环糊精对水中酚类化合物紫外光降解影响的动力学与机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酚类化合物是芳烃的含羟基衍生物。含酚废水是当今世界上危害大、污染范围广的工业废水之一,是环境中水污染的重要来源。近年来,由于双酚类环境内分泌干扰物可能给人类和动物造成潜在的不利影响,引起了人们的高度关注,有关这一类物质的处理研究成为目前环境污染控制领域研究的热点。众所周知,环境系统中的光化学转化是影响有机污染物行为与归属的重要因素之一。而水中污染物的直接光解是有机污染物转化的一个重要途径。环糊精外缘亲水而内腔疏水,能包络如有机分子、无机离子以及气体分子等各种客体。环糊精已被广泛证实可以作为一种介质用于控制化学和光化学反应。
     因此本论文以酚类化合物,主要是双酚类化合物为研究对象,研究环糊精对这类物质紫外光降解影响的动力学与机制。作为包络作用主体的环糊精选取了β-环糊精(β-CD)、α-环糊精(a-CD)、γ-环糊精(γ-CD),采用15W紫外灯(λ=254 nm)为光源,在自制的恒温光反应装置中进行光化学反应实验,开展了以下几个方面的工作。
     1.研究了β-CD对17种酚类化合物紫外光降解的影响。结果表明当酚类化合物和β-CD初始浓度为4.OE-5mol·L-1时,β-CD抑制1,3,5-benzenetriol、o-Nitrophenol、4,4'-thiodiphenol (TDP)、4,4'-dihydroxy-benzophenone (DHBP)、2-phenylphenol的紫外光解,促进bis(4-hydroxyphenyl) sulfone (BPS)、4,4-bis(4-hydroxyphenyl)pentanoic acid (DPA)、Bisphenol A (BPA)、bis(4-hydroxyphenyl)methane (BPF)、4,4'-ethylidene-bisphenol (BPE)的紫外光解,对p-chlorophenol、phenol、p-dihydroxybenzene、4-acetamidophenol、2,2'-dihydroxybipheny、4,4'-dihydroxy-biphenyl、2-isopropyl-5-methyl phenol的紫外光解没有影响。在此基础上研究了无CD以及α-CD、β-CD、γ-CD存在下TDP、BPS、DPA、BPA、BPF、BPE、DHBP的紫外光降解动力学。研究表明在无CD以及CD存在下,这七类双酚化合物的紫外光解反应均符合假一级反应动力学,在实验条件下,TDP、BPS、DPA、BPA、BPF、BPE、DHBP在无CD存在下的紫外光解速率常数分别为:0.429 min-1、0.102min-1、0.0164min-1、0.00848min-1、0.00451min-1、0.00406min-1、0.00343min-1;而在β-CD存在下TDP、BPS、DPA、BPA、BPF、BPE、DHBP的紫外光解速率常数分别为0.276min-1、0.126min-1、0.156min-1、0.0658min-1、0.0184min-1、0.0261min-1、0.00273min-1。β-CD对BPS、DPA、BPA、BPF、BPE光解速率常数的促进倍数分别是1.2倍、9.5倍、7.8倍、4.1倍、6.4倍。而β-CD对TDP、DHBP的紫外光解速率常数抑制倍数是1.6、1.3倍。
     2.考察了β-CD浓度、底物初始浓度、pH值对TDP、BPS、DPA、BPA、BPF、BPE、DHBP紫外光降解的影响。结果表明当底物和β-CD浓度的比值由2:1增加到1:10时,β-CD浓度的增加会导致β-CD对双酚化合物紫外光解作用效果的增强;无环糊精存在以及α-CD、γ-CD存在下七种双酚化合物的紫外光解效率基本随着初始浓度的增加而降低。而在p-CD存在下,DPA、BPF、BPE的紫外光降解效率与初始浓度的改变没有明显关系;在碱性条件下,无环糊精存在时pH值对七种双酚化合物紫外光解作用的影响大于p-CD存在下。在酸性和中性条件下,p-CD对七种双酚化合物的紫外光解影响的规律基本一致;通过测定无CD存在时以及β-CD存在下七种双酚化合物光解过程溶液TOC值的变化情况,发现β-CD对七种双酚化合物在本研究体系的矿化不能起促进作用,反而会对BPS、TDP、DHBP的矿化起抑制作用。
     3.运用紫外光谱、荧光光谱研究了双酚化合物/环糊精包络物。研究表明,加入环糊精后,BPS、TDP的紫外吸收峰强度会减弱,而DPA、BPA、BPF, BPE、DHBP的荧光强度增加,并随着CD浓度的增加而减弱或加强。除了DHBP之外,其他六类双酚化合物在β-CD存在下,光谱发生改变的程度都远远大于α-CD与γ-CD存在下双酚化合物光谱的改变,与测得的双酚化合物/环糊精包络物包络常数的数值大小相统一;根据改进的Hildebrand-Benesi方程,计算得出β-CD可分别与TDP、BPS、DPA、BPA、BPF、BPE、DHBP形成1:1稳定的包络物,其包络常数分别为:8.21×103L·mol--、1.48×104L·mol-1、3.80×104 L·mol-1、5.27×104 L·mol-1、1.18×104 L·mol-1、3.89×104L·mol-1、187L·mol-1;当pH由3.5提高到10.0时,七种双酚化合物/β-CD包络物在不同pH值条件下的包络常数值都基本相同;β-CD存在下,BPS、TDP、DPA、BPA、BPF, BPE, DHBP浓度与β-CD浓度比为1:2时这七类双酚化合物的紫外吸收峰强度都有一定程度的减弱。TDP、BPS、DPA, BPA、BPF、BPE、DHBP和这七种双酚化合物/β-CD包络物的紫外光谱在酸性和中性条件下基本一致。而在碱性条件下,这七种双酚化合物和双酚化合物/β-CD包络物的紫外光谱都发生了一定程度的改变。碱性条件下,TDP, DPA, BPA、BPF, BPE, DHBP和它们的β-CD包络物在254nm波长下的紫外吸收强度明显增强。
     4.以BPE和BPE/p-CD包络物为代表对象,通过激光闪光光解和时间相关单光子计数法对p-CD对双酚化合物紫外光解促进作用机制进行了研究。研究表明BPE/UV和BPE/β-CD/UV两个体系中主要的光化学过程是光致电离,并产生水合电子、酚氧自由基。BPE光电离的量子产率φ(266 nm)=3.7×10-3,BPE/β-CD包络物光电离的量子产率φ(266nm)=1.9×10-2,提高了5倍。BPE在环糊精腔体内的包络反应使得BPE单重激发态的衰减速度下降,从而导致BPE光致电离、荧光量子产率以及荧光寿命的显著提高。由此可以解释稳态光解实验下p-CD促进双酚化合物的紫外光解。
     5.利用GAUSS98软件对酚类化合物进行结构优化,结合结构优化后得到的量子化学参数以及查阅文献所得的17种酚类化合物的相关结构能量和物理化学参数构建酚类化合物紫外光解反应的QSPR方程。由方程可知酚类化合物的logP, pka,分子最高占据轨道和最低空轨道能量差(△E)与其紫外光解初始速率(r。)存在相关性,r。与物质的logP成正相关,与pka,△E成反相关。
Phenol compounds are aromatic compounds containing hydroxyl group. Today, Phenolic wastewater is one of the most serious water pollution in the world which endangers the environment widely and dramatically, and it is the main origin of the water pollution. As bisphenols may cause potential adverse effects on humans and animals, it concerns the public seriously. Consequently, the study of disposal of this type of material has arisen an issue of environmental pollution control which involves a large number of professional researches. It is accepted that photochemical transformations in environmental systems play a major role in determining the behavior and fate of organic pollutants. And direct photolysis of these pollutants is an important transformation route in the aquatic environment. However, the study of utilizing direct photolysis reaction as a way of organic wastewater treatment is not adequate, and it can only be applied in some limited fields. Cyclodextrins are cyclic oligosaccharides which have an external hydrophilic surface and an inner hydrophobic cavity; they are able to include a variety of objects such as organic molecules, inorganic ions, gas molecules and other compounds. Cyclodextrins have been widely proven as a medium for chemical control and photochemical reactions.
