaAlH_4的体内和(001)面不同深度的Ti单缺陷。我们发现Ti_(Al)(2~(nd))和Tii(Al rich)是两种最容易形成Ti单缺陷,它们分别形成TiAl_4H_(20)和TiAl_3H_(12)团簇。我们还把Ti的缺陷形成焓进行分解,并结合Ti的局域结构进行剖析。通过我们全面而深入的分析,人们可以更清晰的了解Ti缺陷的形成机理。为了对Ti缺陷对NaAlH_4分解作用有更细致的认识,我们较为全面的研究了最容易形成的Ti缺陷团簇内外的四种空位形成焓[H_f(V_H), H_f(V_(H-H)), H_f(V_(AlH3))和H_f(V_(Na))]。结果一致的发现,Ti缺陷能有效降低NaAlH_4分解的各种空位形成焓,但Ti对NaAlH_4分解的促进作用有区域性。
The hydriding/dehydriding performance of complex hydrides are often poor, which may be resulted from high kinetic barriers, or intrinsically resulted from high requirements in thermodynamic driving force. If the reaction process is hindered merely by the kinetic barrier, it can be improved by suitable catalysts. However, if it is intrinsically due to the latter reason, any further search for suitable catalysts may be futile and the material is impractical for reversible hydrogen storage.
     There are several hot issues on researches of high-capacity hydrogen storage materials of complex hydrides: hydriding/dehydriding thermodynamic properties (such as hydriding/dehydriding thermodynamic reversibility and destabilization); micro mechanism of hydriding/dehydriding reaction and catalyst mechanism.
     The stability and hydriding/dehydriding performance of hydrides are often influenced by their environment. Chemical potential can be utilized to describe the interaction of hydride and its environment. It can also connect equilibrium hydrogen pressure and thermodynamic characteristics of hydridind/dehydriding, thus, chemical potential can be a link between theoretical and experimental studies. It is as well as a link between the related macro and micro phenomena. Although its capacity does not meet the practical criterion, NaAlH_4 is undoubtedly a prototype for the study of other high-capacity hydrogen storage materials. In this dissertation, we have established and used equilibrium phase diagram characterized with chemical potentials to study the thermodynamic properties of hydrogen absorption and desorption with NaAlH_4 as researched object. We find that the chemical potential range for a stable hydride phase can be illustrated directily from the phase diagram. The hydridind/dehydriding critical point with the lowest chemical potential of H can be obtained, which is directly related with equilibrium hydrogen pressure. The hydridind/dehydriding equation can be expressed directily from the phase equilibrirum relation at critical point. The energy required for the exchange of a H2 molecular between hydride and environment can be read from the coordination of critical point, and the reaction enthalpy can be derived based on it. In addition, we can calculate formation energy of various defects in hydrides with consideration of the practical experiment environment.
     We propose an approch to estimate the equilibrium hydrogen pressure of a target hydride from a reference hydride, which takes advantage of both first-principles calculations and experiments. That is, by taking experimental Van’t Hoff’s line of a hydride as reference, we may obtain the equilibrium hydrogen pressure of the target hydride through comparing the critical points of the target and reference hydrides. As an example, we have obtained the equilibrium hydrogen pressure of LiAlH_4 at different temperature from the experimental Van’t Hoff’s line of NaAlH_4 and the theretical relation between the critical points of NaAlH_4 and LiAlH_4. The obtained result is more accurate than that directly calculated from first-principles method. With this new approach, the equilibrium hydrogen pressure of a new complex hydride can be obtained rather quickly to a more accurate degree. This provides an efficient way to screen new potential high-capacity hydrogen storage materials of complex hydrides with good hydriding/dehydriding thermodynamic reversibility.
     For the first time, we use equilibrium phase diagram characterized with chemical potentials to study the destabilization of transition metals (TMs) to NaAlH_4. It is found that the chemical potential of H at critical point increases as TM-Al alloys are formed with lower chemical potential of Al. This is a destabilization mechanism of TMs to NaAlH_4. In this way, the destabilizing ability of TM to NaAlH_4 can be easily distinguished. It can also be adopted to study the hydridind/dehydriding thermodynamic properties under different chemical potentials of TM, which is generally not available in conventional methods.
     It is known that the catalytic mechanism of Ti-contained additives to NaAlH_4 is related to the micro hydriding/dehydriding mechanism of NaAlH_4, yet none of the mechanisms are clear. We believe that the first step of NaAlH_4 decomposition is the formation of some H-contained vacancy, which can be studied through calculating the intrinsic defects of NaAlH_4 systematically. Both atomic and electronic chemical potentials are considered when intrinsic defects are calculated since NaAlH_4 is an ionic crystal with a wide band gap. It is found that among the defects which lead to decomposition of NaAlH_4, the formation possibility of AlH_3 complex vacancy, V(AlH_3), is the highest in both bulk and (001) surface of NaAlH_4. The structure of V(AlH_3) is“vacancy+AlH5”pair, and AlH5 is considered as a precursor of Na3AlH6. AlH_3 molecule is not stable under the chemical environment at critical point, thus it is easy to decompose after desorption from NaAlH_4. Overall, we believe that it is likely to have an“AlH_3 intermediate state mechanism”during decomposition.
     We also systematically calculate single Ti defects in bulk and (001) slab with different depth under the chemical environment of the critical point. Ti_(Al)(2~(nd)) and Ti_i(Al rich) are the two single Ti defects with high formation possibility accompanied by TiAl+3H(12) and TiAl_4H_(20) complexes respectively. It is found that a deeper insight on the formation mechanism of single Ti defect can be obtained when the defect deformation enthalpies are divided into three terms which are directly related to the local structures of Ti defects. In addition, for the first time, we adopt the formation enthalpy of four vacancies [H_f(V_H), H_f(V_(H-H)), H_f(V_(AlH3)) and H_f(V_(Na))] within and around the two Ti-Al-H complexs to investigate the impact of Ti defects on the decomposition of NaAlH_4. It is found consistently that the two single Ti defects can effectively reduce all the vacancy formation enthalpies of NaAlH_4, but mainly at the regions inside the TiAl4H20 complex or outside TiAl3H12 complex.
