物体形状的表示与分析关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
形状是反映物体性质的重要载体。它是目标识别、多媒体检索、医学图像分析与辅助诊断、计算机图形学与辅助设计等众多研究领域中的重要研究对象。形状蕴含着极为丰富的变化,形状的本质特性往往在一些形变中得到体现,然而又常常为另一些形变所干扰。这是因为形状变化既包含了反映物体特性的各种自身形变,也包含了由噪声、提取误差等干扰带来的外部形变。因此在构造形状表现时,一般需要该表现对各种外部干扰具有鲁棒性,还要在不同应用中对一些的自身形变具有不变性。
     基于上述背景,本文主要从鲁棒性和不变性的角度出发,研究样条与多边形的形状表示,排除噪声影响,有效提取形状上的显著几何特征点;研究对相似变换不变的非刚体形变表示,衡量椎间盘形状的差异,并应用至椎间盘退变辅助诊断之中。本文主要研究内容及其创新之处如下:
     1.开展基于样条的平面形状表示研究。分析了弹性二次曲线模型的几何意义,揭示了模型中能量权重因子和样条重叠度因子对模型保持形状特征的影响作用。针对原模型在表现形状时仅能“各处同性”地保持几何特征的问题,提出一种改进的弹性二次曲线模型来表现形状,通过对离散曲线演化模型获取形状各处的几何特征显著度,指导模型能量权重因子根据形状特征显著度变化,在重构形状时能够自适应地保持其几何特征。将该模型与交互式LiveWire算法相结合,应用至图像分割中。
     2.开展基于样条的三维形状表示研究,提出用于曲面表示的弹性二次曲面模型,并基于该算法表示三维形状曲面。根据弹性二次曲线表示平面形状的基本思想,推广至用重叠的二次曲面来重构表示曲面,即通过重叠的参数域构造彼此重叠的二次曲面片,根据相邻面片之间的0阶与1阶不连续势能建立二次型势能函数。经过对整个曲面的逐点迭代,获得稳定且保持显著几何特征的三维曲面表示。该模型能将受到较大噪声干扰的三维人脸曲面细节较好地恢复出来。
     3.研究形状的多边形高效近似及多尺度的显著特征点提取。用ε等距同构的概念描述形状多边形表示,提出构造平面凸曲线的逐级ε等距同构重构,该重构能有效地控制近似误差,且与视觉显著特征之间有明确的量化关系。在此基础上,通过对形状轮廓的特征点删除、添加、调整等机制,构造出一种近似效率高、对初始化不敏感、单参数控制的多尺度显著特征点提取/形状多边形近似算法。
     4.通过描述椎间盘形状非刚体形变来提取其差异,应用于椎间盘退化辅助诊断之中。提出将椎间盘形状变换至对相似变换不变、只包含非刚体形变信息的形状空间中,通过估算此空间中两点间测地线来衡量椎间盘形状间的相似度。同时提出形状与纹理相结合的思路来更全面地反映椎间盘之间的差异。并将主动学习思路引入分类器训练之中,提出一种改进的直推式实验设计算法来更好地选择有代表性的样本送给医生标识,以期使用少量的样本也能训练出准确率较高的分类器,减轻人工标识训练样本的负担。
Shapes carry many important properties of the objects in the real world. They play a central role in research fields such as object recognition, multimedia search, medical image analysis and computer assisted design&computer graphics. The shape variations are ubiquitous. Some of the variations reveal the properties of an object while the rest conceal them. This is due to the fact that the shape variations come from both various inside factors and outside interruptions. As a result, a shape should be ideally represented in the way that it should not only be robust to all the noises but also be invariant to some of the intrinsic variations in specific applications.
     Orientating at the properties of robustness and invariance, we conduct research on shape representation as well as its analysis and application in this thesis. Generally, we first propose new spline and polygonal shape representations to eliminate the noise effect, with the aim at preserving and extracting salient geometric shape features. Then we research the similar-transforms-invariant representation on non-rigid shape deformation and apply it in the computer aided diagnosis on intervertebral disc degeneration. The main contributions in the dissertation are as follows:
     1. The research on planar shape representation by a new type of spline is conducted. We first analyze the geometric properties of this spline model called elastic quadratic wire (EQW) and uncover the parameters' affection on the performance of the EQW model. Taking the advantage of this, an improved version of the EQW model is proposed. The geometric feature along the contour can be adaptively preserved according to the saliency obtained by the discrete curve evolution (DCE) method. We then further incorporated the adaptive EQW model with an interactive image segmentation technique called Live Wire and apply it in extracting the objects' boundaries in a few image modalities.
