硅基超疏水微界面材料润湿特性和摩擦学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在微机械领域,尺度效应的存在使得材料表/界面特性成为决定微器件功能的关键因素。在微/纳米尺度上,相互接触或存在微间隙的表面间黏着效应显著,从而导致微观表面受到严重黏着磨损而失效。对材料表面进行加工和改性使其具有超疏水性能是改善固体表面力学性能和摩擦学性能的有效方式,在微/纳机电系统领域有重要的学术和工程价值。
     本文建立亲水表面微观粗糙结构模型,基于Gibbs自由能法则,并考虑接触角滞后能的前提下,利用该模型从能量角度揭示了表面形貌对固体表面润湿性能的影响规律,归纳得到了液滴在亲水性粗糙表面稳定处于Cassie状态时,微观粗糙结构形貌特征、几何参数、分布特性的设计准则。
     通过建立微/纳米尺度上平面-平面,球面-平面以及球面-球面间弯月面模型,基于Young-Laplace方程和Reynolds润滑理论,分析得到固体表面接触分离过程中弯月面力和黏着力的计算公式。在此基础上,计算得到接触表面分离过程中的弯月面形状变化规律,并分别讨论了固体表面分离距离、液滴初始弯月面高度、固体表面润湿性能、分离时间、断裂高度等因素对弯月面力和黏着力的影响。研究结果为微/纳米表面抗黏着机理提供了理论依据。
     采用电感耦合等离子体刻蚀法,在单晶硅基底上加工微米级方柱阵列粗糙结构并修饰十八烷基三氯硅烷(octadecyltrichlorosilane, OTS)自组装分子膜,成功获得了性能稳定的超疏水表面。通过接触角与接触角滞后的测量,进一步分析表面微观粗糙结构特征参数以及自组装分子膜特性对表面润湿性能的影响规律。讨论了液滴在亲水性方柱阵列表面发生润湿状态转变的原因,得到了与理论预测一致性较好的实验结果。
     基于表/界面科学理论和摩擦学原理,分析超疏水表面减摩、抗磨、抗黏着机理,综合探讨微观和宏观摩擦学性能,总结和归纳出微观粗糙结构和OTS自组装分子膜对减小摩擦并延长自组装分子膜寿命的协同效应,得到了OTS自组装分子膜在干摩擦条件下具有良好的减摩、抗磨性能的结论。
In the micro mechanical field, scale effect makes the material surface/interface properties become key factors to the micro device functions. In micro/nanoscale, there is a significant adhesion between contact or near-contact surfaces, which leads to a severe adhesion, wear and failure at last. It is an effective way to improve the mechanical and tribological properties of solid surfaces by making them superhydrophobic, and it is of considerable value academic and engineering value to micro/nano electromechanical systems.
     The microscale roughness model on hydrophilic surface was proposed. Based on the model, the effect of surface topography on solid surface wettability was revealed considering of Gibbs free energy and contact angle hysteresis energy. The design criterions of morphology, geometrical parameter and distribution characteristic of microscale rough structure were summarized under the state where the water droplet can stay in a stable Cassie wetting state.
     Meniscus models of medium droplet between micro/nanoscale contact or near-contact flat-on-flat, sphere-on-flat and sphere-on-sphere surfaces were put forward. Based on the Young-Laplace equation and Reynolds lubrication theory, the meniscus force and viscous force formulae were deduced. During the separation of the contact or near-contact surfaces, the variations of meniscus shapes were illustrated. The effects of separation distance, initial meniscus height, surface wettability, separating time and fracture height on meniscus and viscous force during the separation were analyzed. The results provide a theoretical basis for the micro/nanoscale surface anti-sticking mechanism.
     Silicon (Si) substrates decorated with regular microscale square pillar arrays were prepared by inductively coupled plasma, and then they were silanized by self-assembly octadecyltrichlorosilane film. The silanized textured substrates finally attained stable superhydrophobicity. The effects of microscale rough structure and self-assembled monolayer properties on surface wettability were analyzed by measurement of contact angle and contact angle hysteresis. Moreover, the reason of wetting state transition on textured Si surface with hydrophilic pillar arrays was discussed, and the experimental results are in good agreement with the theoretical prediction.