引文
1. Lee H., Lee J.-w., Kim D. Y., et al. Tuning clathrate hydrates for hydrogen storage [J]. Nature, 2005, 434(7034):743-746
    2. Leung W. B., March N. H., Motz H. Primitive phase diagram for hydrogen [J]. Phys. Lett. A, 1976, 56(6):425-426
    3. Dillon A. C., Jones K. M. Storage of hydrogen in single-walled carbon nanotubes [J]. Nature, 1997, 386(6623):377
    4. Rosi N. L., Eckert J., Eddaoudi M., et al. Hydrogen storage in microporous metal-organic frameworks [J]. Science, 2003, 300(5622):1127-1129
    5. Ewe H., Justi E. W., Stephan K. Elektrochemische Speicherung und Oxidation von Wasserstoff mit der intermetallischen Verbindung LaNi5 [J]. Energy Conversion, 1973, 13(3):109-113
    6. Reilly J. J., Wiswall R. H. Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4 [J]. Inorg. Chem., 1968, 7(11):2254-2256
    7. Hoffman K. C., Reilly J. J., Salzano F. J., et al. Metal hydride storage for mobile and stationary applications [J]. Int. J. Hydrogen Energy, 1976, 1(2):133-151
    8. Schlapbach L., Zuttel A. Hydrogen-storage materials for mobile applications [J]. Nature, 2001, 414(6861):353-358
    9. Nakamori Y., Orimo S.-i., Tsutaoka T. Dehydriding reaction of metal hydrides and alkali borohydrides enhanced by microwave irradiation [J]. Appl. Phys. Lett., 2006, 88(11):112104-112103
    10. Matsuo M., Nakamori Y., Yamada K., et al. Effects of microwave irradiation on the dehydriding reaction of the composites of lithium borohydride and microwave absorber [J]. Appl. Phys. Lett., 2007, 90(23):232907-232903
    11. Matsuo M., Nakamori Y., Orimo S.-i., et al. Lithium superionic conduction in lithium borohydride accompanied by structural transition [J]. Appl. Phys. Lett., 2007, 91(22):224103-224103
    12. Maekawa H., Matsuo M., Takamura H., et al. Halide-Stabilized LiBH4, a Room- Temperature Lithium Fast-Ion Conductor [J]. J. Am. Chem. Soc., 2009, 131(3):894-895
    13. Huiberts J. N., Griessen R. Yttrium and lanthanum hydride films with switchable optical properties [J]. Nature, 1996, 380(6571):231
    14.申泮文,曾爱冬.氢与氢能[M].北京:科学出版社, 1988.
    15. Grochala W., Edwards P. P. Thermal Decomposition of the Non-Interstitial Hydrides forthe Storage and Production of Hydrogen [J]. Chem. Rev., 2004, 104(3):1283-1316
    16. Ke X., Kuwabara A., Tanaka I. Cubic and orthorhombic structures of aluminum hydride AlH3 predicted by a first-principles study [J]. Phys. Rev. B, 2005, 71(18):184107
    17. Alapati S. V., Johnson J. K., Sholl D. S. Predicting Reaction Equilibria for Destabilized Metal Hydride Decomposition Reactions for Reversible Hydrogen Storage [J]. J. Phys. Chem. C, 2007, 111(4):1584-1591
    18. Rao B. K., Jena P., Burkart S., et al. AlH3 and Al2H6: Magic Clusters with Unmagical Properties [J]. Phys. Rev. Lett., 2001, 86(4):692
    19. DeLuca L. T., Galfetti L., Severini F., et al. Physical and ballistic characterization of AlH3-based space propellants [J]. Aerospace Science and Technology, 2007, 11(1):18-25
    20. Sandrock G., Reilly J., Graetz J., et al. Accelerated thermal decomposition of AlH3 for hydrogen-fueled vehicles [J]. Appl. Phys. A, 2005, 80(4):687-690
    21. Graetz J., Reilly J. J. Decomposition Kinetics of the AlH3 Polymorphs [J]. J. Phys. Chem. B, 2005, 109(47):22181-22185
    22. Graetz J., Reilly J. J., Kulleck J. G., et al. Kinetics and thermodynamics of the aluminum hydride polymorphs [J]. J. Alloys Comp., 2007, 446-447:271-275
    23. Graetz J., Chaudhuri S., Lee Y., et al. Pressure-induced structural and electronic changes in alpha-AlH3 [J]. Phys. Rev. B, 2006, 74(21):214114-214117
    24. Aguayo A., Singh D. J. Electronic structure of the complex hydride NaAlH4 [J]. Phys. Rev. B, 2004, 69(15):155103-155105
    25. Graetz J., Reilly J. J. Thermodynamics of the and polymorphs of AlH3 [J]. J. Alloys Comp., 2006, 424(1-2):262-265
    26. Wolverton C., Ozoli?? V., Asta M. Hydrogen in aluminum: First-principles calculations of structure and thermodynamics [J]. Phys. Rev. B, 2004, 69(14):144109
    27. Konovalov S. K., Bulychev B. M. The P,T-State Diagram and Solid Phase Synthesis of Aluminum Hydride [J]. Inorg. Chem., 1995, 34(1):172-175
    28. Pallassana V., Neurock M., Hansen L. B., et al. Theoretical analysis of hydrogen chemisorption on Pd(111), Re(0001) and PdML/Re(0001), ReML/Pd(111) pseudomorphic overlayers [J]. Phys. Rev. B, 1999, 60(8):6146
    29. Feibelman P. J. Orientation dependence of the hydrogen molecule's interaction with Rh(001) [J]. Phys. Rev. Lett., 1991, 67(4):461
    30. Harris J., Andersson S. H2 Dissociation at Metal Surfaces [J]. Phys. Rev. Lett., 1985, 55(15):1583
    31. Hammer B., Jacobsen K. W., No/rskov J. K. Dissociation path for H2 on Al(110) [J].Phys. Rev. Lett., 1992, 69(13):1971
    32. Harris J. On the adsorption and desorption of H2 at metal surfaces [J]. Appl. Phys. A, 1988, 47(1):63-71
    33. Ashby E. C. The Direct Synthesis of Amine Alanes [J]. J. Am. Chem. Soc., 1964, 86(9):1882-1883
    34. Graetz J. New approaches to hydrogen storage [J]. Chem. Soc. Rev. , 2009, 38(1):73-82
    35. Arroyo y de Dompablo M. E., Ceder G. First principles investigations of complex hydrides AMH4 and A3MH6 (A=Li, Na, K, M=B, Al, Ga) as hydrogen storage systems [J]. J. Alloys Comp., 2004, 364(1-2):6-12
    36. Tsumuraya T., Shishidou T., Oguchi T. Ab initio study on the electronic structure and vibration modes of alkali and alkaline-earth amides and alanates [J]. J. Phys.: Condens. Matter, 2009, 21(18)
    37. Tarasov V. P., Kirakosyan G. A. Aluminohydrides: Structures, NMR, Solid-State Reactions [J]. Rus J. Inorg. Chem., 2008, 53(13):2048-2081