     2. An elastic quadratic patch (EQP) model is proposed, which is extended from the basic idea of EQW model, for robustly representing three dimensional shapes. In the model, an energy function quantifying0th and1st discontinuity is constructed based on overlapping quadratic patches for each controlling point and its neighborhood on the surface. This function is in the quadratic form and can be easily minimized explicitly through a specific vector of quadratic surface parameters. The EQP representation of the whole surface, which is as stable and geometry-preserving as the EQW model, can be then obtained through a pointwise iteration. The EQP model is able to preserve the details of the3D facial surface from the relatively high noise levels.
     3. The research on planar shape representation by an efficient polygonal approximation is conducted. We describe the polygonal representation as the problem of the ε-isomerty shape reconstruction, which has some appealing properties such as the rigid descent reconstructing error and the quantitative relationship with a visual saliency metric. The mechanisms of point deleting, adding and adjusting are further proposed and incorporate into a new feature point extraction algorithm, which is efficient in approximating a shape, insensitive to arbitrary initialization and allows multiscale geometric features extraction.
     4. A novel framework of computer aided diagnosis (CAD) on disc degeneration is proposed. The disc degeneration is described with both shape and texture features. We quantify the non-rigid deformation between two shapes by approximating the geodesic length in the shape space. Similarly, the texture difference is measured with Bhattacharyya distance between intensity distributions of two disc regions. Then two measures are linearly combined as the appearance feature. We also introduce the idea of active learning into the CAD framework and present an improved transductive experimental design to better select representative instances for training the classifier. This technique achieves the comparable classifying accuracy with fewer training data and therefore alleviates the physicians' burden.
引文
[1]丁险峰,吴洪,张宏江,马颂德.形状匹配综述[J].自动化学报,2001,27(5):678-694
    [2]do Carmo. Differential geometry of curves and surfaces [M]. Prentice Hall.1976
    [3]Pottmann H, Asperl A, Hofer M, Kilian A. Architekturgeometrie [M]. Springer,2010
    [4]Thompson D W. On Growth and Form (reprint) [M]. Cambridge University Press.1992.
    [5]Guo Q, Guo F, Shao J Q. Irregular shape symmetry analysis:theory and application to quantitative galaxy classification [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,2010,32(10):1730-1743
    [6]Liu W, Srivastava A, Zhang J F. A mathematical framework for protein structure comparison [J]. PLoS Computational Biology,2011,7(2):e1001075
    [7]Marszalek M, Schmid C. Accurate object recognition with shape masks [J]. International Journal of Computer Vision,2012,97(2):191-209
    [8]Tangelder J W H, Veltkamp R C.A survey of content based 3d shape retrieval methods [J], Multimedia Tools Application,2008,39(4):441-471
    [9]Bankman I, Handbook of Medical Image Processing and Analysis (2nd Edition) [M], Elsevier, 2008
    [10]Bronstein A M, Bronstein M M, Kimmel R. Three-dimensional face recognition [J]. International Journal of Computer Vision,2005,64(1):5-30
    [11]Kilian M, Mitra N, Pottmann H. Geometric modeling in shape space [J]. ACM Transaction on Graphics,2007,26(3):64
    [12]Liu H R, Latecki L J, Liu W Y. A unified curvature definition for regular, polygonal, and digital planar curves [J]. International Journal of Computer Vision,2008,80(1):104-124
    [13]Bai X, Latecki L J, Liu W Y. Skeleton pruning by contour partitioning with discrete curve evolution [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,2007,29(3): 449-462
    [14]Cremers D, Rousson M, Deriche R. A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape [J]. International Journal of Computer Vision,2007, 72(2):195-215
    [15]Beichel R, Bischof H, Leberl F, Sonka M. Robust active appearance models and their application to medical image analysis [J]. IEEE Transaction on Medical Imaging,2005,24(9): 1151-1169
    [16]Younes L. Spaces and manifolds of shapes in computer vision [J]. Image and Vision Computing, 2012,30(6-7):389-397
    [17]Lui Y M. Advances in matrix manifolds for computer vision [J]. Image and Vision Computing, 2012,30(6-7):380-388.
