水溶液中咪唑类表面活性离子液体和聚合物之间的相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面活性剂和高聚物混合水溶液在洗涤剂、食品、感光材料、涂料、化妆品、药物、采矿和采油等诸多领域发挥着重要作用。这类体系同时还可看作是生物过程的简化模型,因此研究该类体系有助于明确生物过程中复杂的相互作用,有利于寻找到新颖的“软”材料,得到在药物缓释、环境保护和人造器官等方面具有重要用途的凝胶。
     本论文的研究将近年来广泛研究的表面活性离子液体与高分子体系结合起来。通过改变各种影响因素,研究复合体系在水中的聚集行为。结合微量热(ITC)、电导率、表面张力、浊度以及流变等方法,得到表面活性剂和高聚物体系的聚集性质,复合物结构及相应的一些热力学函数。论文内容主要包括以下三个部分:
     1.对1-十二烷基-3-甲基溴化咪唑(C12mimBr)和羧甲基纤维素钠(NaCMC)水溶液体系复合物形成的研究。研究内容包括两个方面:无机盐NaBr的加入对体系复合物形成的影响;聚电解质浓度对体系复合物形成的影响。研究表明:
     ①在不同盐的浓度下,具有相反电荷的表面活性剂和聚电解质复合物形成的机理不同。当盐的浓度小于某临界值,体系中形成表面活性剂和聚电解质的复合物。其中表面活性剂在高聚物链上的单体绑定为吸热过程,之后胶束状的表面活性剂/聚电解质聚集体开始形成,体系浊度开始上升。继续增加表面活性剂浓度,表面活性剂自由胶束开始形成,量热曲线上出现突然下降的吸热峰,并在表面张力曲线上出现平台。之后浊度曲线上出现最大值意味着表面活性剂在聚电解质链上吸附饱和。当盐的浓度大于某临界值,由于表面活性剂和聚电解质之间的作用被盐完全屏蔽,表面活性剂和聚电解质聚集体不再形成,只能在溶液中形成表面活性剂自由胶束。
     ②在低的表面活性剂浓度下,单体表面活性剂通过静电吸引吸附在聚电解质链上为吸热过程。在稍高的表面活性剂浓度下,表面活性剂单体通过疏水作用在聚电解质链上形成胶束状聚集体为放热过程。流变测定证实在体系中可以形成以高聚物为连接的交联网络结构。继续增加表面活性剂的浓度,更多的复合物形成从而导致相分离。体系中高聚物浓度的增加,导致C12mimBr在NaCMC链上的单体吸附明显增强,而高聚物诱导的胶束状聚集体的形成因此受到影响,CAC变大。
     2.对两类离子液型表面活性剂1-烷基-3-甲基溴化咪唑(CnmimBr, n=8,10,12,14,16)和N-烷基-N-甲基溴化吡咯(CnMPB,n=12,14,16),与三种高聚物之间的相互作用研究,高聚物包括PEO13-PPO30-PEO13(L64)、PEO79-PPO30-PEO79(F68)以及NaCMC。研究内容包括表面活性剂链长、头基、高聚物类型和疏水链长对复合体系相互作用的影响。研究表明:
     加入CnmimBr或CnMPB(除了C8mimBr)到L64或者F68溶液中,复合物的形成由表面活性剂单体和PPO链节之间的疏水作用导致,因此表面活性剂和共聚物之间相互作用的强度随着表面活性剂或者共聚物疏水链长的增强而增强,但是表面活性剂头基不同对其影响很小。在NaCMC存在的体系中,CnmimBr或CnMPB(除了C8mimBr)单体通过静电和疏水作用强烈的绑定在NaCMC链上,其相互作用强度强烈依赖于表面活性剂烷基链长度。CnMPB与NaCMC之间的静电绑定作用要强于CnmimBr-NaCMC体系。对于CgmimBr来说,除了能通过静电作用在NaCMC链上单体吸附,胶束状C8mimBr-聚合物聚集体不能形成,在溶液中只有自由胶束形成过程。
     3.外加盐诱导长链咪唑类离子液体在水中形成蠕虫状胶束的胶束生成热研究。以长链咪唑类离子液体C16mimBr的对甲苯磺酸钠(NaTos)水溶液或者水杨酸钠(NaSal)水溶液为研究体系。研究表明:
     通过C16mimBr体系中表观摩尔焓随着NaTos或NaSal浓度的变化曲线得到胶束稀释焓以及球状到蠕虫状胶束的转化焓。蠕虫状胶束的形成焓(ΔHW)为球形胶束形成焓(ΔHm)和球形到蠕虫状胶束的转化焓(ΔHtra)之和。C16mimBr/NaTos体系中蠕虫状胶束的形成过程为放热过程,AHw为负值,该过程主要由表面活性剂烷基链之间的疏水作用和C16mim+和Tos离子之间的静电吸引作用共同控制,且为熵焓共驱过程;而C16mimBr/NaSal体系中蠕虫状胶束的形成过程为吸热过程,归结于氢键的破坏和重建,该过程为熵驱过程。而且Sal的平面结构会导致C16mimBr/NaSal蠕虫状胶束体系有更加紧密的结构从而具有较高的黏度。
The surfactant/polymer mixed aqueous solution can play important role in detergency, foods, sensitive material, paint, cosmetics, pharmaceuticals, mining and oil recovery, etc. Simultaneously, this kind of system can be regarded as the simplified model of bioprocess which determines the corresponding complicated interaction. Thus this is helpful to find the novel "soft" material to obtain the important gel which has potential applications in drug release, environmental protection and artificial crgan, etc.
     This dissertation is focused on the interaction of surface active ionic liquid and polymer through changing the various influencing factors. Combining the isothermal titration microcalorimetry (ITC), conductivity, surface tension, turbidity and rheology measurements, the aggregation behaviour, the microstructures of the complexs and the corresponding thermodynamical parameters were obtained. There are three main parts in this dissertation as follows.
     1. The effect of NaBr and the polyelectrolyte concentration on the complex formation between 1-dodecyl-3-methylimidazolium bromide (C12mimBr) and sodium carboxymethylcellulose (NaCMC) has been studied. Following results were obtained.
     ①The mechanism for surfactant/polyelectrolyte complex formation is found to be different at various salt concentrations. When the salt concentration is lower than the critical value, the surfactant/polyelectrolyte complex can be formed in this system. The binding process corresponding to surfactant monomers to polymer chain is endothermic. Then the micelle-like surfactant/polyelectrolyte aggregates begin to form and the turbidity increases accordingly. Further addition of surfactant, the formation of free micelles induces a second sharp endothermic peak in the enthalpy curves and the beginning of the plateau region of the surface tension curves. Thereafter, the polyelectrolyte chains are saturated with surfactant micelles as determined by the maximum values of the turbidity curve. When the salt concentration is higher than the critical value, no surfactant/polyelectrolyte complex forms in the solution and only surfactant free micelles can be formed due to the complete salt screening.
     ②At the lower surfactant concentration, the monomeric surfactant adsorbs on the polyelectrolyte chains through electrostatic attraction, appearing as endothermic process. While at the higher surfactant concentration, surfactant monomers bind to the NaCMC chains to form micelle-like aggregates through the hydrophobic force and the surfactant micelles behave as a physical cross-linking to bind to polyelectrolyte chains corresponding to exothermic action. The rheological measurement verifies this interpolymer cross-linking network. With further increase of surfactant concentration, more surfactant/polyelectrolyte complexes are formed and lead to the phase separation. Increasing polymer concentration, the interaction of monomeric surfactant binds on the NaCMC chains becomes gradually stronger and the polymer-induced micelle-like aggregates formation is influenced, which resulted in larger CAC.
     2. The effects of different surfactant headgroup and alkyl chain, and the different polymer type and hydrophobicity on the interaction of a series of cationic surfactants 1-alkyl-3-methylimidazolium bromide (CnmimBr, n=8,10,12,14, 16) and N-alkyl-N-methylpyrrolidinium bromide (CnMPB, n=12,14,16) with nonionic triblock copolymers (PEOnPPOmPEOn) and NaCMC in aqueous solution have been investigated. Following results were obtained.
     The addition of CnmimBr or CnMPB (except C8mimBr) to L64 or F68 solutions induces the formation of surfactant-copolymer complexes by hydrophobic interaction between the surfactant monomers and the PPO segments. The intensity of surfactant-copolymer interaction increases with the increasing hydrophobicity of the surfactant or copolymer, and it is not affected by the different surfactant headgroup. In the presence of NaCMC, CnmimBr or CnMPB (except C8mimBr) monomers can strongly associate with NaCMC chains due to electrostatic attraction and hydrophobic interaction, but interacting characteristics are strongly dependent on the alkyl chain length of the surfactant. The electrostatic and binding interactions of CnMPB molecules on NaCMC chains are stronger than that of CnmimBr with the same alkyl chain. In the case of CgmimBr, except the monomers can bind to NaCMC chains through electrostatic attraction, the micelle-like surfactant-polymer clusters can not be formed and only surfactant micellization occurs.
     3. The enthalpy change of salt-induced wormlike micelle formation has been measured. The studied systems include C16mimBr/NaTos and C16mimBr/NaSal. Following results were obtained.