     Therefore, the photodegradation behavior and corresponding mechanisms of phenol compounds mainly bisphenol comoounds in the present of cyclodextrins were studied, Used host compounds wereβ-cyclodextrin,α-cyclodextrin andγ-cyclodextrin. Irradiation experiments were carried out in a self-made cylindrical reactor, with a 15 W UV sterilization lamp (λ=254nm).
     The experiments were carried out in the following areas of work.
     1. The effect ofβ-CD on the degradation of 17 phenol compounds under UV light was studied with the initial concentration of phenol compounds andβ-CD being both 4.0E-5mol·L-1. The result showed thatβ-CD could inhibit the photodegradation of 1,3,5-benzenetriol、o-Nitrophenol、4,4'-thiodiphenol (TDP)、4,4'-dihydroxy-benzophenone (DHBP)、2-phenylphenol, but promote the photodegradation of bis(4-hydroxyphenyl) sulfone (BPS)、4,4-bis(4-hydroxyphenyl)pentanoic acid (DPA)、Bisphenol A (BPA)、bis(4-hydroxyphenyl)methane (BPF)、4,4'-ethylidene-bisphenol (BPE), and it has essentially no effect on the photodegradation of p-chlorophenol、phenol、p-dihydroxybenzene、4-acetamidophenol、2,2'-dihydroxybiphenyl、4,4'-dihydroxy-bipheny1、2-isopropyl-5-methyl phenol. Moreover, the kenetics of photodegradation of TDP、DHBP、BPS、DPA、BPA、BPF、BPE in the presence ofα-CD、β-CD、γ-CD and in the absence of CDs were studied. The photodegradation of these bisphenol compounds both in the presence and in the absence of CDs proceeds is in accord with the pseudo-first order reaction kinetics. The photodegradation rate constant of TDP、DHBP、BPS、DPA、BPA、BPF、BPE in the absence of CDs are 0.429 min-1、0.102min-1、0.0164min-1、0.00848min-1、0.00451min-1、0.00406min-1、0.00343min-1 respectively, while the photodegradation rate constant of TDP、DHBP、BPS、DPA、BPA、BPF、BPE in the absence ofβ-CD are 0.276min-1、0.126min-1、0. 156min-1、0. 0658min-1、0.0184min-1、0.0261min-1、0.00273min-1 respectively. The photodegradation rate constant of BPS, DPA, BPA, BPF, BPE after p-CD inclusion catalysis can reach 1.2、9.5、7.8、4.1、6.4 fold increase respectively, but the photodegradation rate constant of TDP、DHBP after p-CD inclusion catalysis will be 1.6、1.3 fold decrease respectively.
     2. The effects of initial substrate concentration,β-CD concentration and pH value on the photodegradation of TDP, BPS, DPA, BPA, BPF, BPE and DHBP were studied. The results showed that when the amount ofβ-CD on the bisphenols photodegradation varied from 0.5 to 10 fold, the effect ofβ-CD on these bisphenols photodegradation increased with an increase in the amount ofβ-CD concentration. The pheotodegradation of these bisphenol compounds is essentially decrease with the increasing of initial concentration in the absence of CDs and in the presence ofα-CD,γ-CD, while in the presence of β-CD, there was no significant relationship between the DPA、BPF、BPE pheotodegradation efficiency and initial concentration. The effect of p-CD on the photodegradation of these bisphenol compounds in alkaline solution was less than in acidic and neutral solutions. And a similar trend of the effect ofβ-CD on the photodegradation of these bisphenol compounds was found in acidic and neutral solutions. The mineralization of these bisphenol compounds was followed by total organic carbon analysis (TOC) in the absence of CDs and in the presence of p-CD, the results showed thatβ-CD can not enhance the mineralization of these bisphenol compounds, but reduce the BPS, TDP, DHBP mineralization.