    [18]Srivastava A, Turaga P, Kurtek S. On advances in differential-geometric approaches for 2D and 3D shape analyses and activity recognition [J]. Image and Vision Computing,2012, 30(6-7):398-416
    [19]Tenenbaum J, Silva D, Langford J. A global geometric framework for nonlinear dimensionality reduction [J]. Science,2000,290(5500):2319-2323
    [20]Roweis S, Saul L. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000,290(5500):2323-2326.
    [21]Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation [J]. Neural Computation,2003,15(6):1373-1396
    [22]Zhang D S, Lu G J. Review of shape representation and description techniques [J]. Pattern Recognition,2004,37(1):1-19
    [23]周瑜,刘俊涛,白翔.形状匹配方法研究与展望[J].自动化学报,2012,38(6):889-1010.
    [24]Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,2002,24(4):509-522.
    [25]冈萨雷斯著,阮秋琦等译.数字图像处理(第二版)[M].电子工业出版社,2007.
    [26]Cootes T F, Cooper D, Taylor C J, Graham J. Active Shape Models-Their Training and Application[J]. Computer Vision and Image Understanding.1995,61(1):38-59.
    [27]Cootes T F, Edwards G J, Taylor C J. Active Appearance Models [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,2001,23(6):681-685
    [28]Bronstein A M, Bronstein M M, Kimmel R. Numerical Geometry of Non-Rigid Shapes [M]. Springer,2008.
    [29]Olivier G, Koen T. Hearing shapes of drums--mathematical and physical aspects of isospectrality [J]. Reviews of Modern Physic,2010,82 (3):2213-2255
    [30]Kaick O, Zhang H, Hamarneh G, Cohen-Or D. A survey on shape correspondence [J]. Computer Graphics Forum,2011,30(6):1681-1707
    [31]Ray B, Ray K. A new split-and-merge technique for polygonal approximation of chain coded curves [J], Pattern Recognition Letters,1995,16(2):161-169.
    [32]Teh C, Chin R. On the detection of dominant points on digital curves [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,1989,11(11):859-872.
    [33]Parvez M T, Mahmoud S A. Off-line Arabic handwritten text recognition:a survey [J]. ACM Computing Surveys. In press.
    [34]Rueda S, Udupa J K, Bai L. Shape modeling via local curvature scale [J]. Pattern Recognition Letters,2010,31(4):324-336
    [35]Mortenson M E. Geometric modeling [M]. Wiley New York,1985.
    [36]De Boor C. A practical guide to splines [M]. Springer,1978.
    [37]Bookstein F L. Principal warps:Thin-plate splines and the decomposition of deformations [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,1989,11(6):567-585
    [38]Kubota T. A Shape representation with elastic quadratic polynomials-preservation of high curvature points under noisy conditions [J]. International Journal of Computer Vision,2009, 82(2):133-155.
    [39]Flickner M, Hafner J, Rodriguez E J, Jorge L C. Quasi-orthogonal spline bases and applications to least-squares curve fitting of digital images [J]. IEEE Transaction on Image Processing,1996, 5(1):71-88
    [40]Philippe S M, Hillel R, Gerard M. B-spline contour representation and symmetry detection [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,1993,15(11):1191-1197
    [41]Smith R L, Price J M, Howser L M. A smoothing algorithm using cubic spline functions, NASA TN D-7397 [TR]. NASA Technical Note. National Aeronautics and Space Administration, 1974.
    [42]Brigger P, Hoeg J, Unser M. B-Spline snakes:A flexible tool for parametric contour detection [J]. IEEE Transactions on Image Processing,2000,9(9):1484-1496
    [43]Cremers D, Tischhauser F, Weickert J, Schnorr C. Diffusion snakes:Introducing statistical shape knowledge into the Mumford-shah functional [J]. International Journal of Computer Vision,2002,50(3):295-313.
    [44]Precioso F, Barlaud M, Blu, T, Unser M. Robust realtime segmentation of images and videos using a smooth-spline snake-based algorithm [J]. IEEE Transaction on Image Processing,2005, 14(7):910-924
    [45]Ling H, Jacobs D W. Shape classification using the inner-distance [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(2):286-299
    [46]Xie J, Heng P A, Shah M. Shape matching and modeling using skeletal context [J]. Pattern Recognition,2008,41(5):1756-1767
    [47]韩敏,郑丹晨.基于模糊形状上下文特征的形状识别算法[J].自动化学报,2012,38(1):68-75
    [48]Hu R X, Jia W, Ling H, Huang D S. Multiscale distance matrix for fast plant leaf recognition [J]. IEEE Transaction on Image Processing. In press.