     The observed molar enthalpies of C16mimBr aqueous solutions as a function of NaTos or NaSal concentration not only allow the determination of the enthalpy of micelle dilution, but also the enthalpy change corresponding to the spherical to wormlike transition. The enthalpy change value of wormlike micelle formation (△Hw) was equal to the sum of the enthalpy of micelle formation (△Hm) and the transformation enthalpy (△Htra).The value of△Hw is negative in C16mimBr/NaTos system, and this exothermic phenomenon in the formation of wormlike micelles is mainly caused by the hydrophobic interaction between surfactant tails and the electrostatic attraction between Tos- and C16mim+; while the wormlike micelle formation is endothermic in the C16mimBr/NaSal system, attributing to the disruption and rebuilding of hydrogen bonds. In addition, the planar structure of Sal- induces the wormlike micelle a more tight structure with higher viscosity.
引文
[1]Goddard E D, Ananthapadmanaban K P. Interactions of surfactants with polymer and proteins [M]. CRC Press, Boca, Raton, FL,1993.
    [2]Kwak J C T. Polymer surfactant systems [M]. Surfactant Science Series Vol 77, Marcel Dekker, New York,1998.
    [3]Holmberg K, Jonsson B, Kronberg B, Lindman B. Surfactant and polymers in aqueous solution [M]. John Wiley & Sons,2002.
    [4]Langevin D. Complexation of oppsitely charged polyelectrolytes and surfactants in aqueous solutions [J]. Adv Colloid Interface Sci,2009,147-148: 170-177.
    [5]Bijma K, Engberts Jan B F N. Thermodynamics of micelle formation by 1-methyl-4-alkylpyridinium halides [J]. Langmuir,1994,10(8):2578-2582.
    [6]Wang H, Wang Y L, Yan H K, Zhang J, Thomas R K. Binding of sodium dodecyl sulfate with linear and branched polyethyleneimines in aqueous solution at different pH values [J]. Langmuir,2006,22(4):1526-1533.
    [7]Hai M T, Han B X. Study of Interaction between Sodium Dodecyl Sulfate and Polyacrylamide by Rheological and Conductivity Measurements [J]. J Chem Eng Data,2006,51:1498-1451.
    [8]Wang Y L, Lu D, Yan H, Thomas R K. An ESR spin probe study of the interaction between poly(ethylene oxide) and dodecyl sulfate surfactants with different monovalent metal counterions [J]. J Phys Chem B,1997,101(20): 3953-3956.
    [9]Tam K C, Wyn-Jones E. Insights on polymer surfactant complex structures during the binding of surfactants to polymers as measured by equilibrium and structural techniques [J]. Chem Soc Rev,2006,35:693-709.
    [10]Jones M N. The interaction of sodium dedecyl sulfate with polyethylene oxide [J]. J Colloid Interface Sci,1967,23(1):36-42.
    [11]Schwuger M J. Mechanism of interaction between ionic surfactants and polyglycol ethers in water [J]. J Colloid Interface Sci,1973,43(2):491-498.
    [12]Luan Y X, Xu G Y, Yuan S L, Xiao L, Zhang Z Q. Comparative studeis of structurally similar surfactants:sodium bis(2-ethylhexyl) phosphate and sodium bis(2-ethylhexyl) sulfosuccinate [J]. Langmuir,2002,18(22):8700-8705.
    [13]Penfold J, Thomas R K, Zhang X L, Taylor D J F. Nature of amine-surfactant interactions at the air-solution interface [J]. Langmuir,2009,25(7):3972-3980.
    [14]Taylor D J F, Thomas R K, Penfold J. Polymer/surfactant interactions at the air/water interface [J]. Adv Colloid Interface Sci,2007,132:69-110.
    [15]Bain C D, Claesson P M, Langevi D, Meszaros R, Nylande T, Stubenrauch C, Titmuss S, Klitzing R V. Complexes of surfactants with oppositely charged polymers at surfaces and in bulk [J]. Adv Colloid Interface Sci,2010,155: 32-49.
    [16]Penfold J, Thomas R K, Taylor D J F. Polyelectrolyte/surfactant mixtures at the air-solution interface [J]. Curr Opin Colloid Interface Sci,2006,11:337-344.
    [17]Peron N, Meszaros R, Varga I, Gilaayi T. Competitive adsorption of sodilum dodecyl sulfate and polyethylene oxide at the air/water interface [J]. J Colloid Interface Sci,2007,313:389-397.
    [18]Goddard E D. Polymer/surfactant interaction:interfacial aspects [J]. J Colloid Interface Sci,2002,256:228-235.
    [19]Deo P, Jockusch S, Ottaviani M F, Moscatelli A, Turro N J, Somasundaran P. Interactions of hydrophobically modified polymelectrolyres with surfactants of the same charge [J]. Langmuir,2003,19:10747-10752.
    [20]Monteux C, Williams C E, Meunier J, Anthony O, Bergeron V. Adsorption of oppositely charged polyelectrolyte/surfactant complexes at the air/water interface:formation of interfacial gels [J]. Langmuir,2004,20:57-63.
    [21]Monteux C, Llauro M-F, Baigl D, Williams C E, Anthony O, Bergeron V. Interfacial microgels formed by oppositely charged polyelectrolytes and surfactants.1. Influence of polyelectrolyte molecular weight [J]. Langmuir, 2004,20:5358-5366.
    [22]Monteux C, Williams C E, Bergeron V. Interfacial microgels formed by oppositely charged polyelectrolytes and surfactants. Part 2. Influence of surfactant chain length and surfactant/polymer ratio [J], Langmuir,2004,20 (13):5367-5374.
    [23]Taylor D J F, Thomas R K, Penfold J. The adsorption of oppositely charged polyelectrolyte/surfactant mixtures:neutron reflection from dodecyltrimethyl-ammonium bromide/sodium poly(styrenesulfonate) at the air/water interface [J]. Langmuir,2002,18:4748-4757.
    [24]Staples E, Tucker I, Penfold J, Warren N, Thomas R K, Taylor D J F. Organization of polymer-surfactant mixtures at the air-water interface:sodium dodecyl sulfate and poly(dimethyldiallylammonium chloride) [J]. Langmuir, 2002,18:5147-5153.
    [25]Taylor D J F, Thomas R K, Hines J D, Humphreys K, Penfold J. The adsorption of oppositely charged polyelectrolyte/surfactant mixtures at the air/water interface:neutron reflection from Dodecyl Trimethylammonium bromide/ sodium poly(styrenesulfonate) and sodium dodecyl sulfate/poly(vinyl pyridinium chloride) [J]. Langmuir,2002,18:9783-9791.
    [26]Staples E, Tucker I, Penfold J, Warren N, Thomas R K. Organization of polymer-surfactant mixtures at the air-water interface:poly(dimethyldiallyl ammonium chloride), sodium dodecyl sulfate, and hexaethylene glycol monododecyl ether [J]. Langmuir,2002,18(13):5139-5146.
    [27]Bain C D, Claesson P M, Langevin D, Meszaros R, Nylander T, Stubenrauch C, Titmuss S, Klitzing R. Complexes of surfactants with oppositely charged polymers at surface and in bulk [J]. Adv Colloid Interface Sci,2010,155,32-49.
    [28]Penfold J, Tucker I, Thomas R K, Zhang J. Adsorption of polyelectrolyte/ surfactant mixtures at the air-solution interface:poly(ethyleneimine)/sodium dodecyl sulfate [J]. Langmuir,2005,21:10061-10073.
    [29]Penfold J, Taylor D J F, Thomas R K, Tucker I, Thompson L J. Adsorption of polymer/surfactant mixtures at the air-water interface:ethoxylated poly(ethyl eneimine) and sodium dodecyl sulfate [J]. Langmuir,2003,19(19):7740-7745.
    [30]Moglianetti M, Li P X, Malet F L G, Armes S P, Thomas R K, Titmuss S. Interaction of polymer and surfactant at the air water interface: poly(2-(dimethylamino)ethyl methacrylate) and sodium dodecyl sulfate [J]. Langmuir,2008,24:12892-12898.
    [31]Deo P, Deo N, Somasundaran P, Ottaviani M F. Interactions of a hydrophobically modified polymer with oppositely charged surfactants [J]. Langmuir,2007,23:5906-5913.
    [32]Vongsetkul T, Taylor D J F, Zhang J, Li P X, Thomas R K, Penfold J. Interaction of a cationic gemini surfactant with DNA and with sodium poly(styrene sulphonate) at the air/water interface:A neutron reflectometry study [J]. Langmuir,2009,25:4027-4035.
    [33]Dan A, Ghosh S, Moulik S. interaction of cationic hydroxyethylcellulose (JR400) and cationic hydrophobically modified hydroxyethylcellulose (LM200) with the amino-acid based anionic amphiphile sodium N-doducanoyl sarcosinate (SDDS) in aqueous medium [J]. Carbohyd Polymers,2010,80: 44-52.
    [34]Mathot V B F. Calorimetry and Thermal Analysis of Polymers [M]. Hanser Publishers, New York,1994.
    [35]Jelesarov I, Bosshard H R. Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition [J]. J Mol Recognit,1999,12(1):3-18.
    [36]Li Y J, Wang X Y, Wang Y L. Comparative studies on interactions of bovine serum albumin with cationic gemini and single-chain surfactants [J]. J Phys Chem B,2006,110:8499-8505.