    38. Du A. J., Smith S. C., Lu G. Q. Role of charge in destabilizing AlH4 and BH4 complex anions for hydrogen storage applications: Ab initio density functional calculations [J]. Phys. Rev. B, 2006, 74(19):193405-193404
    39. Vajeeston P., Ravindran P., Vidya R., et al. Design of Potential Hydrogen-Storage Materials Using First-Principle Density-Functional Calculations [J]. Cryst. Growth Des., 2004, 4(3):471-477
    40. Peles A., Van de Walle C. G. Hydrogen-related defects in sodium alanate [J]. J. Alloys Comp., 2007, 446-447:459-461
    41. Peles A., Van de Walle C. G. Role of charged defects and impurities in kinetics of hydrogen storage materials: A first-principles study [J]. Phys. Rev. B, 2007, 76(21):214101-214105
    42. Peles A., Alford J. A., Ma Z., et al. First-principles study of NaAlH4 and Na3AlH6 complex hydrides [J]. Phys. Rev. B, 2004, 70(16):165105-165107
    43. Araújo C. M., Li S., Ahuja R., et al. Vacancy-mediated hydrogen desorption in NaAlH4 [J]. Phys. Rev. B, 2005, 72(16):165101
    44. van Setten M. J., de Wijs G. A., Popa V. A., et al. Ab initio study of Mg(AlH4)2 [J]. Phys. Rev. B, 2005, 72(7):073107
    45. Ke X., Tanaka I. Decomposition reactions for NaAlH4, Na3AlH6, and NaH: First-principles study [J]. Phys. Rev. B, 2005, 71(2):024117-024116
    46. Peles A., Chou M. Y. Lattice dynamics and thermodynamic properties of NaAlH4:Density-functional calculations using a linear response theory [J]. Phys. Rev. B, 2006, 73(18):184302-184311
    47. Nakamori Y., Miwa K., Ninomiya A., et al. Correlation between thermodynamical stabilities of metal borohydrides and cation electronegativites: First-principles calculations and experiments [J]. Phys. Rev. B, 2006, 74(4):045126-045129
    48. Frankcombe T. J. The importance of vibrations in modelling complex metal hydrides [J]. J. Alloys Comp., 2007, 446-447:455-458
    49. Ross D. J., Halls M. D., Nazri A. G., et al. Raman scattering of complex sodium aluminum hydride for hydrogen storage [J]. Chem. Phys. Lett., 2004, 388(4-6):430-435
    50. Majzoub E. H., McCarty K. F., Ozolins V. Lattice dynamics of NaAlH4 from high-temperature single-crystal Raman scattering and ab initio calculations: Evidence of highly stable AlH anions [J]. Phys. Rev. B, 2005, 71(2):024118-024110
    51. Gupta H. C., Tripathi U. Phonons at the zone center for alpha-NaAlH4 [J]. J. Phys. Chem. Solids, 2006, 67(12):2536-2541
    52. Yukawa H., Morisaku N., Li Y., et al. Raman scattering and lattice stability of NaAIH4 and Na3AlH6. J. Alloys Comp., 2006. pp. 242-247.
    53. Borgschulte A., Zuttel A., Hug P., et al. Hydrogen-deuterium exchange experiments to probe the decomposition reaction of sodium alanate [J]. Phys. Chem. Chem. Phys., 2008, 10(27):4045-4055
    54. H. F. Shurvell, R. J. C. Brown, P. M. Fredericks, et al. Low-temperature Raman spectra of polycrystalline NH4F and ND4F [J]. J. Raman Spectrosc., 2001, 32(3):219-226
    55. Kumar R. S., Kim E., Tschauner O., et al. Pressure-induced structural phase transition in NaAlH4 [J]. Phys. Rev. B, 2007, 75(17):174110-174117
    56. Shirk A. E., Shriver D. F. Raman and infrared spectra of tetrahydroaluminate, AlH4-, and tetrahydrogallate, GaH4-, salts [J]. J. Am. Chem. Soc., 1973, 95(18):5904-5912
    57. Hagemann H., Gomes S., Renaudin G., et al. Raman studies of reorientation motions of [BH4]- anionsin alkali borohydrides [J]. Journal of Alloys and Compounds, 2004, 363(1-2):129-132
    58. Ramirez-Cuesta A. J. aCLIMAX 4.0.1, The new version of the software for analyzing and interpreting INS spectra [J]. Comput. Phys. Comm. , 2004, 157(3):226-238
    59. Bureau J.-C., Amri Z., Claudy P., et al. Comparative study of lithium and sodium hexahydrido- and hexadeuteridoaluminates. IV—Ferroelectricity in Na3AlH6 [J]. Mater. Res. Bull., 1989, 24(5):551-559
    60. Renaudin G., Gomes S., Hagemann H., et al. Structural and spectroscopic studies on thealkali borohydrides MBH4 (M = Na, K, Rb, Cs) [J]. J. Alloys Comp., 2004, 375(1-2):98-106
    61. Gross K. J., Guthrie S., Takara S., et al. In-situ X-ray diffraction study of the decomposition of NaAlH4 [J]. J. Alloys Comp., 2000, 297(1-2):270-281
    62. Gomes S., Renaudin G., Hagemann H., et al. Effects of milling, doping and cycling of NaAlH4 studied by vibrational spectroscopy and X-ray diffraction [J]. J. Alloys Comp., 2005, 390(1-2):305-313
    63. Dilts J. A., Ashby E. C. Thermal decomposition of complex metal hydrides [J]. Inorg. Chem., 1972, 11(6):1230-1236
    64. Balema V. P., Wiench J. W., Dennis K. W., et al. Titanium catalyzed solid-state transformations in LiAlH4 during high-energy ball-milling [J]. J. Alloys Comp., 2001, 329(1-2):108-114
    65. Brinks H. W., Hauback B. C., Norby P., et al. The decomposition of LiAlD4 studied by in-situ X-ray and neutron diffraction [J]. J. Alloys Comp., 2003, 351(1-2):222-227
    66. Bogdanovic B., Schwickardi M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials [J]. J. Alloys Comp., 1997, 253-254:1-9
    67. Viktor P. Balema, Kevin W. Dennis, Pecharsky V. K. Rapid solid-state transformation of tetrahedral [AlH4]– into octahedral [AlH6]3– in lithium aluminohydride [J]. Chem. Comm., 2000, 17
    68. Walters R. T., Scogin J. H. A reversible hydrogen storage mechanism for sodium alanate: the role of alanes and the catalytic effect of the dopant [J]. J. Alloys Comp., 2004, 379(1-2):135-142
    69. Bogdanovic B., Felderhoff M., Germann M., et al. Investigation of hydrogen discharging and recharging processes of Ti-doped NaAlH4 by X-ray diffraction analysis (XRD) and solid-state NMR spectroscopy [J]. J. Alloys Comp., 2003, 350(1-2):246-255