     3. The inclusion complex of bisphenols with CDs was characterized by ultraviolet spectroscopy and fluorescence spectroscopy. Ultraviolet absorption and fluorescence spectra show that absorption peaks of BPS, TDP in inclusion withβ-CD significantly weaken, while fluorescence intensity of DPA、BPA、BPF、BPE、DHBP in inclusion withβ-CD significantly strengthen. The degree of weakening or strengthening of these bisphenol compounds spectrum except DHBP in the presence ofβ-CD is far greater than in the presence ofα-CD andγ-CD, which is in accordance with the results of the formation constants of inclusion complex measured by modified Benesi-Hildebrand method. According to a modified Bensi-Hildebrand equation, the formation constant of inclusion complex between TDP、BPS、DPA、BPA、BPF、BPE、DHBP andβ-CD is 8.21×103L·mol-1、1.48×104L·mol-1、3.80×104 L·mol-1、5.27×104 L·mol-1、1.18×104L·mol-1、3.89×104L·mol-1、187L·mol-1 respectively, the molar ratio is 1:1. The large constant values found suggest significant interaction between the guest and the host molecules. The formation constant of inclusion complex in the presence ofβ-CD does not show significant changes when the pH rose from 3.5 to 10.0. The bisphenols/β-CD complex shows a little smaller ultraviolet absorption than in the absence ofβ-CD when the concertation ritio of bisphenols/β-CD is 1:2. The Ultraviolet absorption spectra of these bisphenols compounds and bisphenols/β-CD complex are very similar at both acid and neutral pH. While at alkaline pH, the bisphenol compounds and bisphenols/β-CD complex change the shape of the ultraviolet spectrum. The UV absorption peaks of TDP, DPA, BPA, BPF, BPE, DHBP and these bisphenols/β-CD complex significantly increased at 254nm.
     4. Photochemistry and photophysics of both BPE in the absence of CDs and inclusion complex of BPE withβ-CD was studied by nanosecond laser flash photolysis and time-correlated single photon counting techniques. For both systems the primary photochemical process was found to be photoionization with formation of hydrated electron and phenoxyl radical. The main difference between photochemistry of free BPE ((?)(266 nm)= 3.7x10-3) and BPE/β-CD complex ((?)(266 nm)= 1.9x10-2) is a 5-fold increase in photoionization quantum yield in the case of the complex. Inclusion of BPE in cyclodextrin cavity leads to great increase of photoionization and fluorescence quantum yield as well as fluorescence lifetime due to decreasing of relaxation processes in the singlet excited state of complexed BPE. This is in the good agreement with lower photochemical stability of BPE/p-CD complex observed in stationary photochemical experiments.
     5. Quantitative structure-property relationship (QSPR) model was developed for photodegradation rates of phenol compounds. Molecule structure parameters were investigated with the help of the GAUSS98 software and related literatures. The photodegradation initial rates of these phenol compounds can be fitted by QSPR models. The photodegradation initial rates depend on the logP, pka, the gap of frontier molecular orbital energies (△E). Increasing logP of phenol compounds leads to an increase in photodegradation initial rate, increasing pka,△E leads to a decrease in photodegradation initial rate.
引文
[1]Syvitel, J.; Mietus, S. Development of Tyrosinase-based Biosensor and Its Application for Monitoring of Bioremediation of Phenol and Phenolic Compounds. Environ. Sci. Technol. 1998,32,828-832.
    [2]Ahmed, Z. M.; Lyne, S.; Shahrabani, R. Removal and Recovery of Phenol from Phenolic Wastewater via Ion Exchange and Polymeric Resins. Environ. Eng. Sci.2000,17:245-255.
    [3]Arica, M. Y. Immobilization of Polyphenol Oxidase on Carboxymethylcellulose Hydrogel Beads:Preparation and Characterization. Polym. Int.2000,49,775-781.
    [4]Pedatsur Netaa. Jan GrodkowskiJ. Rate Constants for Reactions of Phenoxyl Radicals in Solution. Phys. Chem. Ref. Data,2005,34(1)
    [5]R. Alnaizy, A. AkgermanU R. Alnaizy, A. Akgerman r. Advanced oxidation of phenolic compounds. Advances in Environmental Research,2000,4:233-244
    [6]Canadian Environmental Protection Act, Priority Substances List Assessment Report: Phenol,1999, www. ec. gc. ca.
    [7]赵海涛,张天宝.内分泌干扰物筛检方法研究进展.毒理学杂志,2005,19(2):152-155,
    [8]Sanchez I, Stuber F, Font J, et al. Elimination of phenol and aromatic compounds by zero valent iron and EDTA at low temperature and atmospheric pressure[J]. Chemosphere, 2007,68(2):338-344.
    [9]Verheyen V, Cruickshank A, Wild K, et al. Soluble, semivolatile phenol and nitrogen compounds in milk-processing wastewaters. Journal Of Dairy Science,2009,92(7): 3484-3493.
    [10]Yamada K, Akiba Y, Shibuya T, et al. Water purification through bioconversion of phenol compounds by tyrosinase and chemical adsorption by chitosan beads. Biotechnology Progress,2005,21(3):823-829.
    [11]Busca G, Berardinelli S, Resini C, et al. Technologies for the removal of phenol from fluid streams:A short review of recent developments. Journal Of Hazardous Materials, 2008,160(2-3):265-288.
    [12]McLachlan JA. Environmental signaling:What embryos and evolution teach us about endocrine disrupting chemicals. Endocrine Rev 2001; 22(3):319-41.
    [13]Ying GG, Kookana RS. Endocrine disruption:an Australian perspective. Awa J Water, 2002; 29(9):53-57.
    [14]WHO (World Health Organization), Global assessment of the state-of-the-science of endocrinedisruptors, www. who. int/ipcs/publications/newissues/endocrine_disruptors/en/(2002).
    [15]Tabata A, Kashiwa S, Ohnishi Y, Ishikawa H, MiyamotoN, Itoh M, Magara Y. Estrogenic influence of estradiol-17b, p-nonylphenol and bisphenol A on Japanese Medaka (Oryzias Iatipes) at detected environmental concentrations. Water Sci Technol,2001; 43 (2):109-16.
    [16]Kuch HM, Ballschmitter K. Determination of endocrinedisrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picoramper liter range. Environ Sci Technol 2001; 35:3201-3206.
    [17]Rudel RA, Melly SJ, Geno PW, Sun G, Brody JG. Identification of alkylphenols and other estrogenic phenolic compounds in wastewater, septage, and groundwater on Cape Cod, Massachusetts. Environ Sci Technol,1998; 32:861-869.