    [37]Chakraborty T, Chakraborty I, Moulik S P, Ghosh S. Physicochemical studies on pepsin-CTAB interaction:energetics and structural changes [J]. J Phys Chem B,2007,111:2736-2746.
    [38]Chakraborty T, Chakraborty I, Moulik S P, Ghosh S. Physicochemical and conformational studies on BSA-surfactant interaction in aqueous medium [J]. Langmuir,2009,25:3062-3074.
    [39]Luczak J, Jungnickel C, Joskowska M, Thoming J, Hupka J. Thermodynamics of micellization of imidazolium ionic liquids in aqueous sollutios [J]. J Colloid Interface Sci,2009,336,111-116.
    [40]Wang G, Olofsson G. Ethyl(hydeoxyethyl)cellulose and ionic surfactants in dilute solution. Calorimetric and viscosity atudy of the interaction with SDS and some cationic surfactants [J]. J Phys Chem,1995,99:5588-5596.
    [41]Bloor D M, Holzwarth J F, Wyn-Jones E. Polymer/surfactant interactions. The use of isothermal titration calorimetry and emf measurements in the sodium dodecyl sulfate/poly(N-vinylpyrrolidone) system [J]. Langmuir,1995,11: 2312-2313.
    [42]Wang G, Olofsson G. Titration calorimetric study of the interaction between ionic surfactants and uncharged polymers in aqueous solution [J]. J Phys Chem B,1998,102:9276-9283.
    [43]Torn L H, Keizer A D, Koopal L K, Lyklema J. Titration microcalorimetry of poly(vinylpyrrolidone) and sodium dodecylbenzenesulphonate in aqueous solutions [J]. Colloids Surf A,1999,160:237-246.
    [44]Li Y, Xu R, Bloor D M, Penfold J, Holzwarth J F, Wyn-Jones E. Moderation of the interactions between sodium dodecyl sulfate and poly(vinylpyrrolidone) using the nonionic surfactant hexaethyleneglycol mono-n-dodecyl ether C12EO6: an electromotive force, microcalorimetry, and snall-angle neutron scattering study [J]. Langmuir,2000,16(23):8677-8684.
    [45]Feitosa E, Brown W, Wang K, Barreleiro P C A. Interaction between Poly (ethylene glycol) and C12E8 Investigated by dynamic light scattering, time-resolved fluorescence quenching, and calorimetry [J]. Macromolecules,2002, 35:201-207.
    [46]Dai S, Tam K C. Isothermal titration calorimetry studies of binding interactions between polyethylene glycol and ionic surfactants [J]. J Phys Chem B,2001, 105:10759-10763.
    [47]Bernazzani L, Borsacchi S, Catalano D, Gianni P, Mollica V, Vitelli M, Asaro F, Feruglio L. On the interaction of sodium dodecyl sulfate with oligomers of poly(ethylene glycol) in aqueous solution [J]. J Phys Chem B,2004,108: 8960-8969.
    [48]Gianni P, Bernazzani L, Carosi R, Mollica V. Micellization of lithium perfluoro heptanoate and it aggregation on poly(ethylene glycol) oligomers in water [J]. Langmuir,2007,23:8752-8759.
    [49]Olofsson G, Wang G. Interactions between surfactants and uncharged polymers in aqueous solution studied by microcalorimetry [J]. Pure & Appl Chem,1994, 66(3):527-532.
    [50]Dai S, Tam K C. Isothermal titration calorimetric studies on the temperature dependence of binding interactions between poly(propylene glycol)s and sodium dodecyl sulfate [J]. Langmuir,2004,20:2177-2183.
    [51]Winnik M A, Bystryak S M, Odrobina E. Interaction of PBMA latex particles with nonionic surfactants in aaqueous solution [J]. Langmuir,2000,16: 6118-6130.
    [52]Qiu X M, Wei X L, Yin B L, Sun D Z. Thernodynamics of interaction between sodium bis(2-ethylhexyl) sulfosuccinae and polymers in aqueous solutions by isothermal titration microcalorimetry [J]. J Polymer Sci,2006,44:275-283.
    [53]Wangsakan A, Chinachoti P, McClements D J. Maltodextrin anionic surfactant interactions:isothermal titration calorimetry and surface tension study [J]. J Agric Food Chem,2001,49:5039-5045.
    [54]Wangsakan A, Chinachoti P, McClements D J. Effect of different dextrose equivalent of maltodextrin on the interactions with anionic surfactant in an isothermal titration calorimetry study [J]. J Agric Food Chem,2003,51: 7810-7814.
    [55]Loh W, Teixeira L A C, Lee L-T. Isothermal calorimetric investigation of the interaction of poly(N-isopropylacrylamide) and ionic surfactants [J]. J Phys Chem B,2004,108:3196-3201.
    [56]Bao H Q, Li L, Gan L H, Zhang H B. Interactions between ionic surfactants and polysaccharides in aqueous solutions [J]. Macromolecules,2008,41: 9406-9412.
    [57]Wang C, Tam K C. Interactions between poly(acrylic acid) and sodium dodecyl sulfate:isothermal titration calorimetric and surfactant ion-selective electrode studies [J]. J Phys Chem B,2005,109:5156-5161.
    [58]Wang C, Tam K C. Interaction between polyelectrolyte and oppositely charged surfactant:effect of charge density [J]. J Phys Chem B,2004,108:8976-8982.
    [59]Bai G Y, Santos L, Nichifor M, Lopes A, Bastos M. Thermodynamics of the interaction between a hydrophobically modified polyelectrolyte and sodium dodecyl sulfate in aqueous solution [J]. J Phys Chem B,2004,108:405-413.
    [60]Thalberg K, Lindman B, Bergfeldt K. Phase behavior of systems of polyacrylate and cationic surfactant [J]. Langmuir,1991,7:2893-2898.
    [61]Wang C, Tam K C. New insights on the interaction mechanism within oppositely charged polymer/surfactant systems [J]. Langmuir,2002,18: 6484-6490.
    [62]Deng M L, Cao M W, Wang Y L. Coacervation of cationic gemini surfactant with weakly charged anionic polyacrylamide [J]. J Phys Chem B,2009,113: 9436-9440.
    [63]Lapitsky Y, Parikh M, Kaler E W. Calorimetric determination of surfactant/ polyelectrolyte binding isotherms [J]. J Phys Chem B,2007,111:8379-8387.
    [64]Wang X Y, Li Y J, Li J X, Wang J B, Wang Y L, Guo Z X, Yan H K. Salt effect on the complex formation between polyelectrolyte and oppositely charged surfactant in aqueous solution [J]. J Phys Chem B,2005,109: 10807-10812.
    [65]Chakraborty T, Chakraborty I, Ghosh S. Sodium carboxymethylcellulose-CTAB interaction:a detailed thermodynamic study of polymer-surfactant interaction with opposite charges [J]. Langmuir,2006,22:9905-9913.
    [66]Wang X Y, Wang J B, Wang Y L, Yan H K. Salt effect on the complex formation between cationic gemini surfactant and anionic polyelectrolyte in aqueous solution [J]. Langmuir,2004,20:9014-9018.
    [67]Wang C, Tam K C, Jenkins R D, Tan C B. Interactions between methacrylic acid/ethyl acrylate copolymers and dodecyltrimethylammonium bromide [J]. J Phys Chem B,2003,107:4667-4675.
    [68]Bai G Y, Catita J A M, Nichifor M, Bastos M. Microcalorimetric evidence of hydrophobic interactions between hydrophobically modified cationic polysaccharides and surfactants of the same charge [J]. J Phys Chem B,2007, 111:11453-11462.
    [69]Rigsbee D R, Dubin P L. Microcalorimetry of polyelectrolyte-micelle interactions [J]. Langmuir,1996,12:1928-1929.
    [70]Thongngam M, Mcclements D J. Characterization of interactions between chitosan and an anionic surfactant [J]. J Agric Food Chem,2004,52:987-991.
    [71]Courtois J, Berret J-F. Probing oppositely charged surfactant and copolymer interactions by isothermal titration microcalorimetry [J]. Langmuir,2010, 26(14):11750-11758.
    [72]McClements D J. Isothermal titration calorimetry study of pectin-ionic surfactant interactions [J]. J Agric Food Chem,2000,48:5604-5611.
    [73]Thongngam M, McClements D J. Influence of pH, ionic strength, and temperature on self-association and interactions of sodium dodecyl sulfate in the absence and presence of chitosan [J]. Langmuir,2005,21:79-86.
    [74]Asker D, Weiss J, McClements D J. Analysis of the interactions of a cationic surfactant (lauric arginate) with an anionic biopolymer (pectin):isothermal titration calorimetry, light scattering, and microelectrophoresis [J]. Langmuir, 2009,25:116-122.
    [75]Yang J S, Zhao J Y, Fang Y. Calorimetric studies of the interaction between sodium alginate and sodium dodecyl sulfate in dilute solutions at different pH values [J]. Carbohyd Res,2008,343:719-725.
    [76]Bonnaud M, Weiss J, McClements D J. Interaction of a food-grade cationic surfactant (lauric arginate) with food-grade biopolymers (pectin, carrageenan, xanthan, alginate, dextran, and chitosan) [J]. J Agric Food Chem,2010,58: 9770-9777.