    70. Lohstroh W., Fichtner M. Rate limiting steps of the phase transformations in Ti-doped NaAlH4 investigated by isotope exchange [J]. Phys. Rev. B, 2007, 75(18):184106-184106
    71. Ashby E. C., Kobetz P. The Direct Synthesis of Na3AlH6 [J]. Inorg. Chem., 1966, 5(9):1615-1617
    72. Sandrock G., Reilly J., Graetz J., et al. Alkali metal hydride doping of alpha-AlH3 for enhanced H2 desorption kinetics [J]. J. Alloys Comp., 2006, 421(1-2):185-189
    73. Fu Q. J., Ramirez-Cuesta A. J., Tsang S. C. Molecular Aluminum Hydrides Identified by Inelastic Neutron Scattering during H2 Regeneration of Catalyst-Doped NaAlH4 [J]. J.Phys. Chem. B, 2005, 110(2):711-715
    74. Suttisawat Y., Rangsunvigit P., Kitiyanan B., et al. Catalytic effect of Zr and Hf on hydrogen desorption/absorption of NaAlH4 and LiAlH4 [J]. Int. J. Hydrogen Energy, 2007, 32(9):1277-1285
    75. Palumbo O., Cantelli R., Paolone A., et al. Motion of point defects and monitoring of chemical reactions in sodium aluminium hydride [J]. J. Alloys Comp., 2005, 404-406:748-751
    76. Bellosta von Colbe J. M., Schmidt W., Felderhoff M., et al. Hydrogen-Isotope Scrambling on Doped Sodium Alanate [J]. Angew. Chem. Int. Ed., 2006, 45(22):3663-3665
    77. Kadono R., Shimomura K., Satoh K. H., et al. Hydrogen Bonding in Sodium Alanate: A Muon Spin Rotation Study [J]. Phys. Rev. Lett., 2008, 100(2):026401-026404
    78. Zhao J. L., Zhang W. Q., Li X. M., et al. Convergence of the formation energies of intrinsic point defects in wurtzite ZnO: first-principles study by projector augmented wave method [J]. J. Phys.: Condens. Matter, 2006, 18(5):1495-1508
    79. Gai Y. Q., Yao B., Li Y. F., et al. Influence of hydrostatic pressure on the native point defects in wurtzite ZnO: Ab initio calculation [J]. Phys. Lett. A, 2008, 372(30):5077-5082
    80. Zhang S. B., Wei S.-H., Zunger A., et al. Defect physics of the CuInSe2 chalcopyrite semiconductor [J]. Phys. Rev. B, 1998, 57(16):9642
    81. Lodziana Z., Züttel A. Ti cations in sodium alanate [J]. J. Alloys Comp., 2009, 471(1-2):L29-L31
    82. Singh S., Eijt S. W. H. Hydrogen vacancies facilitate hydrogen transport kinetics in sodium hydride nanocrystallites [J]. Phys. Rev. B, 2008, 78(22):224110-224116
    83. Fichtner M., Fuhr O., Kircher O., et al. Small Ti clusters for catalysis of hydrogen exchange in NaAlH4 [J]. Nanotechnology, 2003, 14(7):778-785
    84. B. Bogdanovi, M. Felderhoff, S. Kaskel, et al. Improved Hydrogen Storage Properties of Ti-Doped Sodium Alanate Using Titanium Nanoparticles as Doping Agents [J]. Adv. Mater., 2003, 15(12):1012-1015
    85. Majzoub E. H., Gross K. J. Titanium-halide catalyst-precursors in sodium aluminum hydrides [J]. J. Alloys Comp., 2003, 356-357:363-367
    86. Kaskel S., Schlichte K., Chaplais G., et al. Synthesis and characterisation of titanium nitride based nanoparticles [J]. J. Mater. Chem., 2003, 13(6):1496-1499
    87. Kim J. W., Shim J.-H., Kim S. C., et al. Catalytic effect of titanium nitride nanopowderon hydrogen desorption properties of NaAlH4 and its stability in NaAlH4 [J]. J. Power Sources, 2009, 192(2):582-587
    88. Lee G.-J., Shim J.-H., Cho Y. W., et al. Improvement in desorption kinetics of NaAlH4 catalyzed with TiO2 nanopowder [J]. Int. J. Hydrogen Energy, 2008, 33(14):3748-3753
    89. Wang P., Jensen C. M. Method for preparing Ti-doped NaAlH4 using Ti powder: observation of an unusual reversible dehydrogenation behavior [J]. J. Alloys Comp., 2004, 379(1-2):99-102
    90. Brinks H. W., Hauback B. C., Srinivasan S. S., et al. Synchrotron X-ray Studies of Al1-yTiy Formation and Re-hydriding Inhibition in Ti-Enhanced NaAlH4 [J]. J. Phys. Chem. B, 2005, 109(33):15780-15785
    91. Brinks H. W., Sulic M., Jensen C. M., et al. TiCl3-Enhanced NaAlH4: Impact of Excess Al and Development of the Al1-yTiy Phase during Cycling [J]. J. Phys. Chem. B, 2006, 110(6):2740-2745
    92. Pukazhselvan D., Hudson M. S. L., Gupta B. K., et al. Investigations on the desorption kinetics of Mm-doped NaAlH4 [J]. J. Alloys Comp., 2007, 439(1-2):243-248
    93. Wang P., Kang X. D., Cheng H. M. Exploration of the Nature of Active Ti Species in Metallic Ti-Doped NaAlH4 [J]. J. Phys. Chem. B, 2005, 109(43):20131-20136
    94. Lee G.-J., Kim J. W., Shim J.-H., et al. Synthesis of ultrafine titanium aluminide powders and their catalytic enhancement in dehydrogenation kinetics of NaAlH4 [J]. Scripta Mater., 2007, 56(2):125-128
    95. Gross K. J., Majzoub E. H., Spangler S. W. The effects of titanium precursors on hydriding properties of alanates [J]. J. Alloys Comp., 2003, 356-357:423-428
    96. Wang P., Jensen C. M. Preparation of Ti-Doped Sodium Aluminum Hydride from Mechanical Milling of NaH/Al with Off-the-Shelf Ti Powder [J]. J. Phys. Chem. B, 2004, 108(40):15827-15829
    97. Kang X.-D., Wang P., Cheng H.-M. Electron microscopy study of Ti-doped sodium aluminum hydride prepared by mechanical milling NaH/Al with Ti powder [J]. J. Appl. Phys. , 2006, 100(3):034914-034916
    98. Kang X. D., Wang P., Cheng H. M. Improving Hydrogen Storage Performance of NaAlH4 by Novel Two-Step Milling Method [J]. J. Phys. Chem. C, 2007, 111(12):4879-4884
    99. Fang F., Zheng S. Y., Chen G. R., et al. Formation of Na3AlH6 from a NaH/Al mixture and Ti-containing catalyst [J]. Acta Mater., 2009, 57(6):1959-1965
    100. Xiao X. Z., Chen L. X., Fan X. L., et al. Direct synthesis of nanocrystalline NaAlH4complex hydride for hydrogen storage [J]. Appl. Phys. Lett., 2009, 94(4):041907-041903