    [18]Ying G G, Kookana R S, Dillon P. Sorption and degradation of selected five endocrine disrupting chemicals in aquifer material.Water Research,2003,37(15):3785-3791.
    [19]Asada T, Oikawa K, Kawata K, et al. Study of removal effect of bisphenol A and beta-estradiol by porous carbon. Journal of Health Science,2004,50(6):588-593.
    [20]Yamamoto T, Yasuhara A, Shiraishi H and Nakasugi 0, Bisphenol A in hazardous waste landfill leachates, Chemosphere,2001,42:415-418.
    [21]Boyd G R, Palmeri J M, Zhang S Y, et al. Pharmaceuticals and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs) in stormwater canals and Bayou St. John in New Orleans, Louisiana, USA. Science of The Total Environment,2004,333(1-3):137-148.
    [22]Lee H-B, Peart TE. Bisphenol A contamination in Canadian municipal and industrial wastewater and sludge samples. Water Quality Res J Canada.2000;35 (2):283-98.
    [23]Fromme H, Kuchler T, Otto T, Pilz K, Muller J and Wenzel A, Occurrence of phthalates and bisphenol A and F in the environment. Water Res.,2002,36:1429-1438.
    [24]Zweidinger RA, Cooper SD, Erickson MD, Michael LC and Pellizzair ED, Sampling and analysis for semi volatile brominated organics in ambient air. Monitoring Toxic substances.1979,94:217-231.
    [25]Sellstrom U, Jansson B, Analysis of tetrabromobisphenol A in a product and environmental samples, Chemosphere,1995.31 (4):3085-3092
    [26]杜兵,张彭义,张祖麟,北京市某典型污水处理厂中内分泌干扰物的初步调查,环境科学,2004,25(1):23-25.
    [27]Spengler P, Korner W, Metzger JW:Substances with estrogenic activity in effluents of sewage treatment plants in southwestern Germany. I. Chemical analysis. Environ Toxicol Chem,2001; 20 (10) 2133-2141
    [28]Furhacker M, Scharf S, Weber H. Bisphenol A:Emissions from point sources. Chemosphere 2000; 41:751-756
    [29]Voutsa D, Hartmann P, Schaffner C, et al. Benzotriazoles, alkylphenols and bisphenol a in municipal wastewaters and in the Glatt River, Switzerland [J]. Environmental Science And Pollution Research,2006,13(5):333-341.
    [30]Voutsa D, Hartmann P, Schaffner C, et al. Benzotriazoles, alkylphenols and bisphenol a in municipal wastewaters and in the Glatt River, Switzerland [J]. Environmental Science And Pollution Research,2006,13(5):333-341.
    [31]Stuart J D, Capulong C P, Launer K D, et al. Analyses of phenolic endocrine disrupting chemicals in marine samples by both gas and liquid chromatography-mass spectrometry[J]. Journal Of Chromatography A,2005,1079(1-2):136-145.
    [32]Markman S, Guschina I A, Barnsley S, et al. Endocrine disrupting chemicals accumulate in earthworms exposed to sewage effluent[J]. Chemosphere,2007,70(1):119-125.
    [33]Lee H B, Peart T E, Chan J, et al. Occurrence of endocrine-disrupting chemicals in sewage and sludge samples in Toronto, Canada [J]. Water Quality Research Journal Of Canada, 2004,39(1):57-63.
    [34]Gong J, Ran Y, Chen D Y, et al. Occurrence and environmental risk of endocrine-disrupting chemicals in surface waters of the Pearl River, South China[J]. Environmental Monitoring And Assessment,2009,156(1-4):199-210.
    [35]Tsai W T. Human health risk on environmental exposure to bisphenol-A:A review[J]. Journal Of Environmental Science And Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews,2006,24(2):225-255.
    [36]Perez, P., Pulgar, R., Olea-Serrano, F., Villalobos, M., Rivas, A., Metzler, M. Pedraza, V., Olea, N., The estrogenicity of bisphenol A-related diphenylalkanes with various substituents at the central carbon and the hydroxy groups. Environmental Health Perspectives.1998.106:167-174.
    [37]Pawlowski, S., Islinger, M., Volkl, A., Braunbeck, T., Temperaturedependent vitellogenin-mRNA expression in primary cultures of rainbow trout (Oncorhynchus mykiss) hepatocytes at 14 and 18 degrees C. Toxicology In Vitro,2000.14:531-540.
    [38]Wen Y, Zhou B S, Xu Y, et al. Analysis of estrogens in environmental waters using polymer monolith in-polyether ether ketone tube solid-phase microextraction combined with high-performance liquid chromatography[J]. Journal Of Chromatography A,2006, 1133(1-2):21-28.
    [39]Sarmah A K, Northcott G L. Laboratory degradation studies of four endocrine disruptors in two environmental media[J]. Environmental Toxicology And Chemistry,2008, 27(4):819-827.
    [40]Liu R, Zhou J L, Wilding A. Simultaneous determination of endocrine disrupting phenolic compounds and steroids in water by solid-phase extraction-gas chromatography-mass spectrometry[J]. Journal Of Chromatography A,2004,1022(1-2): 179-189.
    [41]Jeannot R, Sabik H, Sauvard E, et al. Determination of endocrine-disrupting compounds in environmental samples using gas and liquid chromatography with mass spectrometry[J]. Journal Of Chromatography A,2002,974(1-2):143-159.
    [42]Hashimoto S, Horiuchi A, Yoshimoto T, et al. Horizontal and vertical distribution of estrogenic activities in sediments and waters from Tokyo Bay, Japan[J]. Archives Of Environmental Contamination And Toxicology,2005,48(2):209-216.
    [43]Fernandez M P, Noguerol T N, Lacorte S, et al. Toxicity identification fractionation of environmental estrogens in waste water and sludge using gas and liquid chromatography coupled to mass spectrometry and recombinant yeast assay [J]. Analytical And Bioanalytical Chemistry,2009,393(3):957-968.
    [44]Cabana H, Jones J P, Agathos S N. Elimination of endocrine disrupting chemicals using white rot fungi and their lignin modifying enzymes:A review[J]. Engineering In Life Sciences,2007,7(5):429-456.