    [49]Dijkstra E W. A note on two problems in connexion with graphs [J]. Numerische Mathematik, 1965,1(7):269-271.
    [50]Sethian J A. A fast marching level set method for monotonically advancing fronts [J], National Academy of Sciences (PNAS),1996,93 (4):1591-1595.
    [51]Kimmel R, Sethian J A.. Computing geodesic paths on manifolds [J]. Proceedings of National Academy of Sciences(PNAS),1998,95(15):8431-8435
    [52]Surazhsky T, Kirsanov D, Gortler S, Hoppe H. Fast exact and approximate geodesics on meshes [C]. Proceedings of SIGGRAPH,2005,553-560.
    [53]Elad-Elbaz A, Kimmel R. On bending invariant signatures for surfaces [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,2003,25(10):1285-1295
    [54]Latecki L, Lakamper R. Convexity rule for shape decomposition based on discrete contour evolution [J]. Computer Vision and Image Understanding,1999,73(3):441-454
    [55]Ward A D, Hamarneh G. The groupwise medial axis transform for fuzzy skeletonization and pruning [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,2010,32(6): 1084-1096
    [56]Siddiqi K, Shokoufandeh A, Dickinson S J, Zucker S W. Shock graphs and shape matching [J]. International Journal of Computer Vision,1999,35(1):13-32
    [57]Macrini D, Dickinson S J, Fleet D J, Siddiqi K. Bone graphs:Medial shape parsing and abstraction [J]. Computer Vision and Image Understanding,2011,115(7):1044-1061
    [58]Stolpner S, Whitesides S, Siddiqi K. Sampled medial loci for 3D shape representation [J]. Computer Vision and Image Understanding,2011,115(5):695-706
    [59]Stolpner S, Kry P G, Siddiqi K. Medial spheres for shape approximation [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,2012,34(6):1234-1240
    [60]Davies R H, Twinng C J, Cootes T F, Waterton J C, Taylor C J. A minimum description length approach to statistical shape modeling [J]. IEEE Trans. on Medical Imaging,2002,21(5): 525-537.
    [61]Liu J M, Udupa J K. Oriented active shape models [J]. IEEE Transaction on medical imaging. 2009,28(4):571-584.
    [62]Klassen E, Srivastava A, Washington M. Analysis of planar shapes using geodesic paths on shape space [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(3): 372-383
    [63]Srivastava A, Klassen E, Joshi S, Jermyn I. Shape analysis of elastic curves in Euclidean spaces [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,2011,33(7):1415-1428
    [64]Srivastava A, Joshi S H, Washington M, et al. Statistical shape analysis:clustering, learning, and testing [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(4): 590-602
    [65]Huckemann S, Hotz T, Munk A. Intrisinc MANOVA for Riemannian manifolds with an application to Kendall's space of planar shapes [J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2010,32(4):593-603
    [66]Samir C, Srivastava A, Daoudi M, Klassen E. An intrinsic framework for analysis of facial surfaces [J]. International Journal of Computer Vision,2009,82 (1):80-95.
    [67]Su J, Dryden I L, Klassen E, Srivastava A. Fitting smoothing splines to time-indexd, noisy points on nonlinear manifolds [J]. Iamge and Vision Computing,2012,30(6-7):428-442
    [68]史泽林,刘云鹏,李广伟.基于李代数的变形目标跟踪[J].自动化学报,2012,38(3):420-429.
    [69]刘云鹏,李广伟,史泽林.基于Grassmann流形的仿射不变形状识别[J].自动化学报,2012,38(2):249-259.