    101. Suttisawat Y., Jannatisin V., Rangsunvigit P., et al. Understanding the effect of TiO2, VCl3, and HfCl4 on hydrogen desorption/absorption of NaAlH4 [J]. J. Power Sources, 2007, 163(2):997-1002
    102. Naik M.-u.-d., Rather S.-u., Zacharia R., et al. Comparative study of dehydrogenation of sodium aluminum hydride wet-doped with ScCl3, TiCl3, VCl3, and MnCl2 [J]. J. Alloys Comp., 2009, 471(1-2):L16-L22
    103. Zidan R. A., Takara S., Hee A. G., et al. Hydrogen cycling behavior of zirconium and titanium-zirconium-doped sodium aluminum hydride [J]. J. Alloys Comp., 1999, 285(1-2):119-122
    104. Wang T., Wang J., Ebner A. D., et al. Reversible hydrogen storage properties of NaAlH4 catalyzed with scandium [J]. J. Alloys Comp., 2008, 450(1-2):293-300
    105. Anton D. L. Hydrogen desorption kinetics in transition metal modified NaAlH4 [J]. J. Alloys Comp., 2003, 356-357:400-404
    106. Zheng X., Qu X., Humail I. S., et al. Effects of various catalysts and heating rates on hydrogen release from lithium alanate [J]. Int. J. Hydrogen Energy, 2007, 32(9):1141-1144
    107. Xueping Z., Shenglin L., Donglin L. The effect of additives on the hydrogen storage properties of NaAlH4 [J]. Int. J. Hydrogen Energy, 2009, 34(6):2701-2704
    108. Bogdanovic B., Felderhoff M., Pommerin A., et al. Cycling properties of Sc- and Ce-doped NaAlH4 hydrogen storage materials prepared by the one-step direct synthesis method [J]. J. Alloys Comp., 2009, 471(1-2):383-386
    109. Bogdanovic B., Brand R. A., Marjanovic A., et al. Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials [J]. J. Alloys Comp., 2000, 302(1-2):36-58
    110. Sun T., Zhou B., Wang H., et al. Dehydrogenation properties of LaCl3 catalyzed NaAlH4 complex hydrides [J]. J. Alloys Comp., 2009, 467(1-2):413-416
    111. Sun T., Zhou B., Wang H., et al. The effect of doping rare-earth chloride dopant on the dehydrogenation properties of NaAlH4 and its catalytic mechanism [J]. Int. J. Hydrogen Energy, 2008, 33(9):2260-2267
    112. Okada N., Genma R., Nishi Y., et al. RE-oxide doped alkaline hydrogen storage materials prepared by mechanical activation [J]. J. Mater. Sci., 2004, 39(16):5503-5506
    113. Cento C., Gislon P., Bilgili M., et al. How carbon affects hydrogen desorption in NaAlH4 and Ti-doped NaAlH4 [J]. J. Alloys Comp., 2007, 437(1-2):360-366
    114. Wang J., Ebner A. D., Prozorov T., et al. Effect of graphite as a co-dopant on the dehydrogenation and hydrogenation kinetics of Ti-doped sodium aluminum hydride [J]. J. Alloys Comp., 2005, 395:252-262
    115. Dehouche Z., Lafi L., Grimard N., et al. The catalytic effect of single-wall carbon nanotubes on the hydrogen sorption properties of sodium alanates [J]. Nanotechnology, 2005, 16(4):402-409
    116. Berseth P. A., Harter A. G., Zidan R., et al. Carbon Nanomaterials as Catalysts for Hydrogen Uptake and Release in NaAlH4 [J]. Nano Lett., 2009, 9(4):1501-1505
    117. Pukazhselvan D., Gupta B. K., Srivastava A., et al. Investigations on hydrogen storage behavior of CNT doped NaAlH4 [J]. J. Alloys Comp., 2005, 403(1-2):312-317
    118. Weidenthaler C., Pommerin A., Felderhoff M., et al. On the state of the titanium and zirconium in Ti or Zr doped NaAlH4 hydrogen storage material [J]. Phys. Chem. Chem. Phys., 2003, 5(22):5149-5153
    119. Majzoub E. H., Herberg J. L., Stumpf R., et al. XRD and NMR investigation of Ti-compound formation in solution-doping of sodium aluminum hydrides: solubility of Ti in NaAlH4 crystals grown in THF [J]. J. Alloys Comp., 2005, 394(1-2):265-270
    120. Brinks H. W., Jensen C. M., Srinivasan S. S., et al. Synchrotron X-ray and neutron diffraction studies of NaAlH4 containing Ti additives [J]. J. Alloys Comp., 2004, 376(1-2):215-221
    121. Sun D., Kiyobayashi T., Takeshita H. T., et al. X-ray diffraction studies of titanium and zirconium doped NaAlH4: elucidation of doping induced structural changes and their relationship to enhanced hydrogen storage properties [J]. J. Alloys Comp., 2002, 337(1-2):L8-L11
    122. Fichtner M., Canton P., Kircher O., et al. Nanocrystalline alanates--Phase transformations, and catalysts [J]. J. Alloys Comp., 2005, 404-406:732-737
    123. Léon A., Schild D., Fichtner M. Chemical state of Ti in sodium alanate doped with TiCl3 using X-ray photoelectron spectroscopy [J]. J. Alloys Comp., 2005, 404-406:766-770
    124. Leon A., Kircher O., Fichtner M., et al. Evolution of the Local Structure around Ti Atoms in NaAlH4 Doped with TiCl3 or Ti13*6THF by Ball Milling Using X-ray Absorption and X-ray Photoelectron Spectroscopy [J]. J. Phys. Chem. B, 2006, 110(3):1192-1200
    125. Balde C. P., Stil H. A., vanderEerden A. M. J., et al. Active Ti Species in TiCl3-Doped NaAlH4. Mechanism for Catalyst Deactivation [J]. J. Phys. Chem. C, 2007, 111(6):2797-2802
    126. Kuba M. T., Eaton S. S., Morales C., et al. Characterization of titanium dopants in sodium alanate by electron paramagnetic resonance spectroscopy [J]. J. Mat. Res., 2005, 20(12):3265-3269
    127.í?iguez J., Yildirim T., Udovic T. J., et al. Structure and hydrogen dynamics of pure and Ti-doped sodium alanate [J]. Phys. Rev. B, 2004, 70(6):060101
    128.í?iguez J., Yildirim T. First-principles study of Ti-doped sodium alanate surfaces [J]. Appl. Phys. Lett., 2005, 86(10):103109-103103
    129. Bai K., Wu P. Role of Ti in the reversible dehydrogenation of Ti-doped sodium alanate [J]. Appl. Phys. Lett., 2006, 89(20):201904-201903
    130. Lovvik O. M., Opalka S. M. Stability of Ti in NaAlH4 [J]. Appl. Phys. Lett., 2006, 88(16):161917-161913