    [45]Belgiorno V, Rizzo L, Fatta D, et al. Review on endocrine disrupting-emerging compounds in urban wastewater:occurrence and removal by photocatalysis and ultrasonic irradiation for wastewater reuse[J]. Desalination,2007,215(1-3):166-176.
    [46]乔玉霜,张晶,张昱,陈梅雪,杨敏.徐东耀.污水处理厂污泥中几种典型酚类内分泌干扰物的调查.环境化学.2007;26(5):671-674
    [47]Ortiz-Gomez A, Serrano-Rosales B, de L H. Enhanced mineralization of phenol and other hydroxylated compounds in a photocatalytic process assisted with ferric ions[J]. Chemical Engineering Science,2008,63(2):520-557.
    [48]Pontes R F, Moraes J E, Machulek A, et al. A mechanistic kinetic model for phenol degradation by the Fenton process[J]. Journal Of Hazardous Materials,2010; 176(1-3): 402-413.
    [49]Maleki A. Mahvi A. H. Alimohamadi M., et al. Advanced oxidation of phenol by ultraviolet irradiation in aqueous system [J]. Pakistan Journal of Biological Sciences, 2006,9(12):2338-2341.
    [50]H. M. Coleman, K. Chiang and R. Amal, Effects of Ag and Pt on photocatalytic degradation of endocrine disrupting chemicals in water, Chem. Eng. J., 2005,113(1):65-72.
    [51]Ning B, Graham N, Zhang Y P, et al. Degradation of endocrine disrupting chemicals by ozone/AOPs[J]. Ozone-Science & Engineering,2007,29(3):153-176.
    [52]Liotta L F, Gruttadauria M, Di C G, et al. Heterogeneous catalytic degradation of phenolic substrates:Catalysts activity[J]. Journal Of Hazardous Materials,2009, 162(2-3):588-606.
    [53]Rayne S, Forest K, Friesen K J. Mechanistic aspects regarding the direct aqueous environmental photochemistry of phenol and its simple halogenated derivatives. A review[J]. Environment International,2009,35(2):425-437.
    [54]Richard G. Zepp'and David M. Rates of Direct Photolysis in Aquatic Environment Cline, April Environmental Science & Technology,1977; 11(4)
    [55]Kochany, J., Bolton, J. R., Measurement of the primary rate constants for reaction of_OH radicals with benzene and some halobenzenes using an EPR spintrapping method following the photolysis of H202. Environ. Sci. Technol.1992.26:262-265.
    [56]Goi A, Trapido M. Hydrogen peroxide photolysis, Fenton reagent and photo-Fenton for the degradation of nitrophenols:a comparative study[J]. Chemosphere,2002,46(6): 913-922.
    [57]Xiao F, Inhibiting the regeneration of N-nitrosodimethylamine in drinking water by UV photolysis combined with ozonation[J]. Journal Of Hazardous Materials,2009,172(1): 518-519.
    [58]Jiao S J, Zheng S R, Yin D Q, et al. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria[J]. Chemosphere,2008,73(3):377-382.
    [59]Czaplicka M. Photo-degradation of chlorophenols in the aqueous solution[J]. Journal Of Hazardous Materials,2006,134(1-3):45-59.
    [60]Ho, P. C., Photooxidation of 2,4-dinitrotoluene in aqueous solution in the presence of hydrogen peroxide. Environ. Sci. Technol.1986.20:260-267
    [61]邓南圣,吴峰,环境光化学,化学工业出版社,2003
    [62]Goi A, Trapido M. Hydrogen peroxide photolysis, Fenton reagent and photo-Fenton for the degradation of nitrophenols:a comparative study[J]. Chemosphere,2002,46(6): 913-922.
    [63]Howard PH, Handbook of environmental fate and exposure data. Chelsea, MI:Lewis Publishers Inc.,1989.
    [64]Rosenfeldt, E. J., Linden, K. G., Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes. Environmental Science and Technology,2004,38:5476-5483.
    [65]Chen, P. J., Linden, K. G., Hinton, D. E., Kashiwada, S., Rosenfeldt, E. J.,Kullman, S. W., Biological assessment of bisphenol A degradation in water following direct photolysis and UV advanced oxidation. Chemosphere 2006.65,1094-1102
    [66]Neamtu, M., Frimmel, F. H. Degradation of endocrine disrupting bisphenol A by 254nm irradiation in different water matrices and effect on yeast cells. Water Research 2006:40:3745-3750.
    [67]Zhan, M., Yang, X., Xian, Q., Kong, L., Photosensitized degradation of bisphenol A involving reactive oxygen species in the presence of humic substances. Chemosphere. 2006,63:378-386.
    [68]Katsumata, H., Kawabe, S., Kaneco, S., Suzuki, T., Ohta, K.,Degradation of bisphenol A in water by the photo-Fenton reaction. Journal of Photochemistry and Photobiology A: Chemistry 2004.162,297-305.
    [69]Irmak, S., Erbatur,0., Akgerman, A., Degradation of 17β-estradiol and bisphenol A in aqueous medium by using ozone and ozone/UV techniques. Journal of Hazardous Materials. 2005.126:54-62.
    [70]Y. Shen, C. S. Friend, Y. Jiang, D. Jakubczyk, J. Swiatkeiwicz, and P. N. Prasad, J. Nanophotonics:Interactions, materials, and applications. Phys. Chem., B, 2000,140:75-77
    [71]Balzani V, DeCola, L. Supramoleeular Chemistry. Kluwer Academic Publishers, The Netherlands,1992.