    [77]Bai G Y, Nichifor M, Lopes A, Bastos M. Thermodynamic characterization of the interaction behavior of a hydrophobically modified polyelectrolyte and oppositely charged surfactants in aqueous solution:effect of surfactant alkyl chain length [J]. J Phys Chem B,2005,109:518-525.
    [78]Dai S, Tam K C, Wyn-Jones E, Jenkins R D. Isothermal titration calorimetric and electromotive force studies on binding interactions of hydrophobic ethoxylated urethane and sodium dodecyl sulfate of different molecular masses [J]. J Phys Chem B,2004,108:4979-4988.
    [79]Dai S, Tam K C, Jenkins R D. Binding characteristics of hydrophobic ethoxylated urethane (HEUR) and an anionic surfactant:microcalorimetry and laser light scattering studies [J]. J Phys Chem B,2001,105:10189-10196.
    [80]Fan Y R, Li Y J, Yuan G C, Wang Y L, Wang J B, Han C, Yan H K. Comparative studies on the micellization of sodium bis(4-phenylbutyl) sulfosuccinate and sodium bis(2-ethylhexyl) sulfosuccinate and their interaction with hydrophobically modified poly(acrylamide) [J]. Langmuir,2005,21: 3814-3820.
    [81]Wang X Y, Li Y J, Wang J B, Wang Y L, Ye J P, Yan H K, Zhang J, Thomas R K. Interactions of cationic gemini surfactants with hydrophobically modified poly(acrylamides) studied by fluorescence and microcalorimetry [J]. J Phys Chem B,2005,109:12850-12855.
    [82]Bu H T, Kj(?)niksen A, Elgsaeter A, Nystrom B. Interaction of unmodified and hydrophobically modified alginate with sodium dodecyl sulfate in dilute aqueous solution Calorimetric, rheological, and turbidity studies [J]. Colloids Surf A,2006,278:166-174.
    [83]Onesippe C, Lagerge S. Study of the complex formation between sodium dodecyl sulfate and hydrophobically modified chitosan [J]. Carbohyd Polymers, 2008,74:648-658.
    [84]Li Y, Xu R, Couderc S, Bloor D M, Holzwarth J F, Wyn-Jones E. Binding of tetradecyltrimethylammonium bromide to the ABA block copolymer pluronic F127 (EO97PO69EO97):electromotive force, microcalorimetry, and light scattering studies [J]. Langmuir,2001,17:5742-5747.
    [85]Li Y, Xu R, Bloor D M, Holzwarth J F, Wyn-Jones E. The binding of sodium dodecyl sulfate to the ABA block Copolymer pluronic F127 (EO97PO69EO97): an electromotive force, microcalorimetry, and light scattering investigation [J]. Langmuir,2000,16:10515-10520.
    [86]Li Y, Xu R, Couderc S, Bloor D M, Wyn-Jones E, Holzwarth J F. Binding of sodium dodecyl sulfate (SDS) to the ABA block copolymer pluronic F127 (EO97PO69EO97):F127 aggregation induced by SDS [J]. Langmuir,2001, 17(1):183-188.
    [87]Thurn T, Couderc S, Sidhu J, Bloor D M, Penfold J, Holzwarth J F, Wyn-Jones E. Study of mixed micelles and interaction parameters for ABA triblock copolymers of the type EOmPOnEOm and ionic surfactants:equilibrium and structure [J]. Langmuir,2002,18:9267-9275.
    [88]Dai S, Tam K C, Li L. Isothermal titration calorimetric studies on interactions of ionic surfactant and poly(oxypropylene)-poly(oxyethylene)-poly(oxypropyle ne) triblock copolymers in aqueous solutions [J]. Macromolecules,2001,34: 7049-7055.
    [89]Couderc S, Li Y, Bloor D M, Holzwarth J F, Wyn-Jones E. Interaction between the nonionic surfactant hexaethylene glycol mono-n-dodecyl ether (C12EO6) and the surface active nonionic ABA block copolymer pluronic F127 (EO97PO69EO97) formation of mixed micelles studied using isothermal titration calorimetry and differential scanning calorimetry [J]. Langmuir,2001,17: 4818-4824.
    [90]Lisi R D, Milioto S, Muratore N. Binding of short alkyl chain surfactants to the (ethylene oxide)13-(propylene oxide)30-(ethylene oxide)13 and (ethylene oxide)75 (propylene oxide)3o-(ethylene oxide)75 copolymers studied by microcalorimetry [J]. Macromolecules,2002,35:7067-7073.
    [91]Silva R C, Olofsson G, Schillen K, Loh W. Influence of ionic surfactants on the aggregation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers studied by differential scanning and isothermal titration calorimetry [J]. J Phys Chem B,2002,106:1239-1246.
    [92]Li X F, Wettig S D, Verrall R E. Interactions between 12-EOx-12 gemini surfactants and pluronic ABA block copolymers (F108 and P103) studied by isothermal titration calorimetry [J]. Langmuir,2004,20:579-586.
    [93]Taboada P, Castro E, Mosquera V. Surfactant/nonionic copolymer interaction: A SLS, DLS, ITC, and NMR investigation [J]. J Phys Chem B,2005,109: 23760-23770.
    [94]Yan H, Kawamitsu H, Kushi Y, Kuwajima T, Ishii K, Toshima N. Calorimetric study on interaction of water-soluble copolymers with ionic surfactant [J]. J Colloid Interface Sci,2007,315:94-98.
    [95]Lof D, Niemiec A, Schillen K, Loh W, Olofsson G. A calorimetry and light scattering study of the formation and shape transition of mixed micelles of EO20PO68EO20 triblock copolymer (P123) and nonionic surfactant (C12EO6) [J]. J Phys Chem B,2007,111:5911-5920.
    [96]Niemiec A, Loh W. Interaction of ethylene oxide propylene oxidecopolymers with ionic surfactants studied by calorimetry:random versus block copolymers [J]. J Phys Chem B,2008,112:727-733.
    [97]Sastry N V, Hoffmann H. Interaction of amphiphilic block copolymer micelles with surfactants [J]. Colloids Surf A,2004,250:247-261.
    [98]Goldmints I, Yu G, Booth C, Smith K A, Hatton T A. Structure of (deutrated PEO)-(PPO)-(deutrated PEO) block copolymer micelles as determined by small angle neutron scattering [J]. Langmuir,1999,15(5):1651-1656.
    [99]Ghoreishi S M, Li Y, Holzwarth J F, Khoshdel E, Warr J, Bloor D M, Wyn-Jones E. The interaction between nonionic dendrimers and surfactants-electromotive force and microcalorimetry studies [J]. Langmuir,1999,15: 1938-1944.
    [100]Couderc-Azouani S, Sidhu J, Georgiou T K, Charalambous D C, Vamvakaki M, Patrickios C S, Bloor D M, Penfold J, Holzwarth J F, Wyn-Jones E. Binding of sodium dodecyl sulfate to linear and star homopolymers of the nonionic poly(methoxyhexa(ethylene glycol) methacrylate) and the polycation poly(2-(dimethylamino)ethyl methacrylate):electromotive force, isothermal titration calorimetry, surface tension, and small-angle neutron scattering measurements [J]. Langmuir,2004,20:6458-6469.
    [101]Sidhu J, Bloor D M, Couderc-Azouani S, Penfold J, Holzwarth J F, Wyn-Jones E. Interactions of poly(amidoamine) dendrimers with the surfactants SDS, DTAB, and C12EO6:an equilibrium and structural study using a SDS selective electrode, isothermal titration calorimetry, and small angle neutron scattering [J]. Langmuir,2004,20:9320-9328.
    [102]Wang C, Wyn-Jones E, Sidhu J, Tam K C. Supramolecular complex induced by the binding of sodium dodecyl sulfate to PAMAM dendrimers [J]. Langmuir, 2007,23:1635-1639.
    [103]Jensen L B, Mortensen K, Pavan G M, Kasimova M R, Jensen D K, Gadzhyeva V, Nielsen H M, Foged C. Molecular characterization of the interaction between siRNA and PAMAM G7 dendrimers by SAXS, ITC and molecular dynamic simulations [J]. Biomacromolecules,2010,11,3571-3577.
    [104]Manning G S. Limiting laws and counterion condensation in polyelectrolyte solutions. I. Colligative properties [J]. J Chem Phys,1969,51:924-933.
    [105]Manning G S. Approximate solutions to some problems in polyelectrolyte theory involving nonuniform charge distributions [J]. Macromolecules,2008, 41:6217-6227.
    [106]Manning G S. Counterion condensation on charged apheres, cylinders and planes [J]. J Phys Chem B,2007,111:8554-8559.
    [107]Matsuda T, Annaka M. Salt effect on complex formation of neutral/ polyelectrolyte block copolymers and oppositely charged surfactants [J]. Langmuir,2008,24:5707-5713.
    [108]李汝雄.绿色溶剂一离子液体的合成与应用[M].北京:化学工业出版社,2004.
    [109]Wu J P, Li N, Zheng L Q, Li X W, Gao Y A, Inoue T. Aggregation behavior of polyoxyethylene (20) sorbitan monolaurate (Tween 20) in imidazolium based ionic liquids [J]. Langmuir,2008,24(17):9314-9322.