    [70]Turaga P, Veeraraghavan A, Srivastava A, Chellappa R. Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(11):2273-2286
    [71]王斌.一种用于形状描述的拱高半径复函数[J].电子学报,2011,39(4):831-836
    [72]王斌.一种基于多级弦长函数的傅立叶形状描述子[J].计算机学报,2010,33(12):2387-2396
    [73]Bronstein A M, Bronstein M M, Kimmel R. Generalized multidimensional scaling:a framework for isometry-invariant partial surface matching [J]. Proceedings of National Academy of Sciences (PNAS),2006,103(5):1168-1172
    [74]Ling H, Okada K. An efficient earth mover's distance algorithm for robust histogram comparison [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,2007,29(5): 840-853
    [75]Bronstein A M, Bronstein M M, Kimmel R. Topology-invariant similarity of nonrigid shapes [J]. International Journal of Computer Vision,2009,81(3):281-301
    [76]Bronstein A M, Bronstein M M.Shape recognition with spectral distances [J], IEEE Transaction on Pattern Analysis and Machine Intelligence,2011,33(5):1065-1071
    [77]Bronstein A M, Bronstein M M, Kimmel R. Analysis of two-dimensional non-rigid shapes [J]. International Journal of Computer Vision,2008,78(1):67-88
    [78]Bronstein A M, Bronstein M M, Buckstein A M, Kimmel R. Partial similarity of objects, or how to compare a centaur to a horse [J]. International Journal of Computer Vision,2009,84(2): 163-183
    [79]Felzenszealb P F, Zabih R. Dynamic programming and graph algorithms in computer vision [J]. IEEE Transactions Pattern Analysis and Machine Intelligence,2011,33(4):721-740
    [80]Chui H, Rangarajan. A new point matching algorithm for non-rigid registration [J]. Computer Vision and Image Understanding,2003,89(2-3):114-141
    [81]Wang Z Z, Liang M, Li Y F. Using diagonals of orthogonal projection matrices for affine invariant contour matching [J]. Image and Vision Computing,2011,29(10):681-692
    [82]Bisotti S., Marini S., Spagnuolo M., Falcidieno B. Sub-part correspondence by structural descriptors of 3D shapes [J]. Computer-Aided Design,2006,38(9):1002-1019.
    [83]Aiger D, Mitra N J, Cohen-or D.4-points congruent sets for robust surface registration [J]. ACM Transaction on Graphics,2008,27(3):1-10
    [84]Styner, M Oguz I, Xu S, Brechbuhler C, Pantazis D, Levitt J, Shenton M E, Gerig G. Framework for the statistical shape analysis of brain structures using SPHARM-PDM [C], MICCAI Open Science Workshop,2006.
    [85]Huysmans T, Sijbers J, Verdonk B.Automatic construction of correspondence for tubular surfaces [J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2010, 32(4):636-651
    [86]Cootes T F, Twining C J, Petrovic V S, Babalola K O, Taylor C J. Computing accurate correspondences across groups of images [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,2010,32(11):1994-2005
    [87]Yan P K, Xu S, Turkbey B, Kruecker J. Adaptively learning local shape statistics for prostate segmentation in ultrasound [J]. IEEE Transaction on Biomedical Engineering,2011,58(3): 633-641
    [88]Davies R, Twining C J, Cootes T F, Taylor C J. Building 3-D statistical shape models by direct optimization [J]. IEEE Transaction on Medical Imaging,2010,29(4):961-981
    [89]Fletcher P T, Joshi S, Lu C, Pizer S M. Principal geodesic analysis for the study of nonlinear statistics of shape [J]. IEEE Transaction Medical Imaging,2004,23 (8):995-1005.
    [90]Joshi S, Srivastava A. Intrinsic Bayesian active contours for extraction of object boundaries in images [J]. International Journal of Computer Vision,2009,81(3):331-355
    [91]Gerber S, Tasdizen T, Fletcher T, Joshi S C, WhitakerR T. Manifold modeling for brain population analysis [J]. Medical Image Analysis 14(5):643-653
    [92]Lin Z, Davis L S. Shape-based human detection and segmentation via hierarchical part-template matching [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,2010,32(4): 604-618
    [93]Pennec X, Fillard P, Ayache N. A Riemannian framework for tensor computing [J]. International Journal of Computer Vision,2006,66(1):41-66
    [94]Zheng B, Takamatsu J, Ikeuchi K. An adaptive and stable method for fitting implicit polynomial curves and surfaces [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010,32(3):561-568.
    [95]Yang W, Song S H, Tan Z J. Adaptive variational curve smoothing based on level set method [J]. Journal of Computational Physics,2009,228(12):6333-6348.
    [96]Droske M, Bertozzi A. Higher-order feature-preserving geometric regularization [J]. SIAM Journal on Imaging Sciences,2010,3(1):21-51.
    [97]Qiu G P, Yuen P C. Interactive imaging and vision:Ideas, algorithms and applications [J]. Pattern Recognition,2010,43(2):431-433.