    [72]Balzaai V. Scandoh F. Supramolecular Photochemistry, New York,1991
    [73]M. V. Alfimov Photonics of supramolecular nanostructures, Russ. Chem. Bull.,2004; 53(7):1357-1368
    [74]G. Wenz. Cyclodextrins as building blocks for supramolecular structures and functional units Angew. Chem. Int. Ed. Engl.,1994,33,803-822
    [75]Connors, K. A. The stability of cyclodextrin complexes in solution. Chem. Rev. 1996:97:1325-1357
    [76]Oswald S. Tee, Charles Mazza, Rafael Lozano-Hemmer, Javier B. Giorgi. Ester Cleavage by Cyclodextrins in Aqueous Dimethyl Sulfoxide Mixtures. Substrate Binding versus Transition State Binding. J. Org. Chem.,1994,59 (25):7602-7608
    [77]D Manickam, K Pitchumani, C Srinivasan. Selectivity in photohydroxylation of 4-nitroveratrole and nitroanisoles catalysed by cyclodextrins. Journal of Photochemistry and Photobiology A:Chemistry 2002:149:131-137
    [78]Mamoru Kamiya, Kaori Nakamura and Chizuko Sasaki Inclusion effects of β-cyclodextrins on the hydrolysis of organophosphorus pesticides. Chemosphere.1995; 30(4):653-660
    [79]Papia Chowdhury, Subhasis Panja, Sankar Chakravorti, Photophysical behaviour of 4-(imidazole-1-yl) phenol and its complexation with β-cyclodextrin in ground and excited states. Spectrochimica Acta Part A,2004,60:2295-2303.
    [80]Xixian Huang. Hidihiko ArAl. Shinpel Matsuhasi e L, Cyclodextrin Addition Effect on Radiation-induced Decomposition of Chlorophenols in Deoxygenated Water Chemistry Letters,1996:25 (2):159
    [81]Ilse Manet,Sandra Monti, Pietro Bortolus, Maurizio Fagnoni, and Angelo Albini, The Photochemistry of 4-Chlorophenol in Water Revisited:The Effect of Cyclodextrins on Cation and Carbene Reactions, Chem. Eur. J.2005,11:4274-4282
    [82]Wolf gang Knoll, MichaelM.4-Aziadamantan-l-amine:synthesis,reactions and cyclodextrin complexes. Tetrahedron Letters,2001,42(52):9161-9165
    [83]Polyakov N E, Leshina T V. β-Ionone cyclodextrins inclusion complexes 1HNMR study and photolysis. Photochemistry and Photobiology A:Chemistry,2004,161(2):261-267
    [84]Durai Manickam M C. Selectivity in photohydroxylation of 4-nitroveratrole and nitroanisoles catalysed by cyclodextrins. Photochemistry and Photobiology A: Chemistry,2002,149(1):131-137
    [85]刘常娥,段昌群.环糊精衍生物(MCD和HPCD)对甲基对硫磷紫外光降解的影响研究.农业环境科学学报,2004:23(6):1124-1127
    [86]钟宁,曾清如,刘常娥.HPCD对甲基对硫磷的增溶、洗脱与光降解.中国环境科学,2005:25(1):96-100
    [87]Kamiya M. Effects of cyclodextrins on photodegradation of organophosphorus pesticides in humic water. Chemosphere,2001;42(3): 251-255
    [88]KAMIYA M, NAKAMURA K, SASA KI C. Inclusion Effects of Cyclodextrins on Photodegradation Rates of Parathion and Paraoxon in A quatic Medium [J]. Chemosphere, 1994;28(11):1961-1966.
    [89]VILLAVERDE J, MAQUEDA C, UNDABEYTIA T, e t al. Effect of Various Cyclodextrins on Photodegradation of a Hydrophobic Herbicide in A queous Suspensions of Different Soil Colloidal Components[J]. Chemosphere,2007,69:575-584.
    [90]Lindsey ME, Xu G., Lu J and Tarr M, Enhanced Fenton degradation of hydrophobic organics by simultaneous iron and pollutant complexation with cyclodextrins. Sci. Total Environ.,2003; 307:215-229.
    [91]http://logkow. cisti. nrc. ca/logkow/index. jsp
    [92]http://web.asdi.net/
    [1]Ahmaruzzaman M. Adsorption of phenolic compounds on low-cost adsorbents:A review [J]. Advances In Colloid And Interface Science,2008,143(1-2):48-67.
    [2]Rayne S, Forest K, Friesen K J. Mechanistic aspects regarding the direct aqueous environmental photochemistry of phenol and its simple halogenated derivatives. A review[J]. Environment International,2009,35(2):425-437.
    [3]杜兵, 张彭义, 张祖麟,余刚.北京市某典型污水处理厂中内分泌干扰物的初步调查.环境科学,2004,25(1):114-116
    [4]AIcock R, Sweetman A, Jones KC. Assessment of Organic Contarninant Fate In W aste Water Treatment Plants I:Selected Compounds and Physicochemical Properties[J]. Chemosphere,1999,38(10):2247-2262.
    [5]Johnson AC. Sumpter jP. Removal of Endoc rine disrupting Chemicals in Activated Sludge Treatment Works[J]. Environ. Sci.&Technol.2001,35(24):4697-4703.
    [6]Duff, S. J. B., Kennedy, K. J., Brady, A. J., Treatment of dilutephenol/PCP wastewaters using the upflow anaerobic sludge blanket (UASB) reactor. Water Res.1995,29 (2): 645-651.
    [7]Fang, H. H. P., Chen, T., Li, Y. Y., Chui, H. K., Degradation of phenol in wastewater in an upf low anaerobic sludge blanket reactor. Water Res.1996,30 (6)1353-1360.
    [8]Fang, H. H. P., Zhou, G. M., Degradation of phenol and p-cresol in reactors. Water Sci. Technol.2000.42 (5-6):237-244.
    [9]Szejtli, J. Cyclodextrin technology. Dordrecht:Kluwer Academic; 1988.
    [10]Allan R. Hedges, Industrial Applications of Cyclodextrins, Chem. Rev.1998,98: 2035-2044.
    [11]Xixian Huang. Hidihiko ArAl. Shinpel Matsuhasi e L, Cyclodextrin Addition Effect on Radiation-induced Decomposition of Chlorophenols in Deoxygenated Water Chemistry Letters,1996:25(2):159
    [12]刘常娥,段昌群.环糊精衍生物(MCD和HPCD)对甲基对硫磷紫外光降解的影响研究.农业环境科学学报,2004;23(6):1124-1127
    [13]钟宁,曾清如,刘常娥.HPCD对甲基对硫磷的增溶、洗脱与光降解.中国环境科学,2005;25(1):96-100
    [14]Durai Manickam M C. Selectivity in photohydroxylation of 4-nitroveratrole and nitroanisoles catalysed by cyclodextrins. Photochemistry and Photobiology A: Chemistry,2002,149(1):131-137
    [15]Mamoru Kamiya, Kaori Nakamura and Chizuko Sasaki Inclusion effects of β-cyclodextrins on the hydrolysis of organophosphorus pesticides. Chemosphere.1995; 30(4):653-660
    [16]Polyakov N E, Leshina T V. β-Ionone cyclodextrins inclusion complexes 1HNMR study and photolysis. Photochemistry and Photobiology A:Chemistry,2004,161(2):261-267
    [17]Villaverde J, Maqueda C, Undabeytia T, e t al. Effect of Various Cyclodextrins on Photodegradation of a Hydrophobic Herbicide in A queous Suspensions of Different Soil Colloidal Components[J]. Chemosphere,2007,69:575-584.