    131. L?vvik O. M., Opalka S. M. Density functional calculations of Ti-enhanced NaAlH4 [J]. Phys. Rev. B, 2005, 71(5):054103
    132. Liu J. J., Ge Q. F. A precursor state for formation of TiAl3 complex in reversible hydrogen desorption/adsorption from Ti-doped NaAlH4 [J]. Chem. Comm., 2006, 17:1822-1824
    133. Liu J. J., Ge Q. F. A first-principles analysis of hydrogen interaction in Ti-doped NaAlH4 surfaces: Structure and energetics [J]. J. Phys. Chem. B, 2006, 110(51):25863-25868
    134. Liu J. J., Han Y., Ge Q. F. Effect of Doped Transition Metal on Reversible Hydrogen Release/Uptake from NaAlH4 [J]. Chem. Eur. J., 2009, 15(7):1685-1695
    135. Marashdeh A., Olsen R. A., Lovvik O. M., et al. NaAlH4 Clusters with Two Titanium Atoms Added [J]. J. Phys. Chem. C, 2007, 111(23):8206-8213
    136. Bai K., Yeo P. S. E., Wu P. Reversible Catalytic Reactions and the Stability of Ti Surface Defects in NaAlH4 [J]. Chem. Mater., 2008, 20(24):7539-7544
    137. Marashdeh A., Olsen R. A., Lovvik O. M., et al. Density functional theory study of the TiH2 interaction with a NaAlH4 cluster [J]. J. Phys. Chem. C, 2008, 112(40):15759-15764
    138. Symeonides C. I. Defect volume for Schottky defect formation and cation vacancy migration in LiH [J]. J. Alloys Comp., 2009, 478(1-2):820-822
    139. Balde Cornelis P., van der Eerden A. M. J., Stil H. A., et al. On the local structure of Ti during in situ desorption of Ti(OBu)4 and TiCl3 doped NaAlH4 [J]. J. Alloys Comp., 2007, 446-447:232-236
    140. Leon A., Kircher O., Rothe J., et al. Chemical State and Local Structure around Titanium Atoms in NaAlH4 Doped with TiCl3 Using X-ray Absorption Spectroscopy [J]. J. Phys.Chem. B, 2004, 108(42):16372-16376
    141. Graetz J., Reilly J. J., Johnson J., et al. X-ray absorption study of Ti-activated sodium aluminum hydride [J]. Appl. Phys. Lett., 2004, 85(3):500-502
    142. Felderhoff M., Klementiev K., Grunert W., et al. Combined TEM-EDX and XAFS studies of Ti-doped sodium alanate [J]. Phys. Chem. Chem. Phys., 2004, 6(17):4369-4374
    143. Leon A., Rothe J., Fichtner M. Variation and Influence of the Local Structure around Ti in NaAlH4 Doped with a Ti-Based Precursor [J]. J. Phys. Chem. C, 2007, 111(44):16664-16669
    144. Ignatov A. Y., Graetz J., Chaudhuri S., et al. Spatial configurations of Ti- and Ni- species catalyzing complex metal hydrides: X-ray absorption studies and first-principles DFT and MD calculations [J]. X-Ray Absorption Fine Structure-XAFS13, 2007, 882:642-644
    145. Thomas G. J., Gross K. J., Yang N. Y. C., et al. Microstructural characterization of catalyzed NaAlH4 [J]. J. Alloys Comp., 2002, 330-332:702-707
    146. Andrei, C. M., Walmsley, J. C.,Brinks, H. W. et al. Electron-microscopy studies of NaAlH4 withTiF3 additive hydrogen-cycling effects [J]. Appl. Phys. A, 2005, 80:709-715
    147. Haiduc A. G., Stil H. A., Schwarz M. A., et al. On the fate of the Ti catalyst during hydrogen cycling of sodium alanate [J]. J. Alloys Comp., 2005, 393(1-2):252-263
    148. Herberg J. L., Maxwell R. S., Majzoub E. H. 27Al and 1H MAS NMR and 27Al multiple quantum studies of Ti-doped NaAlH4 [J]. J. Alloys Comp., 2006, 417(1-2):39-44
    149. Graham D. D., Culnane L. F., Sulic M., et al. Ti EELS standards for identification of catalytic species in NaAlH4 hydrogen storage materials [J]. J. Alloys Comp., 2007, 446-447:255-259
    150. Viktor P. Balema, Balema L. Missing pieces of the puzzle or about some unresolved issues in solid state chemistry of alkali metal aluminohydrides [J]. Phys. Chem. Chem. Phys., 2005, 7(6):1310-1314
    151. Xiao X., Chen L., Wang X., et al. The hydrogen storage properties and microstructure of Ti-doped sodium aluminum hydride prepared by ball-milling [J]. Int. J. Hydrogen Energy, 2007, 32(13):2475-2479
    152. Moon K. I., Lee K. S. Development of nanocrystalline Al-Ti alloy powders by reactive ball milling [J]. J. Alloys Comp., 1998, 264(1-2):258-266
    153. Qiu C., Opalka S. M., L?vvik O. M., et al. Thermodynamic modeling of the Na-Al-Ti-H system and Ti dissolution in sodium alanates [J]. Calphad, 2008, 32(4):624-636
    154. Singh S., Eijt S. W. H., Huot J., et al. The TiCl3 catalyst in NaAlH4 for hydrogen storageinduces grain refinement and impacts on hydrogen vacancy formation [J]. Acta Mater., 2007, 55(16):5549-5557
    155. Palumbo O., Paolone A., Cantelli R., et al. Fast H-vacancy Dynamics during Alanate Decomposition by Anelastic Spectroscopy. Proposition of a Model for Ti-enhanced Hydrogen Transport [J]. J. Phys. Chem. B, 2006, 110(18):9105-9111
    156. Palumbo O., Cantelli R., Paolone A., et al. Point Defect Dynamics and Evolution of Chemical Reactions in Alanates by Anelastic Spectroscopy [J]. J. Phys. Chem. B, 2004, 109(3):1168-1173
    157. Cantelli R., Palumbo O., Paolone A., et al. Dynamics of defects in alanates [J]. J. Alloys Comp., 2007, 446-447:260-263
    158. Vegge T. Equilibrium structure and Ti-catalyzed H2 desorption in NaAlH4 nanoparticles from density functional theory [J]. Phys. Chem. Chem. Phys., 2006, 8
    159. Chaudhuri S., Muckerman J. T. First-Principles Study of Ti-Catalyzed Hydrogen Chemisorption on an Al Surface: A Critical First Step for Reversible Hydrogen Storage in NaAlH4 [J]. J. Phys. Chem. B, 2005, 109(15):6952-6957
    160. Du A. J., Smith S. C., Lu G. Q. The catalytic role of an isolated-Ti atom in the hydrogenation of Ti-doped Al(001) surface: An ab initio density functional theory calculation [J]. Chem. Phys. Lett., 2007, 450(1-3):80-85