    [98]Falcao A, Udupa J K, Samarasekera S. User-steered image segmentation paradigms:Live-wire and live-lane [J]. Graphical Models and Image Processing,1998,60(4):233-260.
    [99]罗希平,田捷.一种改进的交互式医学图像序列分割方法[J].电子学报,2003,31(01):29-32
    [100]Liang J M, McInerney T, Terzopoulos D. United snakes [J]. Medical Image Analysis,2006, 10(2):213-233
    [101]Yao J H, Chen D. Live level set:A hybrid method of livewire and level set for medical image segmentation [J]. Medical Physics,2008,35(9):4112-4120
    [102]Kimachi A, Ando S. Real-time phase-stamp range finder using correlation image sensor [J]. IEEE Sensor Journal.2009,9(12):1784-1792
    [103]詹曙,常虹,蒋建国,Ando S.基于相关型图像传感器三维人脸成像的三维AAMs人脸识别方法的研究[J].中国图象图形学报,2008,13(10):2059-2063
    [104]Peyre G Image denoising with wavelets [CP]. (2009-08-08) http://www.ceremade.dauphine.fr/~peyre/numerical-tour/tours/denoisingwav_2_wavelet_2d/
    [105]蒋建国,常虹,詹曙, Ando S基于相关型图像传感器的3D AAMs人脸特征自动定位[J].电子测量与仪器学报,2009,23(5):74-78
    [106]Veltkamp R C, Hagedoorn M. State of the art in shape matching, in Principles of Visual Information Retrieval [M]. Springer,2001.
    [107]Benjamin B, Daniel A K, Dietmar S, Tobias S, Dejan V V. Feature-based similarity search in 3D object databases [J]. ACM Computing Surveys,2005,37(4):345-387
    [108]Tangelder J W H, Veltkamp R C.A survey of content based 3D shape retrieval methods [J]. Multimedia Tools Application,2008,39(3):441-471
    [109]Attneave F. Some informational aspects of visual perception [J], Psychological Review,1954, 61 (3):183-193
    [110]Manay S, Cremers D, Hong B, Yezzi A J, Soatto S. Integral invariants for shape matching [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,2006,28(10):1602-1618.
    [111]Xu C, Liu J, Tang X.2D Shape matching by contour flexibility [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,2009,31(1):180-186.
    [112]Pottmann H, Wallner J, Yang Y L, Lai Y K, Hu S M. Principal curvatures from the integral invariant viewpoint [J]. Computer Aided Geometric Desig,2007,24(8-9):428-442
    [113]Lai Y K, Hu S M, Fang T. Robust principal curvatures using feature adapted integral invariants [C]. In Proceeding of the Symposium on Solid and Physical Modeling,2009:325-330
    [114]Teh C, Chin R. On the detection of dominant points on digital curves [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,1989,11(8):859-872
    [115]Pinheiro A M G, Ghanbari M. Piecewise approximation of contours through scale-space slection of dominant points [J]. IEEE Transaction on Image Processing,2010,19(6):1442-1450
    [116]Pavlidis T, Horovitz S. Segmentation of plane curves [J] IEEE Transaction on Computer,1974, 23(8):860-870.
    [117]Ray B, Ray K. A new split-and-merge technique for polygonal approximation of chain coded curves [J]. Pattern Recognition Letters,1995,16(2):161-169.
    [118]Xiao Y, Zou J, Yan H. An adaptive split-and-merge method for binary image contour data compression [J]. Pattern Recognition Letters,2001,22(3):299-307.