    [110]Li N, Zhang S H, Zheng L Q, Dong B, Li X W, Yu L. Aggregation behavior of long-chain ionic liquids in an ionic liquid [J]. Phys Chem Chem Phys, 2008,10(30):4375-4377.
    [111]Dong B, Gao Y A, Su Y J, Zheng L Q, Xu J K, Inoue T. Self-aggregation behavior of fluorescent carbazole-tailed imidazolium ionic liquids in aqueous solutions [J]. J Phys Chem B,2010,114,340-348.
    [112]Gao Y A, Zhao X Y, Dong B, Zheng L Q, Li N, Zhang S H. Inclusion complexes of β-cyclodextrin with ionic liquid surfactants [J]. J Phys Chem B, 2006,110:8576-8581.
    [113]Geng F, Zheng L Q, Liu J, Yu L, Tung C. Interaction between a surface active imidazolium ionic liquid and BSA [J]. Colloid Polym Sci,2009,287: 1253-1259.
    [1]Li Y J, Dubin P L. Structure and flow in surfactant solutions, Polymer-surfactant complexes [M]. New York,1994,320-336.
    [2]Kwak J C T. Polymer-surfactant systems [M]. Surfactant science series Vol 77, Marcel Dekker, New York,1998,193-238.
    [3]Wang X Y, Wang J B, Wang Y L, Yan H K. Salt effect on the complex formation between cationic gemini surfactant and anionic polyelectrolyte in aqueous solution [J]. Langmuir,2004,20:9014-9018.
    [4]Pi Y Y, Shang Y Z, Liu H L, Hu Y, Jiang J W. Salt effect on the interactions between gemini surfactant and oppositely charged polyelectrolyte in aqueous solution [J]. J Colloid Interface Sci,2007,306:405-410.
    [5]Matsuda T, Annaka M. Salt effect on complex formation of neutral/ polyelectrolyte block copolymers and oppositely charged surfactants [J]. Langmuir,2008,24:5707-5713.
    [6]Wang X Y, Li Y J, Li J X, Wang J B, Wang Y L, Guo Z X, Yan H K. Salt effect on the complex formation between polyelectrolyte and oppositely charged surfactant in aqueous solution [J]. J Phys Chem B,2005,109:10807-10812.
    [7]Wang C, Tam K C, Jenkins R D, Tan C B. Interactions between methacrylic acid/ethyl acrylate copolymers and dodecyltrimethylammonium bromide [J]. J Phys Chem B,2003,107:4667-4675.
    [8]Wang C, Tam K C. New insights on the interaction mechanism within oppositely charged polymer/surfactant systems [J]. Langmuir,2002,18:6484-6490.
    [9]Wu Q, Du M, Shang Y, Zhou J P, Zheng Q. Investigation on the interaction between C16TAB and NaCMC in semidilute aqueous solution based on rheological measurement [J]. Colloids Surf A,2009,332:13-18.
    [10]Dai S, Tam K C. Isothermal titration calorimetry studies of binding interactions between polyethylene glycol and ionic surfactants [J]. J Phys Chem B,2001,105: 10759-10763.
    [11]Monteux C, Williams C E, Meunier J, Anthony O, Bergeron V. Adsorption of oppositely charged polyelectrolyte/surfactant complexes at the air/water interface: formation of interfacial gels [J]. Langmuir,2004,20:57-63.
    [12]Trabelsi S, Langevin D. Co-adsorption of carboxymethyl-cellulose and cationic surfactants at the air-water interface [J]. Langmuir,2007,23:1248-1252.
    [13]Bell C G, Breward C J W, Howell P D, Penfold J, Thomas R K. Macroscopic modeling of the surface tension of polymer-surfactant systems [J]. Langmuir, 2007,23:6042-6052.
    [14]Mitra D, Bhattacharya S C, Moulik S P. Physicochemical studies on the interaction of gelatin with cationic surfactants alkyltrimethylammonium bromides (ATABs) with special focus on the behavior of the hexadecyl homologue [J]. J Phys Chem B,2008,112:6609-6619.
    [15]Bai G Y, Santos L, Nichifor M, Lopes A, Bastos M. Thermodynamics of the interaction between a hydrophobically modified polyelectrolyte and sodium dodecyl sulfate in aqueous solution [J]. J Phys Chem B,2004,108:405-413.
    [16]Dai S, Tam K C, Jenkins R D. Binding characteristics of hydrophobic ethoxylated urethane (HEUR) and an anionic surfactant:microcalorimetry and laser light scattering studies [J]. J Phys Chem B,2001,105:10189-10196.
    [17]Yang J S, Zhao J Y, Fang Y. Calorimetric studies of the interaction between sodium alginate and sodium dodecyl sulfate in dilute solutions at different pH values [J]. Carbohyd Res,2008,343:719-725.
    [18]Wang G, Olofsson G. Titration calorimetric study of the interaction between ionic surfactants and uncharged polymers in aqueous solution [J]. J Phys Chem B, 1998,102:9276-9283.
    [19]Bao H Q, Li L, Gan L H, Zhang H B. Interactions between ionic surfactants and polysaccharides in aqueous solutions [J]. Macromolecules,2008,41:9406-9412.
    [20]Wang C, Tam K C. Interaction between polyelectrolyte and oppositely charged surfactant:effect of charge density [J]. J Phys Chem B,2004,108:8976-8982.
    [21]Wang H, Wang Y L, Yan H K, Zhang J, Thomas R K. Binding of sodium dodecyl sulfate with linear and branched polyethyleneimines in aqueous solution at different pH values [J]. Langmuir,2006,22(4):1526-1533.
    [22]Deo P, Deo N, Somasundaran P, Ottaviani M F. Interactions of a hydrophobically modified polymer with oppositely charged surfactants [J]. Langmuir,2007,23: 5906-5913.
    [23]Schillen K, Jansson J, LOf D, Costa T. Mixed micelles of a PEO-PPO-PEO triblock copolymer (P123) and a nonionic surfactant (CEO) in water. A dynamic and static light scattering study [J]. J Phys Chem B,2008,112:5551-5562.
    [24]Mezei A, Abraham A, Pojjak K, Meszaros R. The impact of electrolyteon the aggregation of the complexes of hyperbranched poly(ethyleneimine) and sodium dodecyl sulfate [J]. Langmuir,2009,25:7304-7312.
    [25]Asker D, Weiss J, McClements D J. Analysis of the interactions of a cationic surfactant (lauric arginate) with an anionic biopolymer (pectin):isothermal titration calorimetry, light scattering, and microelectrophoresis [J]. Langmuir, 2009,25:116-122.
    [26]Li Y, Ghoreishi S M, Warr J, Bloor D M, Holzwarth J F, Wyn-Jones E. Binding of sodium dodecyl sulfate to some polyethyleneimines and their ethoxylated derivatives at different pH values. Electromotive force and microcalorimetry studies [J]. Langmuir,2000,16:3093-3100.
    [27]Couderc-Azouani S, Sidhu J, Thurn T, Xu R, Bloor D M, Penfold J, Holzwarth J F, Wyn-Jones E. Binding of sodium dodecyl sulfate and hexaethylene glycol mono-n-dodecyl ether to the block copolymer L64:electromotive force, microcalorimetry, surface tension, and small angle neutron scattering investigations of mixed micelles and polymer/micellar surfactant complexes [J]. Langmuir,2005,21:10197-10208.
    [28]Dong B, Li N, Zheng L Q, Yu L, Inoue T. Surface adsorption and micelle formation of surface active ionic liquids in aqueous solution [J]. Langmuir,2007, 23:4178-4182.
    [29]Dong B, Zhao X Y, Zheng L Q, Zhang J, Li N, Inoue T. Aggregation behavior of long-chain imidazolium ionic liquids in aqueous solution:Micellization and characterization of micelle microenvironment [J]. Colloids Surf A,2008,317: 666-672.
    [30]Dong B, Zhang J, Zheng L Q, Wang S Q, Li X W, Inoue T. Salt-induced viscoelastic wormlike micelles formed in surface active ionic liquid aqueous solution [J]. J Colloid Interface Sci,2008,319:338-343.
    [31]Inoue T, Ebina H, Dong B, Zheng L Q. Electrical conductivity study on micelle formation of long-chain imidazolium ionic liquids in aqueous solution [J]. J Colloid Interface Sci,2007,314:236-241.
    [32]Mehnert C P, Cook R A, Dispenziere N C, Afeworki M. Supported ionic liquid catalysis-a new concept for homogeneous hydroformylation catalysis [J]. J Am Chem Soc,2002,124:12932-12933.
    [33]Kosmulski M, Osteryoung R A, Ciszkowska M. Diffusion coefficients of ferrocene in composite materials containing ambient temperature ionic liquids [J]. J Electrochem Soc,2000,147:1454-1458.
    [34]Wang Y, Yang H. Synthesis of CoPt nanorods in ionic liquids [J]. J Am Chem Soc,2005,127:5316-5317.
    [35]Zhao X D, Alper H, Yu Z. Stereoselective hydroxycarbonylation of vinyl bromides to α,β-unsaturated carboxylic acids in the ionic liquid [BMIM]PF6 [J]. J Org Chem,2006,71:3988-3990.