    161. Blomqvist A., Araujo C. M., Jena P., et al. Dehydrogenation from 3d-transition-metal- doped NaAlH4: Prediction of catalysts [J]. Appl. Phys. Lett., 2007, 90(14):141904-141903
    162. Chen J., Kuriyama N., Xu Q., et al. Reversible Hydrogen Storage via Titanium- Catalyzed LiAlH4 and Li3AlH6 [J]. J. Phys. Chem. B, 2001, 105(45):11214-11220
    163. Blanchard D., Brinks H. W., Hauback B. C. Isothermal decomposition of LiAlD4 [J]. J. Alloys Comp., 2006, 416(1-2):72-79
    164. Kircher O., Fichtner M. Hydrogen exchange kinetics in NaAlH4 catalyzed in different decomposition states [J]. J. Appl. Phys. , 2004, 95(12):7748-7753
    165. Andreasen A. Effect of Ti-doping on the dehydrogenation kinetic parameters of lithium aluminum hydride [J]. J. Alloys Comp., 2006, 419(1-2):40-44
    166. Sandrock G., Gross K., Thomas G. Effect of Ti-catalyst content on the reversible hydrogen storage properties of the sodium alanates [J]. J. Alloys Comp., 2002, 339(1-2):299-308
    167. Gunaydin H., Houk K. N., Ozolins V. Vacancy-mediated dehydrogenation of sodium alanate [J]. Proc. Nat. Acad. Sci., 2008, 105(10):3673-3677
    168. Chaudhuri S., Graetz J., Ignatov A., et al. Understanding the Role of Ti in Reversible Hydrogen Storage as Sodium Alanate: A Combined Experimental and Density Functional Theoretical Approach [J]. J. Am. Chem. Soc., 2006, 128(35):11404-11415
    169. Yin L. C., Wang P., Kang X. D., et al. Functional anion concept: effect of fluorine anion on hydrogen storage of sodium alanate [J]. Phys. Chem. Chem. Phys., 2007, 9(12):1499-1502
    170. Wilson-Short G. B., Janotti A., Peles A., et al. First-principles Investigations of F and Cl Impurities in NaAlH4 [J]. J. Alloys Comp., In Press
    171. Sun T., Huang C. K., Wang H., et al. The effect of doping NiCl2 on the dehydrogenation properties of LiAlH4 [J]. Int. J. Hydrogen Energy, 2008, 33(21):6216-6221
    172. Wagemans R. W. P., van Lenthe J. H., de Jongh P. E., et al. Hydrogen Storage in Magnesium Clusters: Quantum Chemical Study [J]. J. Am. Chem. Soc., 2005, 127(47):16675-16680
    173. Xie L., Zheng J., Liu Y., et al. Synthesis of Li2NH Hollow Nanospheres with Superior Hydrogen Storage Kinetics by Plasma Metal Reaction [J]. Chem. Mater., 2007, 20(1):282-286
    174. Zaluska A., Zaluski L., Strom-Olsen J. O. Sodium alanates for reversible hydrogen storage [J]. J. Alloys Comp., 2000, 298(1-2):125-134
    175. Zheng S., Fang F., Zhou G., et al. Hydrogen Storage Properties of Space-Confined NaAlH4 Nanoparticles in Ordered Mesoporous Silica [J]. Chem. Mater., 2008, 20(12):3954-3958
    176. BaldéC. P., Hereijgers B. P. C., Bitter J. H., et al. Facilitated Hydrogen Storage in NaAlH4 Supported on Carbon Nanofibers [J]. Angew. Chem. Int. Ed., 2006, 45
    177. Balde C. P., Hereijgers B. P. C., Bitter J. H., et al. Sodium Alanate Nanoparticles-Linking Size to Hydrogen Storage Properties [J]. J. Am. Chem. Soc., 2008, 130(21):6761-6765
    178. Gross A. F., Vajo J. J., Van Atta S. L., et al. Enhanced Hydrogen Storage Kinetics of LiBH4 in Nanoporous Carbon Scaffolds [J]. J. Phys. Chem. C, 2008, 112(14):5651-5657
    179. Cahen S., Eymery J. B., Janot R., et al. Improvement of the LiBH4 hydrogen desorption by inclusion into mesoporous carbons [J]. Journal of Power Sources, 2009, 189(2):902-908
    180. Yoo Y., Tuck M., Kondakindi R., et al. Enhanced hydrogen reaction kinetics of nanostructured Mg-based composites with nanoparticle metal catalysts dispersed on supports [J]. J. Alloys Comp., 2007, 446-447:84-89
    181. Chen C.-W., Chen C.-Y., Huang Y.-H. Method of preparing Ru-immobilizedpolymer-supported catalyst for hydrogen generation from NaBH4 solution [J]. Int. J. Hydrogen Energy, 2009, 34(5):2164-2173
    182. Zhao J., Ma H., Chen J. Improved hydrogen generation from alkaline NaBH4 solution using carbon-supported Co-B as catalysts [J]. Int. J. Hydrogen Energy, 2007, 32(18):4711-4716
    183. Wang J., Li H., Wang S., et al. The desorption kinetics of the Mg(NH2)2 + LiH mixture [J]. Int. J. Hydrogen Energy, 2009, 34(3):1411-1416
    184. Gross K. J., Chartouni D., Leroy E., et al. Mechanically milled Mg composites for hydrogen storage: the relationship between morphology and kinetics [J]. J. Alloys Comp., 1998, 269(1-2):259-270
    185. Zhu M., Gao Y., Che X. Z., et al. Hydriding kinetics of nano-phase composite hydrogen storage alloys prepared by mechanical alloying of Mg and MmNi5-x(CoAlMn)x [J]. J. Alloys Comp., 2002, 330-332:708-713
    186. Chen P., Xiong Z., Luo J., et al. Interaction of hydrogen with metal nitrides and imides [J]. Nature, 2002, 420(6913):302-304
    187. Vajo J. J., Skeith S. L., Mertens F. Reversible Storage of Hydrogen in Destabilized LiBH4 [J]. J. Phys. Chem. B, 2005, 109(9):3719-3722
    188. Opalka S. M., Lovvik O. M., Brinks H. W., et al. Integrated Experimental-Theoretical Investigation of the Na-Li-Al-H System [J]. Inorg. Chem., 2007, 46(4):1401-1409
    189. Fossdal A., Brinks H. W., Fonnelop J. E., et al. Pressure-composition isotherms and thermodynamic properties of TiF3-enhanced Na2LiAlH6 [J]. J. Alloys Comp., 2005, 397(1-2):135-139
    190. Nakamura Y., Fossdal A., Brinks H. W., et al. Characterization of Al-Ti phases in cycled TiF3-enhanced Na2LiAlH6 [J]. J. Alloys Comp., 2006, 416(1-2):274-278
    191. Chen Y., Wu C.-Z., Wang P., et al. Structure and hydrogen storage property of ball-milled LiNH2/MgH2 mixture [J]. Int. J. Hydrogen Energy, 2006, 31(9):1236-1240
    192. Luo W. (LiNH2-MgH2): a viable hydrogen storage system [J]. J. Alloys Comp., 2004, 381(1-2):284-287