    [119]Wu W. An adaptive method for detecting dominant points [J]. Pattern Recognition,2003, 36(10):2231-2237
    [120]Marji M, Siy P. Polygonal representation of digital planar curves through dominant point detection, a nonparametric algorithm [J]. Pattern Recognition,2004,37(11):2113-2130
    [121]Carmona Poyato A, Garcia F N, Medina C. R, Madrid C F. Dominant point detection:a new proposal [J]. Image and Vision Computing,2005,23(13):1226-1236
    [122]Masood A. Optimized polygonal approximation by dominant point deletion [J]. Pattern Recognition,2008,41(1):227-239
    [123]Parvez M T, Mahmoud S A. Polygonal approximation of digital planar curves through adaptive optimizations[J]. Pattern Recognition Letters,2010,31 (13):1997-2005
    [124]Carmona Poyato A, Madrid C F, Medina C. R, Salinas R M. Polygonal approximation of digital planar curves through break point suppression [J]. Pattern Recognition,2010,43 (1):14-25
    [125]Huang S C, Sun Y N. Polygonal approximation using genetic algorithms [J]. Pattern Recognition,1999,32(8):1409-1420
    [126]Yin P Y. Ant colony search algorithms for optimal polygonal approximation of plane curves [J]. Pattern Recognition,2003,36(8):1783-1797
    [127]Yin P Y. A discrete particle swarm algorithm for optimal polygonal approximation of digital curves [J]. Journal of Visual Communication and Image Representation,2004,15(2):241-260
    [128]Nguyen T P, Rennesson I D. A discrete geometry approach for dominant point detection [J]. Pattern Recognition,2011,44(1):32-44
    [129]Hoffman D, Singh M. Salience of visual parts[J]. Cognition,1997,63(l):29-78
    [130]Siddiqi K, Tresness K, Kimia B B. Parts of visual form:psychophysical aspects [J]. Perception, 1996 25(4):399-424
    [131]Siddiqi K, Kimia B B. Parts of visual form:computational aspects [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,1995,17(3):239-251
    [132]Latecki L J, Lakaemper R. Shape similarity measure based on correspondence of visual parts [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,2000,22 (10):1185-1190
    [133]周培德.计算几何:算法设计与分析[M].清华大学出版社,2008
    [134]Lien J, N. AmatoM. Approximate convex decomposition of polygons [J]. Computational Geometry,2006,35(1-2):100-123
    [135]Liu H, Latecki L J, Liu W. Convex shape decomposition [C]. Proceeding of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR),2010.
    [136]Bhargavan M, Kaye A H, Forman H P, Sunshine J H, Workload of radiologists in United States in 2006-2007 and trends since 1991-1992 [J]. Radiology,2009,252(2):458-467.
    [137]Doi K. Computer-aided diagnosis in medical imaging:historical review, current status and future potential [J]. Computerized Medical Imaging and Graphics,2007,31(4-5):198-211
    [138]National institute of neurological disorders and stroke:low back pain fact sheet [EB/OL]. (2011) http://www.ninds.nih.gov/disorders/backpain/.
    [139]Urban P, Roberts S. Degeneration of the intervertebral disc [J]. Arthritis Research and Therapy, 2003,5(3):120-130
    [140]An H, Anderson P, Haughton V, Iatridis J, Kang J. Introduction:disc degeneration:summary [J]. Spine,2004,29(23):2677-2678
    [141]Wang S J, Summers M. Machine learning and radiology [J]. Medical Image Analysis,2012, 16(5):933-951
    [142]Wernick M, Yang Y, Brankov J, Yourganov G, Strother S. Machine learning in medical imaging [J]. IEEE Signal Processing Magzine,2010,27(4):25-38
    [143]van Ginneken B, Romeny B M, Viergever M A. Computeraided diagnosis in chest radiography:A survey [J]. IEEE Transaction on Medical Imaging,2001,20(12):1228-1241
    [144]Cheng H D, Cai X, Chen X, Hu L, LouX. Computer-aided detection and classification of microcalcifications in mammograms:a survey [J]. Pattern Recognition,2003,36(12): 2967-2991.
    [145]Petrick N, Haider M, Summers R M, Yeshwant S C, Brown L, Iuliano E M, Louie A, Choi J R, Pickhardt P J. CT colonography with computer-aided detection as a second reader: observer performance study [J]. Radiology,2008,246(1):148-156
    [146]Zhu Y N, Williams S, Zwiggelaar R. Computer technology in detection and staging of prostate carcinoma:a review [J]. Medical Image Analysis,2006,10(2):178-199
    [147]Zhu X J. Semi-supervised learning literature survey [TR]. Technical Report 1530, University of Wisconsin, Madison,2008
    [148]Settles B. Active learning literature survey [TR]. Technical Report of University of Wisconsin in Madison,2009
    [149]Peng Z, Zhong J, Wee W, et al. Automated Vertebra Detection and Segmentation from the Whole Spine MR Images [C]. Proceedings of 27th Annual International Conference of the Engineering in Medical and Biology Society, Shanghai, IEEE Press,2005:2527-2530.