    [36]Kreshech G C, Haragraves W A. Thermometric titration studies of the effect of head group, chain length, solvent, and temperature on the thermodynamics of micelle formation [J]. J Colloid Interface Sci,1974,48:481-493.
    [37]Thongngam M, McClements D J. Influence of pH, ionic strength, and temperature on self-association and interactions of sodium dodecyl sulfate in the absence and presence of chitosan [J]. Langmuir,2005,21:79-86.
    [38]Taylor D J F, Thomas R K, Hines J D, Humphreys K, Penfold J. The adsorption of oppositely charged polyelectrolyte/surfactant mixtures at the air/water interface: neutron reflection from Dodecyl Trimethylammonium bromide/ sodium poly(styrenesulfonate) and sodium dodecyl sulfate/poly(vinyl pyridinium chloride) [J]. Langmuir,2002,18:9783-9791.
    [39]Taylor D J F, Thomas R K, Li P X, Penfold J. Adsorption of oppositely charged polyelectrolyte/surfactant mixtures. Neutron reflection from alkyltrimethyl ammonium bromides and sodium poly(styrenesulfonate) at the air/water interface: the effect of surfactant chain length [J]. Langmuir,2003,19:3712-3719.
    [40]Staples E, Tucker I, Penfold J, Warren N, Thomas R K, Taylor D J F. Organization of polymer-surfactant mixtures at the air-water interface:sodium dodecyl sulfate and poly(dimethyldiallylammonium chloride) [J]. Langmuir, 2002,18:5147-5153.
    [41]Taylor D J F, Thomas R K, Penfold J. Polymer/surfactant interactions at the air/water interface [J]. Adv Colloid Interface Sci,2007,132:69-110.
    [42]Manning G S. Limiting laws and counterion condensation in polyelectrolyte solutions. Ⅰ. Colligative properties [J]. J Chem Phys,1969,51:924-933.
    [43]Trabelsi S, Raspaud E, Langevin D. Aggregate formation in aqueous solutions of carboxymethylcellulose and cationic surfactants [J]. Langmuir,2007,23: 10053-10062.
    [44]Bijma K, Engberts Jan B F N. Thermodynamics of micelle formation by 1-methyl-4-alkylpyridinium halides [J]. Langmuir,1994,10:2578-2582.
    [1]Li Y J, Dubin P L. Structure and flow in surfactant solutions, Polymer-surfactant complexes [M]. New York,1994,320-336.
    [2]Kwak J C T. Polymer-surfactant systems [M]. Surfactant science series Vol 77, Marcel Dekker, New York,1998,193-238.
    [3]Goddard E D. Interactions of surfactants with polymers and proteins [M]. CRC Press, Boca Raton, FL,1993.
    [4]Just E K, Majewicz T G. Encyclopedia of polymer science and engineering [M]. John Wiley and Sons, New York,1985, Vol 3,226.
    [5]Pinkert A, Marsh K N, Pang S, Staiger M P. Ionic liquids and their interaction with cellulose [J]. Chem Rev,2009,109:6712-6728.
    [6]Trabelsi S, Langevin D. Co-adsorption of carboxymethyl-cellulose and cationic surfactants at the air-water interface [J]. Langmuir,2007,23:1248-1252.
    [7]Chakraborty T, Chakraborty I, Ghosh S. Sodium carboxymethylcellulose-CTAB interaction:a detailed thermodynamic study of polymer-surfactant interaction with opposite charges [J]. Langmuir,2006,22:9905-9913.
    [8]Wu Q, Du M, Shang Y, Zhou J P, Zheng Q. Investigation on the interaction between C16TAB and NaCMC in semidilute aqueous solution based on rheological measurement [J]. Colloids Surf A,2009,332:13-18.
    [9]Wang X Y, Li Y J, Li J X, Wang J B, Wang Y L, Guo Z X, Yan H K. Salt effect on the complex formation between polyelectrolyte and oppositely charged surfactant in aqueous solution [J]. J Phys Chem B,2005,109:10807-10812.
    [10]Trabelsi S, Raspaud E, Langevin D. Aggregate formation in aqueous solutions of carboxymethylcellulose and cationic surfactants [J]. Langmuir,2007,23: 10053-10062.
    [11]Yang J S, Zhao J Y, Fang Y. Calorimetric studies of the interaction between sodium alginate and sodium dodecyl sulfate in dilute solutions at different pH values [J]. Carbohyd Res,2008,343:719-725.
    [12]Bao H Q, Li L, Gan L H, Zhang H B. Interactions between ionic surfactants and polysaccharides in aqueous solutions [J]. Macromolecules,2008,41:9406-9412.
    [13]Wang C, Tam K C. Interaction between polyelectrolyte and oppositely charged surfactant:effect of charge density [J]. J Phys Chem B,2004,108:8976-8982.
    [14]Deo P, Deo N, Somasundaran P, Ottaviani M F. Interactions of a hydrophobically modified polymer with oppositely charged surfactants [J]. Langmuir,2007,23: 5906-5913.
    [15]Liu J, Zheng L Q, Sun D Z, Wei X L. Salt effect on the complex formation between 1-dodecyl-3-methylimidazolium bromide and sodium carboxymethyl-cellulose in aqueous solution [J]. Colloids Surf A,2010,358:93-100.
    [16]Dong B, Li N, Zheng L Q, Yu L, Inoue T. Surface adsorption and micelle formation of surface active ionic liquids in aqueous solution [J]. Langmuir,2007, 23:4178-4182.
    [17]Inoue T, Ebina H, Dong B, Zheng L Q. Electrical conductivity study on micelle formation of long-chain imidazolium ionic liquids in aqueous solution [J]. J Colloid Interface Sci,2007,314:236-241.
    [18]Asker D, Weiss J, McClements D J. Analysis of the interactions of a cationic surfactant (lauric arginate) with an anionic biopolymer (pectin):isothermal titration calorimetry, light scattering, and microelectrophoresis [J]. Langmuir, 2009,25:116-122.
    [19]Bijma K, Engberts Jan B F N. Thermodynamics of micelle formation by 1-methyl-4-alkylpyridinium halides [J]. Langmuir,1994,10:2578-2582.
    [20]Wang Y L, Lu D, Yan H, Thomas R K. An ESR spin probe study of the interaction between poly(ethylene oxide) and dodecyl sulfate surfactants with different monovalent metal counterions [J]. J Phys Chem B,1997,101: 3953-3956.
    [21]Hai M T, Han B X. Study of interaction between sodium dodecyl sulfate and polyacrylamide by rheological and conductivity measurements [J]. J Chem Eng Data,2006,51:1498-1451.
    [22]Mitra D, Bhattacharya S C, Moulik S P. Physicochemical studies on the interaction of gelatin with cationic surfactants alkyltrimethylammonium bromides (ATABs) with special focus on the behavior of the hexadecyl homologue [J]. J Phys Chem B,2008,112:6609-6619.
    [23]Wang H, Wang Y L, Yan H K, Zhang J, Thomas R K. Binding of sodium dodecyl sulfate with linear and branched polyethyleneimines in aqueous solution at different pH values [J]. Langmuir,2006,22(4):1526-1533.
    [24]Chakraborty T, Chakraborty I, Moulik S P, Ghosh S. Physicochemical studies on pepsin-CTAB interaction:energetics and structural changes [J]. J Phys Chem B, 2007,111:2736-2746.
    [25]Taylor D J F, Thomas R K, Penfold J. Polymer/surfactant interactions at the air/water interface [J]. Adv Colloid Interface Sci,2007,132:69-110.
    [26]Taylor D J F, Thomas R K, Hines J D, Humphreys K, Penfold J. The adsorption of oppositely charged polyelectrolyte/surfactant mixtures at the air/water interface: neutron reflection from dodecyl trimethylammonium bromide/sodium poly(styrenesulfonate) and sodium dodecyl sulfate/poly(vinylpyridinium chloride) [J]. Langmuir,2002,18:9783-9791.
    [27]Taylor D J F, Thomas R K, Penfold J. The adsorption of oppositely charged polyelectrolyte/surfactant mixtures:neutron reflection from dodecyl trimethylammonium bromide/sodium poly(styrenesulfonate) at the air/water interface [J]. Langmuir,2002,18:4748-4757.
    [28]Vongsetkul T, Taylor D J F, Zhang J, Li P X, Thomas R K, Penfold J. Interaction of a cationic gemini surfactant with DNA and with sodium poly(styrene sulphonate) at the air/water interface:A neutron reflectometry study [J]. Langmuir,2009,25:4027-4035.
    [29]Dai S, Tam K C, Li L. Isothermal titration calorimetric studies on interactions of ionic surfactant and poly(oxypropylene)-poly(oxyethylene)-poly(oxypropyle ne) triblock copolymers in aqueous solutions [J]. Macromolecules,2001,34: 7049-7055.
    [30]Kong L J, Cao M, Hai M T. Investigation on the interaction between sodium dodecyl sulfate and cationic polymer by dynamic light scattering, rhelological, and conductivity measurments [J]. J Chem Eng Data,2007,52:721-726.
    [1]Wang C, Tam K C. New insights on the interaction mechanism within oppositely charged polymer/surfactant systems [J]. Langmuir,2002,18:6484-6490.