    193. Chen Y., Wang P., Liu C., et al. Improved hydrogen storage performance of Li-Mg-N-H materials by optimizing composition and adding single-walled carbon nanotubes [J]. Int. J. Hydrogen Energy, 2007, 32(9):1262-1268
    194. Zuttel A. Materials for hydrogen storage [J]. Mater. Today, 2003, 6(9):24-33
    195.Flanagan T. B., Oates W. A. Some thermodynamic aspects of metal hydrogen systems [J]. J. Alloys Comp., 2005, 404-406:16-23
    196. Alapati S. V., Johnson J. K., Sholl D. S. Using first principles calculations to identify new destabilized metal hydride reactions for reversible hydrogen storage [J]. Phys. Chem. Chem. Phys., 2007, 9(12):1438-1452
    197. Hohenberg P., Kohn W. Inhomogeneous Electron Gas [J]. Phys. Rev., 1964, 136:B864
    198. Kohn W., Sham L. J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Phys. Rev., 1965, 140:A1133
    199. Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev. B, 1990, 41:7892
    200. Segall M. D., Lindan P. J. D., Probert M. J., et al. First-principles simulation: ideas, illustrations and the CASTEP code [J]. J. Phys.: Condens. Matter, 2002, 14(11):2717-2744
    201. Perdew J. P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev. B, 1992, 45:13244
    202. Monkhorst H. J., Pack J. D. Special points for Brillouin-zone integrations [J]. Phys. Rev. B, 1976, 13:5188
    203. Turley J. W., Rinn H. W. Crystal structure of aluminum hydride [J]. Inorg. Chem., 2002, 8(1):18-22
    204. Ozolins V., Majzoub E. H., Udovic T. J. Electronic structure and Rietveld refinement parameters of Ti-doped sodium alanates [J]. J. Alloys Comp., 2004, 375(1-2):1-10
    205. Shull C. G., Wollan E. O., Morton G. A., et al. Neutron Diffraction Studies of NaH and NaD [J]. Phys. Rev., 1948, 73:842-847
    206. Sklar N., Post B. Crystal structure of lithium aluminum hydride [J]. Inorg. Chem., 2002, 6(4):669-671
    207. Chung S.-C., Morioka H. Thermochemistry and crystal structures of lithium, sodium and potassium alanates as determined by ab initio simulations [J]. J. Alloys Comp., 2004, 372(1-2):92-96
    208. Vidal J. P., Vidal-Valat G. Accurate Debeye-Waller Factors of 7LiH and 7LiD by Neutron [J]. Acta Crystallographica B, 1986, 42:131-137
    209. Ehrenberg H., Pauly H., Knapp M., et al. Tetragonal low-temperature structure of LiAl [J]. J. Solid State Chem., 2004, 177(1):227-230
    210. Orimo S. i., Nakamori Y., Eliseo J. R., et al. Complex Hydrides for Hydrogen Storage [J]. Chem. Rev., 2007, 107(10):4111-4132
    211. Luo W., Gross K. J. A kinetics model of hydrogen absorption and desorption in Ti-doped NaAlH4 [J]. Journal of Alloys and Compounds, 2004, 385(1-2):224-231
    212. Tai S. private communication.
    213. Morioka H., Kakizaki K., Chung S.-C., et al. Reversible hydrogen decomposition of KAlH4 [J]. J. Alloys Comp., 2003, 353(1-2):310-314
    214. Sornadurai D., Panigrahi B., Ramani. Electronic structure, hydrogen site occupation and phase stability of Ti3Al upon hydrogenation [J]. J. Alloys Comp., 2000, 305(1-2):35-42
    215. Maeland A. j., Hauback B., Fjellvag H., et al. The structures of hydride phases in the Ti3Al/H system [J]. Int. J. Hydrogen Energy, 1999, 24(2-3):163-168
    216. Ito K., Okabe Y., Zhang L. T., et al. Reversible hydrogen absorption/desorption and related phase transformations in a Ti3Al alloy with the stoichiometry composition [J]. Acta Mater., 2002, 50(19):4901-4912
    217. Schwartz D. S., Yelon W. B., Berliner R. R., et al. A novel hydride phase in hydrogen charged Ti3Al [J]. Acta Metallurgica et Materialia, 1991, 39(11):2799-2803
    218. Barin. Thermochemical Data of Pure Substances [M]. WILEY-VCH Verlag GmbH, 1995.
    219. De Boer F. R., Boom R., Mattens W. C. M., et al. Cohension in Metals—Transition metal alloys[M]. North-Holland Physics Publiching Elservier Science Publishers B. V., 1988.
    220. Fukai Y. The Metal–Hydrogen System Basic Bulk Properties[M]. Springer-Verlag Berlin Heidelberg Printed in Germany., 2005
    221. Liu J., Ge Q. A first-principles study of Sc-doped NaAlH4 for reversible hydrogen storage [J]. J. Alloys Comp., 2007, 446-447:267-270
    222. Ojwang J. G. O., van Santen R., Ramer G. J., et al. An ab initio study of possible pathways in the thermal decomposition of NaAlH4 [J]. J. Solid State Chem., 2008, 181(11):3037-3043
    223. Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals [J]. Phys. Rev. B, 1993, 47:558
    224. Kresse G., Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Comput. Mater. Sci., 1996, 6(1):15-50
    225. Perdew J. P., Chevary J. A., Vosko S. H., et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation [J]. Phys. Rev. B, 1992, 46(11):6671
    226. Persson C., Zhao Y.-J., Lany S., et al. n -type doping of CuInSe2 and CuGaSe2 [J]. Phys. Rev. B, 2005, 72:035211
    227. Zhang S. B., Northrup J. E. Chemical potential dependence of defect formation energies in GaAs: Application to Ga self-diffusion [J]. Phys. Rev. Lett., 1991, 67(17):2339
    228.Van de Walle C. G., Neugebauer J. First-principles calculations for defects and impurities: Applications to III-nitrides [J]. J. Appl. Phys. , 2004, 95(8):3851-3879
    229. Ashcraft N. W., Mermin N. D. Solid State Physics[M]. Saunder Colledge: Harcourt Colledge Publisher, 1976.
    230. Schulze P. D., Hardy J. R. Schottky Defects in Alkali Halides [J]. Phys. Rev. B, 1972, 5:3270
    231. Vajeeston P., Ravindran P., Vidya R., et al. Pressure-induced phase of NaAlH4: A potential candidate for hydrogen storage [J]. Appl. Phys. Lett., 2003, 82(14):2257-2259

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700