    [1]Fakayode S 0, Lowry M, Fletcher K A, et al. Cyclodextrins host-guest chemistry in analytical and environmental chemistry[J]. Current Analytical Chemistry,2007,3(3): 171-181.
    [2]Ishiwata S, Kamiya M. Cyclodextrin inclusion:Catalytic effects on the degradation of organophosphorus pesticides in neutral aqueous solution[J]. Chemosphere,1999,39(10): 1595-1600.
    [3]J. Szejtli, Cyclodextrins and Their Inclusion Complexes, Akademiai Kiado, Budapest, 1982.
    [4]Chowdhury P, Panja S, Chakravorti S. Photophysical behaviour of 4-(imidazole-1-yl) phenol and its complexation with beta-cyclodextrin in ground and excited states[J]. Spectrochimica Acta Part A-Molecular And Biomolecular Spectroscopy,2004,60(10): 2295-2303.
    [5]Dass CR, Jessup W, Apolipoprotiens A-I. Cyclodextrins and liposomes as potential drugs for the reversal of atherosclerosis. J Pharm Pharmacol 2000;52:731-761
    [6]Szet jli J. Introduction and general overview of cyclodextrin chemistry. Chem Rev 1998; 98:1743-1753.
    [7]Eastburn SD, Tao BY. Applications of modified cyclodextrins. Biotechnol Adv 1994; 12:325-339.
    [8]Nagata T, Yamamoto K, Yoshikiyo K, et al. Kinetic Study on the Interactions of Cyclodextrins with Organic Phosphates and Thiophosphates[J]. Bulletin Of The Chemical Society Of Japan,2009,82(1):76-80.
    [9]Villaverde J, Maqueda C, Undabeytia T, et al. Effect of various cyclodextrins on photodegradation of a hydrophobic herbicide in aqueous suspensions of different soil colloidal components[J]. Chemosphere,2007,69(4):575-584.
    [10]Nakaji-Hirabayashi T, Endo H, Kawasaki H, et al. Inclusion of bisphenols by a self-assembled monolayer of thiolated calix[6]arene on a gold surface [J]. Environmental Science & Technology,2005,39(14):5414-5420.
    [11]Enhanced photodegradation of bisphenol A in the presence of β-cyclodextrin under UV light Wang, Guanghui; Wu, Feng; Zhang, Xu; Luo, Mingdao; Deng, Nansheng Journal of Chemical Technology & Biotechnology,2006; 81(5):805-811.
    [12]Xiao J Q, Wang G H, Xue X F, et al. Enhanced photodegradation behavior of bisphenol F in the presence of beta-cyclodextrin under UV light[J]. Environmental Engineering Science,2007,24(6):812-820.
    [13]Paolis F D, Kukkonen J. Binding of organic pollutants to humic and fulvic acids: influence of pH and the structure of humic material [J]. Chemosphere,1997,34 (8) 169321704
    [14]Watanabe N, Horikoshi S, Kawabe H, Sugie Y, Zhao JC and Hidaka H, Photodegradation mechanism for bisphenol A at the Ti02/H20 interfaces, Chemosphere,2003,52:851-859.
    [15]Katsumata H, Kawabe S, Kaneco S, Suzuki T and Ohta K, Degradation of bisphenol A in water by the photo-Fenton reaction, J. Photochem. Photobiol. A.,2004,162:297-305.
    [16]Zhou DN, Wu F, Deng NS and Xiang W, Photooxidation of bisphenol A(BPA) in water in the presence of ferric and carboxylate salts, Water Res.,2004,38:4107-4116.
    [1]Jo'zsef Szejtli, Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev.1998; 98,1743-1753
    [2]续浩,陈亮,,马丽花,水溶液中环糊精包结物的包结常数的测定方法分析.测试技术与仪器.2002:2(8):72-80
    [3]Jozsef Szejtli. Complex dissociation association equilibria and methods for determination of the stability constants-Spectroscopic methods [M]. Cyclodextrins Technology,1988; Charpter 2,148.
    [4]Benesi H A, Hildebrand J H. A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons [J]. J. Am. Chem. Soc.; 1949,71 (8):2703-2707.
    [5]Hamai S, et al. Exciple formation between perylene and N, N2 dimethylaniline in a ternary inclusion compound withγ-cyclodextrin in H202 ethanol (7:3) mixture [J]. Bull Chem. Soc. Jpn.,1991,64 (2):431-438.
    [6]Hamai S, et al. Inclusion of azulene and alcohol by β-CD in aqueous solution[J] J. Am. Chem. Soc.,1992,114(15):6012-6016.
    [7]Pozdnyakov I. P., Plyusnin V. F., Grivin V. P., Vorobyev D. Yu, Bazhin N. M., Pages S. Vauthey E. Photolysis of sulfosalicylic acid in aqueous solutions over a wide pH range [J]. Photochem. Photobiol. A:Chem.2006.181 (1) 37-43.
    [8]D. F. Eaton. Reference materials for fluorescence measurement. Pure Appl. Chem; 1988:60:1107-1114.
    [9]Mamoru Kamiya, Setsuko Mitsuhashi and Masakazu Makino Catalytic properties of cyclodextrins on the hydrolysis of parathion and paraoxon in aquatic medium containing humic acids. Chemosphere.1992; 25 (12):1783-1796
    [10]Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (.OH/.O-) in Aqueous Solution, J. Phys. Chem. Ref. Data,1988; 17:513.
    [11]Hare, P. M.; Price, E. A.; Bartels. D. M. Hydrated electron extinction coefficient revisited, J. Phys. Chem. A,2008,112(30):6800-6802.