    [2]Bai G Y, Santos L, Nichifor M, Lopes A, Bastos M. Thermodynamics of the interaction between a hydrophobically modified polyelectrolyte and sodium dodecyl sulfate in aqueous solution [J]. J Phys Chem B,2004,108:405-413.
    [3]Deng M L, Cao M W, Wang Y L. Coacervation of cationic gemini surfactant with weakly charged anionic polyacrylamide [J]. J Phys Chem B,2009,113: 9436-9440.
    [4]Bai G Y, Nichifor M, Lopes A, Bastos M. Thermodynamic characterization of the interaction behavior of a hydrophobically modified polyelectrolyte and oppositely charged surfactants in aqueous solution:effect of surfactant alkyl chain length [J]. J Phys Chem B,2005,109:518-525.
    [5]Thalberg K, Lindman B, Bergfeldt K. Phase behavior of systems of polyacrylate and cationic surfactant [J]. Langmuir,1991,7:2893-2898.
    [6]Wang H, Wang Y L, Yan H K, Zhang J, Thomas R K. Binding of sodium dodecyl sulfate with linear and branched polyethyleneimines in aqueous solution at different pH values [J]. Langmuir,2006,22(4):1526-1533.
    [7]Liu J, Zheng L Q, Sun D Z, Wei X L. Salt effect on the complex formation between 1-dodecyl-3-methylimidazolium bromide and sodium carboxymethyl-cellulose in aqueous solution [J]. Colloids Surf A,2010,358:93-100.
    [8]Dai S, Tam K C. Isothermal titration calorimetric studies on the temperature dependence of binding interactions between poly(propylene glycol)s and sodium dodecyl sulfate [J]. Langmuir,2004,20:2177-2183.
    [9]Lof D, Niemiec A, Schillen K, Loh W, Olofsson G. A calorimetry and light scattering study of the formation and shape transition of mixed micelles of EO20PO68EO20 triblock copolymer (P123) and nonionic surfactant (C12EO6) [J]. J Phys Chem B,2007,111:5911-5920.
    [10]Ge L L, Guo R, Zhang X H. Formation and microstructure transition of F127/TX-100 complex [J]. J Phys Chem B,2008,112:14566-14577.
    [11]Couderc S, Li Y, Bloor D M, Holzwarth J F, Wyn-Jones E. Interaction between the nonionic surfactant hexaethylene glycol mono-n-dodecyl ether (C12EO6) and the surface active nonionic ABA block copolymer pluronic F127 (EO97PO69EO97) formation of mixed micelles studied using isothermal titration calorimetry and differential scanning calorimetry [J]. Langmuir,2001,17:4818-4824.
    [12]Dai S, Tam K C, Li L. Isothermal titration calorimetric studies on interactions of ionic surfactant and poly(oxypropylene)-poly(oxyethylene)-poly(oxypropyle ne) triblock copolymers in aqueous solutions [J]. Macromolecules,2001,34: 7049-7055.
    [13]Bai G Y, Nichifor M, Bastos M. Cationic polyelectrolytes as drug delivery vectors:calorimetric and fluorescence study of rutin partitioning [J]. J Phys Chem B,2010,114:16236-16243.
    [14]Li X F, Wettig S D, Verrall R E. Interactions between 12-EOx-12 gemini surfactants and pluronic ABA block copolymers (F108 and P103) studied by isothermal titration calorimetry [J]. Langmuir,2004,20:579-586.
    [15]Silva R C, Olofsson G, Schillen K, Loh W. Influence of ionic surfactants on the aggregation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers studied by differential scanning and isothermal titration calorimetry [J]. J Phys Chem B,2002,106:1239-1246.
    [16]Wang C, Tam K C, Jenkins R D, Tan C B. Interactions between methacrylic acid/ethyl acrylate copolymers and dodecyltrimethylammonium bromide [J]. J Phys Chem B,2003,107:4667-4675.
    [17]Li Y, Xu R, Couderc S, Bloor D M, Wyn-Jones E, Holzwarth J F. Binding of sodium dodecyl sulfate (SDS) to the ABA block copolymer pluronic F127 (EO97PO69EO97):F127 aggregation induced by SDS [J]. Langmuir,2001,17(1): 183-188.
    [18]Wen X G, Verrall R E, Liu G J. Effect of anesthetic molecules (halothane and isoflurane) on the aggregation behavior of POE-POP-POE triblock copolymers [J]. J Phys Chem B,1999,103(14):2620-2626.
    [19]Wang G, Olofsson G. Titration calorimetric study of the interaction between ionic surfactants and uncharged polymers in aqueous solution [J]. J Phys Chem B, 1998,102:9276-9283.
    [20]Niemiec A, Loh W. Interaction of ethylene oxide propylene oxidecopolymers with ionic surfactants studied by calorimetry:random versus block copolymers [J]. J Phys Chem B,2008,112:727-733.
    [21]Sidhu J, Bloor D M, Couderc-Azouani S, Penfold J, Holzwarth J F, Wyn-Jones E. Interactions of poly(amidoamine) dendrimers with the surfactants SDS, DTAB, and C12EO6:an equilibrium and structural study using a SDS selective electrode, isothermal titration calorimetry, and small angle neutron scattering [J]. Langmuir, 2004,20:9320-9328.
    [22]Mata J, Joshi T, Varade D, Ghosh G, Bahadur P. Aggregation behavior of a PEO-PPO-PEO block copolymer+ionic surfactants mixed systems in water and aqueous salt solutions [J]. Colloids Surf A,2004,247:1-7.
    [23]Ghoreishi S M, Li Y, Holzwarth J F, Khoshdel E, Warr J, Bloor D M, Wyn-Jones E. The interaction between nonionic dendrimers and surfactants-electromotive force and microcalorimetry studies [J]. Langmuir,1999,15:1938-1944.
    [24]Sastry N V, Hoffmann H. Interaction of amphiphilic block copolymer micelles with surfactants [J]. Colloids Surf A,2004,250:247-261.
    [25]Dong B, Li N, Zheng L Q, Yu L, Inoue T. Surface adsorption and micelle formation of surface active ionic liquids in aqueous solution [J]. Langmuir,2007, 23:4178-4182.
    [26]Goossens K, Lava K, Nockemann P, Hecke K V, Meervelt L V, Driesen K, Gorller-Walrand C, Binnemans K, Cardinaels T. Pyrrolidinium ionic liquid crystals [J]. Chem-Eur J,2009,15:656-674.
    [27]Baker G A, Pandey S, Pandey S, Baker S N. A new class of cationic surfactants inspired by N-alkyl-N-methylpyrrolidinium ionic liquids [J]. Analyst,2004,129: 890-892.
    [28]Kreshech G C, Haragraves W A. Thermometric titration studies of the effect of head group, chain length, solvent, and temperature on the thermodynamics of micelle formation [J]. J Colloid Interface Sci,1974,48:481-493.
    [29]Johnson I, Olofsson G, Jonsson B. Micelle formation of ionic amphiphiles. Thermochemical test of a thermodyanamic model [J]. J Chem Soc, Faraday Trans 1,1987,83:3331-3344.
    [30]Andersson B, Olofsson G. Calorimetric study of non-ionic surfactants. Enthalpies and heat-capacity changes for micelle formation in water of C8E4 and Triton X-100 and micelle size of C8E4 [J]. J Chem Soc, Faraday Trans 1,1988,84: 4087-4095.
    [31]Vanyur R, Biczok L, Miskolczy Z. Micelle formation of 1-alkyl-3-methylimida zoliu bromide ionic liquids in aqueous solution [J]. Colloids Surf A,2007,299: 256-261.
    [32]Inoue T, Ebina H, Dong B, Zheng L Q. Electrical conductivity study on micelle formation of long-chain imidazolium ionic liquids in aqueous solution [J]. J Colloid Interface Sci,2007,314:236-241.
    [33]Goodchild I, Collier L, Millar S L, Prokes I, Lord J C D, Butts C P, Bowers J, Webster J R P, Heenan R K. Structural studies of the phase, aggregation and surface behavior of 1-alkyl-3-methylimidazolium halide+water mixtures [J]. J Colloid Interface Sci,2007,307:455-468.
    [34]Luczak J, Hupka J, Thoming J, Jungnickel C. Self-organization of imidazolium ionic liquids in aqueous solution [J]. Colloids Surf A,2008,329:125-133.
    [35]Zhao Y, Gao S J, Wang J J, Tang J M. Aggregation of ionic liquids [Cnmim]Br (n =4,6,8,10,12) in DO:A NMR study [J]. J Phys Chem B,2008,112:2031-2039.
    [36]Dong B, Gao Y A, Zheng L Q, Xu J K, Inoue T. Self-aggregation behavior of fluorescent carbazole-tailed imidazolium ionic liquids in aqueous solutions [J]. J Phys Chem B,2010,114:340-348.
    [37]Bai G Y, Lopes A, Bastos M. Thermodynamics of micellization of alkylimidazolium surfactants in aqueous solution [J]. J Chem Thermodynamics, 2008,40:1509-1516.