    [150]Michopoulou S, Costaridou L, Panagiotopoulos E, et al. Atlas-based segmentation of degenerated lumbar intervertebral discs from MR images of the spine [J]. IEEE Transaction on Biomedicine,2009,56(9):2225-2231
    [151]詹曙,郝世杰,李鸿,蒋建国等.基于脊椎MRI中改进型ICA-AAMs椎体分割的腰椎图像分析[J].中国图象图形学报.2010,15(2):280-286
    [152]郝世杰,詹曙,蒋建国等.结合改进型主动外观模型与马尔科夫随机场的椎间盘核磁共振图像分析[J].生物医学工程学杂志,2010,20(1):6-9
    [153]Alomari R S, Corso J J, Chaudhary V, Dhillon G. Computer aided diagnosis of lumbar disc pathology from clinical lower spine MRI [J]. International Journal of Computer Assisted Radiology and Surgery,2010,5(3):287-293.
    [154]Alomari R S, Corso J J, Chaudhary V. Labeling of Lumbar Discs Using both Pixel- and object-level Features with a Two-level Probabilistic Model [J]. IEEE Transaction on Medical Imaging,2011,30(1):1-10
    [155]Alomari R S, Corso J J, Chaudhary V, Dhillon G. Toward a clinical lumbar CAD:herniation diagnosis [J]. International Journal of Computer Assisted Radiology and Surgery,2011,6(1): 119-126.
    [156]Koh J, Chaudhary V, Dhillon G. Diagnosis of disc herniation based on classifiers and features generated from spine MR images [C]. Proceedings of SPIE Medical imaging. San Diego, SPIE Press,2010,762430
    [157]Ghosh S, Alomari R S, Chaudhary V, Dhillon G. Computer-aided diagnosis for lumbar mri using heterogeneous classifiers [C]. Preceedings of International Symposium on Biomedical Imaging(ISBI),2011,1179-1182
    [158]Hao S J, Jiang J G, Guo Y R, Zhan S. Intervertebral Disc Shape Analysis with Geodesic Metric in Shape Space [C]. Proceedings of International Conference on Image and Graphics.2011: 61-65.
    [159]Wang M, Hua X. Active learning in multimedia annotation and retrieval:a survey [J]. ACM Transactions on Intelligent Systems and Technology,2011,2(2):Article10
    [160]Wang M, Ni B B, Hua X, Chua T S. Assistive Multimedia Tagging:A survey of multimedia tagging with human-computer joint exploration [J]. ACM Computing Surveys, in press.
    [161]Sanchez C I, Niemerjer M, Abramoff M D, van Ginneken B. Active learning for an efficient training strategy of computer aided diagnosis systems:application to diabetic retinopathy screening [C]. Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention(MICCAI),2010,603-610
    [162]Doyle S, Monaco J P, Feldman M D, Tomaszewski J E, Madabhushi A. An active learning based classification strategy for the minority class problem:application to histopathology annotation [J]. BMC bioinformatics,2011,12(1):424-437
    [163]Natsumaro K, Takumi H, Sachihiro M, Tomoshi O, Masayuki Y, Hirofumi F, Seiichiro H. Active learning framework with iterative clustering for bioimage classification. Nature Communication,2012,3:1032-1041
    [164]Karcher H. Riemannian center of mass and mollifier smoothing [J]. Communication on Pure and Applied Mathematics,1977,30(5):509-541
    [165]Duda R O, Hart P E, Stork D G, Pattern classification, Second Edition [M]. John Wiley & Sons. 2001
    [166]Michailovich O, Rathi Y, Tannenbaum A. Image segmentation using active contours driven by the Bhattacharyya gradient flow [J]. IEEE Transactions on Image Processing,2007,16(11): 2787-2801
    [167]Atkinson A, Donev A. Optimum experimental design, with SAS [M].Oxford University Press, 2007.
    [168]Yu K, Bi J, Tresp V. Active learning via transductive experimental design [C]. Proceedings of the International Conference on Machine Learning (ICML),2006,1081-1088
    [169]Nguyen H T, Smeulders A. Active learning using pre-clustering [C]. Proceedings of the International Conference on Machine Learning (ICML),2004,79-86
    [170]Dasgupta S, Hsu D. Hierarchical sampling for active learning [C]. Proceedings of the International Conference on Machine Learning (ICML),2008,208-215
    [171]Frey B J, Dueck D. Clustering by passing messages between data points [J]. Science,2007, 315:972-976
    [172]Sckolkopf B, Smola A J. Learning with kernels:support vector machines, regularization, optimization and beyond [M]. MIT Press.2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700