    [12]C. Richard, G. Grabner, Mechanism of phototransformation of phenol and derivatives in aqueous solution. The Handbook of Environmental chemistry, V.2., Part L, Environmental photochemistry (ed. by P. Boule) Springer-Verlag Berlin Heidelberg 1999. P.218
    [13]Da-Ying Dou, Yong-Biao Liu, Hong-Wei Zhao, Ling Kong, Si-De Yao. Radiolysis and photolysis studies on active transient species of diethylstilbestrol J. Photochem. Photobiol. A:Chem.2005.171(5):209-214.
    [14]Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution[J], J. Phys. Chem. Ref. Data,1988,17:513-890.
    [15]Pozdnyakov I. P., Plyusnin V. F., Grivin V. P., Vorobyev D. Yu, Bazhin N. M., Pages S., Vauthey E. Photolysis of sulfosalicylic acid in aqueous solutions over a wide pH range. J. Photochem. Photobiol. A:Chem.2006.181(1):37-43.
    [16]I. P. Pozdnyakov, V. F. Plyusnin, V. P. Grivin, Photophysics and Photochemistry of 2-Aminobenzoic Acid Anion in Aqueous Solution. J. Phys. Chem. A.2009,113 (51): 14109-14114.
    [17]Joschek H.-J., Miller S.I. Photooxidation of Phenol, Cresols, and Dihydroxybenzenes J. Am. Chem. Soc.1966,88 (14):3273-3281
    [18]Ye M., Schuler R. H. Second-order combination reactions of phenoxyl radicals. J. Phys. Chem.1989.93 (5):1898-1902
    [19]Neta P., Grodkowski J. Rate Constants for Reactions of Phenoxyl Radicals in Solution. J. Phys. Chem. Ref. Data.2005.34(1):109-199.
    [20]Wang G H, Li H F, Yu R, et al. beta-cyclodextrin enhanced photodegradation of bisphenol C under UV light [J]. Fresenius Environmental Bulletin,2007,16(6):690-696.
    [21]Wang G H, Qi P R, Xue X F, et al. Photodegradation of bisphenol Z by UV irradiation in the presence of beta-cyclodextrin[J]. Chemosphere,2007,67(4):762-769.
    [22]M Kamiya, K Nakamura, C Sasaki, Inclusion effects of cyclodextrins on photodegradation rates of parathion and paraoxon in aquatic medium. Chemosphere,1994, 28(11):1961-1966.
    [1]Ferreira M M. Polycyclic aromatic hydrocarbons:a QSPR study[J]. Chemosphere,2001, 44(2):125-146.
    [2]Katritzky A R, Slavov S H, Stoyanova-Slavova I B, et al. Correlation of the Photolysis Half-Lives of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans with Molecular Structure[J]. Journal Of Physicalchemistry A,2010,114(7):2684-2688.
    [3]Rayne S, Forest K, Friesen K J. Mechanistic aspects regarding the direct aqueous environmental photochemistry of phenol and its simple halogenated derivatives. A review[J]. Environment International,2009,35(2):425-437.
    [4]Pei jnenburg WJGM, Debeer KGM, Dehaan MWA, Denhollander HA, Stegeman MHL, Verboom H. Development of a structure reactivity relationship for the photohydrolysis. Environmental science & technology,1992,11(26):2116-2121.
    [5]Stegeman MHL, Peijnenburg WJGM, Verboom H. A quantitative structure-activity relationship for the direct photohydrolysis of meta-substituted halobenzene derivatives in water. Chemosphere,1993; 26:837-849.
    [6]Niu J F, Shen Z Y, Yang Z F, et al. Quantitative structure-property relationships on photodegradation of polybrominated diphenyl ethers[J]. Chemosphere,2006,64(4): 658-665.
    [7]Katritzky A R, Slavov S H, Stoyanova-Slavova I B, et al. Correlation of the Photolysis Half-Lives of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans with Molecular Structure[J]. Journal Of Physical Chemistry A,2010,114(7):2684-2688.
    [8]Mekenyan OG, Ankley GT, Veith GD, Call DJ. QSARs for photoinduced toxicity:I. Acutelethality of polycyclic aromatic hydrocarbons to Daphnia magna. Chemosphere 1994:28:567-582.
    [9]Chen JW, Kong LR, Zhu CM, Huang QG, Wang LS. Correlation between photolysis rate constants of polycyclic aromatic hydrocarbons and frontier molecular orbital energy. Chemosphere.1996; 33:1143-1150.
    [10]Chen JW, Pei jnenburg WJGM, Quan X, Zhao Y, Xue D, Yang F. The application of quantum chemical and statistical technique in developing quantitative structure-property relationships for the photohydrolysis quantum yields of substituted aromatic halides. Chemosphere.1998a; 37:1169-1186.
    [11]Chen JW, Peijnenburg WJGM, Wang L. Using PM3 Hamiltonian, factor analysis and regression analysis in developing quantitative structure-property relationships for photohydrolysis quantum yields of substituted aromatic halides. Chemosphere,1998, 36:2833-2853.
    [12]Chen JW, Peijnenburg WJGM, Quan X, Yang F. Quantitative structure-property relationships for direct photolysis quantum yields of selected polycyclic aromatic hydrocarbons. Sci Total Environ.2000,246:11-20.
    [13]Chen J W, Wang D G, Wang S L, et al. Quantitative structure-property relationships for direct photolysis of polybrominated diphenyl ethers [J]. Ecotoxicology And Environmental Safety,2007,66(3):348-352.
    [14]Fang L, Huang J, Yu G, et al. Quantitative structure-property relationship studies for direct photolysis rate constants and quantum yields of polybrominated diphenyl ethers in hexane and methanol[J]. Ecotoxicology And Environmental Safety,2009,72(5): 1587-1593.
    [15]Lu GN, Dang Z, Tao XQ, Peng PA, Zhang DC. QSPR on direct photolysis half-lives of PAHs in water surface. J Theoret Comp Chem.2005; 4:811-822
    [16]Kan A T et al. Irreversible adsorption of naphthalene and tetrachlorobiphenyl to Lula and surrogate sediments [J]. Environ Sci Technol,1997,31:2176 -2185

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700