    [38]Bijma K, Engberts J B F N, Blandamer M J, Cullis P M, Last P M, Irlamb K D, Soldib L G. Classification of calorimetric titration plots for alkyltrimethyl ammonium and alkylpyridinium cationic surfactants in aqueous solutions [J]. J Chem Soc, Faraday T rans,1997,93(8):1579-1584.
    [39]Bach J, Blandamer M J, Burgess J, Cullis P M, Soldi L G, Bijma K, Engberts J B F N, Kooreman P A, Kacperska A, Rao K C, Subha M C S. Titration calorimetric and spectrophotometric studies of micelle formation by alkyltrimethylammonium bromide in aqueous solution [J]. J Chem Soc, Faraday Trans,1995,91(8): 1229-1235.
    [40]Tedeschi A M, Busi E, Basosi R, Paduano L, Derrico G. Influence of the alkyl tail length on the anionic surfactant-PVP interaction [J]. J Sloution Chem,2006, 35:951-968.
    [41]Saski W, Shah S G. Availability of drugs in the presence of surface-active agents I critical micelle concentrations of some oxyethylene oxyprppylene polymers [J]. J Pharm Sci,1965,54(1):71-74.
    [42]Nakashima K, Anzai T, Fujimoto Y. Fluorescence studies on the properties of a Pluronic F68 micelle [J]. Langmuir,1994,10(3):658-661.
    [43]Mata J P, Majhi P R, Guo C, Liu H Z, Bahadur P. Concentration, temperature, and salt-induced micellization of a triblock copolymer Pluronic L64 in aqueous media [J]. J Colloid Interface Sci,2005,292(2):548-556.
    [44]Chu D Y, Thomas J K. Effect of cationic surfactants on the conformation transition of poly(methacrylic acid) [J]. J Am Chem Soc,1986,108(20): 6270-6276.
    [45]Monteux C, Williams C E, Bergeron V. Interfacial microgels formed by oppositely charged polyelectrolytes and surfactants. Part 2. Influence of surfactant chain length and surfactant/polymer ratio [J]. Langmuir,2004,20 (13): 5367-5374.
    [46]Trabelsi S, Raspaud E, Langevin D. Aggregate formation in aqueous solutions of carboxymethylcellulose and cationic surfactants [J]. Langmuir,2007,23: 10053-10062.
    [47]Zhao M W, Zheng L Q. Micelle formation by N-alkyl-N-methylpyrrolidinium bromide in aqueous solution [J]. Phys Chem Chem Phys,2011,13:1332-1337.
    [48]Karukstis K K, McDonough J R. Characterization of the aggregates of N-Alkyl-N-methylpyrrolidinium bromide surfactants in aqueous solution [J]. Langmuir,2005,21(13):5716-5721.
    [49]Sovilj V J, Petrovic L B. Influence of hydroxypropylmethyl cellulose-sodium dedocylsulfate interaction on the solution conductivity and viscosity and emulsion stability [J]. Carbohyd Polym,2006,64:41-49.
    [50]Wang H Y, Feng Q Q, Wang J J, Zhang H C. Salt effect on the aggregation behavior of 1-decyl-3-methylimidazolium bromide in aqueous solutions [J]. J Phys Chem B,2010,114:1380-1387.
    [51]Chakraborty T, Chakraborty I, Ghosh S. Sodium carboxymethylcellulose-CTAB interaction:a detailed thermodynamic study of polymer-surfactant interaction with opposite charges [J]. Langmuir,2006,22:9905-9913.
    [1]Yang J. Viscoelastic wormlike micelles and their applications [J]. Curr Opin Colloid Interface Sci,2002,7:276-281.
    [2]Acharya Durga P, Kunieda H. Wormlike micelles in mixed surfactant solutions [J]. Adv Colloid Interface Sci,2006,123-126:401-413.
    [3]Liu S Y, Gonzalez Y I, Danino D, Kaler E W. Polymerization of wormlike micelles induced by hydrotropic salt [J]. Macromolecules,2005,38:2482-2491.
    [4]Schubert B A, Kaler E W, Wagner N J. The microstructure and rheology of mixed cationic/anionic wormlike micelles [J]. Langmuir,2003,19:4079-4089.
    [5]Cao Q, Yu L, Zheng L Q, Li G Z, Ding Y H, Xiao J H. Rheological properties of wormlike micelles in sodium oleate solution induced by sodium ion [J]. Colloid Interface Sci,2008,312:32-38.
    [6]Raghavan S R, Edlund H, Kaler E W. Cloud-point phenomena in wormlike micellar systems containing cationic surfactant and salt [J]. Langmuir,2002,18: 1056-1064.
    [7]Aswal V K, Goyal P S, Thiyagarajan P. Small-angle neutron-scattering and viscosity studies of CTAB/NaSal viscoelastic micellar solutions [J]. J Phys Chem B,1998,102:2469-2473.
    [8]Dong B, Zhang J, Zheng L Q, Wang S Q, Li X W, Inoue T. Salt-induced viscoelastic wormlike micelles formed in surface active ionic liquid aqueous solution [J]. J Colloid Interface Sci,2008,319:338-343.
    [9]Fan Y R, Li Y J, Yuan G C, Wang Y L, Wang J B, Han C, Yan H K. Comparative studies on the micellization of sodium bis(4-phenylbutyl) sulfosuccinate and sodium bis(2-ethylhexyl) sulfosuccinate and their interaction with hydrophobically modified poly(acrylamide) [J]. Langmuir,2005,21: 3814-3820
    [10]Meagher R J, Hatton T A, Bose A. Enthalpy measurements in aqueous SDS/DTAB solutions using isothermal titration microcalorimetry [J]. Langmuir, 1998,14:4081-4087.
    [11]Bijma K, Rank E, Engberts J B F N. Effect of counterion structure on micellar growth of alkylpyridinium surfactants in aqueous solution [J]. J Colloid Interface Sci,1998,205:245-256.
    [12]Fisicaro E, Compari C, Duce E, Contestabili C, Viscardi G, Quagliotto P. First evaluation of the thermodynamic properties for spheres to elongated micelles transition of some propanediyl-a,co-bis(dimethylammoniumbromide) surfactants in aqueous solution [J]. J Phys Chem B,2005,109:1744-1749.
    [13]Lin Y Y, Qiao Y, Yan Y, Huang J B. Thermo-responsive viscoelastic wormlike micelle to elastic hydrogel transition in dual-component systems [J]. Soft Matter, 2009,5:3047-3053.
    [14]Dong B, Li N, Zheng L Q, Yu L, Inoue T. Surface adsorption and micelle formation of surface active ionic liquids in aqueous solution [J]. Langmuir,2007, 23:4178-4182.
    [15]Wang H, Wang Y L, Yan H K, Zhang J, Thomas R K. Binding of sodium dodecyl sulfate with linear and branched polyethyleneimines in aqueous solution at different pH values [J]. Langmuir,2006,22(4):1526-1533.
    [16]Bai G Y, Santos L, Nichifor M, Lopes A, Bastos M. Thermodynamics of the interaction between a hydrophobically modified polyelectrolyte and sodium dodecyl sulfate in aqueous solution [J]. J Phys Chem B,2004,108:405-413.
    [17]Asker D, Weiss J, McClements D J. Analysis of the interactions of a cationic surfactant (lauric arginate) with an anionic biopolymer (pectin):isothermal titration calorimetry, light scattering, and microelectrophoresis [J]. Langmuir, 2009,25:116-122.
    [18]Geng F, Liu J, Zheng L Q, Yu Y, Li Z, Li G Z, Tung C H. Micelle formation of long-chain imidazolium ionic liquids in aqueous solution measured by isothermal titration microcalorimetry [J]. J Chem Eng Data,2010,55:147-151.
    [19]Raghavan S R, Edlund H, Kaler E W. Cloud-point phenomena in wormlike micellar systems containing cationic surfactant and salt [J]. Langmuir,2002,18: 1056-1064
    [20]Croce V, Cosgrove T, Maitland G, Hughes T, Karlsson G. Rheology, cryogenic transmission electron spectroscopy, and small-angle neutron scattering of highly viscoelastic wormlike micellar solutions [J]. Langmuir,2003,19:8536-8541.
    [21]Khatory A, Kern F, Lequeux F, Appell J, Porte G, Morie N, Ott A, Urbach W. Entangled versus multiconnected network of wormlike micelles [J]. Langmuir, 1993,9:933-939.
    [22]Shikata T, Hirata H, Kotaka T. Micelle formation of detergent molecules in aqueous media.2. Role of free salicylate ions on viscoelastic properties of aqueous cetyltrimethylammonium bromide-sodium salicylate solutions [J]. Langmuir,1988,4:354-359.
    [23]Bachofer S J, Simonis U, Nowicki T A. Orientational binding of substituted naphthoate counterions to the tetradecyltrimethylammonium bromide micellar interface [J]. J Phys Chem,1991,95:480-488.
    [24]Vermather M, Stiles P, Bachofer S J, Simonis U. Investigations of monofluoro-substituted benzoates at the tetradecyltrimethylammonium micellar interface [J]. Langmuir,2002,18:1030-1042.
    [25]Badwan A A, EI-Khordagui L K, Saleh A M, Khalil S A. The solubility of benzodiazepines in sodium salicylate solution and a proposed mechanism for hydrotropic solubilization [J]. Int J Pharmaceut,1982,13:67-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700