     Based on surface/interface scientific theory and tribology principles, the mechanism of antifriction, wear-resistant and adhesive reduction properties of superhydrophobic surfaces were analyzed. The microscale and macroscale tribological properties were discussed and the co-effect of micro-rough structure and OTS self-assembled monolayer on antifriction and lengthening the self-assembled monolayer lifetime were summarized. The good antifriction and wear-resistant properties of OTS self-assembled monolayer under dry friction were found in the experiments.
引文
[1]Jung Y C and Bhushan B. Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces. J. Microsc.2008,229:127-140.
    [2]温诗铸.纳米摩擦学.北京:清华大学出版社,1998.
    [3]雒建斌,何雨,温诗铸,等.微/纳米制造技术的摩擦学挑战.摩擦学学报.2005,25:283-288.
    [4]Zhao Y P. Stiction and anti-stiction in MEMS and NEMS. Acta Mechanica Sinica.2003,19: 1-10.
    [5]田文超.微机电系统(MEMS)原理、设计和分析.西安:西安电子科技大学出版社,2009.
    [6]Autumn K. Gecko adhesion:structure, function, and applications. MRS Bull.2007,32: 473-478.
    [7]Gao H J, Wang X, Yao H M, et al. Mechanics of hierarchical adhesion structures of geckos. Mech. Mater.2005,37:275-285.
    [8]张晓昊,张向军,刘永和,等.微间隙受限液体行为与昆虫爪垫在光滑壁面的粘着机理.物理学报.2007,8:4722-4727.
    [9]曹晓平,蒋亦民.浸润接触线的摩擦性质与固体表面张力的Wenzel行为.物理学报.2005,5:2202-2205.
    [10]Koch K and Barthlott W. Superhydrophobic and superhydrophilic plant surfaces:an inspiration for biomimetic materials. Philos. Trans. R. Soc. London, Ser. A.2009,367:1487-1509.
    [11]Patankar N A. Mimicking the lotus effect:influence of double roughness structures and slender pillars. Langmuir.2004,20:8209-8213.
    [12]Feng X J and Jiang L. Design and creation of superwetting/antiwetting surfaces. Adv. Mater. 2006,18:3063-3078.
    [13]Erbil H Y, Demirel A L, Avci Y, et al. Transformation of a simple plastic into a superhydrophobic surface. Science.2003,299:1377-1380.
    [14]Lee S M and Kwon T H. Mass-producible replication of highly hydrophobic surfaces from plant leaves. Nanotechnology.2006,17:3189-3196.
    [15]Bhushan B, Nosonovsky M and Jung Y C. Towards optimization of patterned superhydrophobic surfaces. J. R. Soc. Lond. Interface.2007,4:643-648.
    [16]Bhushan B and Jung Y C. Wetting study of patterned surfaces for superhydrophobicity Ultramicroscopy.2007,107:1033-1041.
    [17]Genzer J and Efimenko K. Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers. Science.2000,290:2130-2133.
    [18]Zhai L, Cebeci F C, Cohen R E, et al. Stable superhydrophobic coatings from polyelectrolyte multilayers. Nano Lett.2004,4:1349-1353.
    [19]Nosonovsky M. Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir.2007,23:3157-3161.
    [20]Adamson A W and Gast A P. Physical chemistry of surfaces. New York:Wiley 1990.
    [21]肖文佳.分级结构表面浸润性研究.广州:中山大学博士学位论文,2008.
    [22]Young T. An essay on the cohesion of fluids. Phil. Trans. R. Soc. Lond.1805,95:65-87.
    [23]Wenzel R N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem.1936,28: 988-994.
    [24]Cassie A B D and Baxter S. Wettability of porous surfaces. Trans. Faraday Soc.1944,40: 546-551.
    [25]Bico J, Thiele U and Quere D. Wetting of textured surfaces. Colloids Surf. Physicochem. Eng. Aspects.2002,206:41-46.
    [26]Patankar N A. Transition between superhydrophobic states on rough surfaces. Langmuir.2004, 20:7097-7102.
    [27]Koishi T, Yasuoka K, Fujikawa S, et al. Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface. Proc. Natl. Acad. Sci.2009,106:8435-8440.
    [28]Lafuma A and Quere D. Superhydrophobic states. Nat. Mater.2003,2:457-460.
    [29]Marmur A. From hygrophilic to superhygrophobic:theoretical conditions for making high-contact-angle surfaces from low-contact-angle materials. Langmuir.2008,24:7573-7579.
    [30]Furmidge C G L. Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention. J. Colloid Sci.1962,17:309-324.
    [31]Patankar N A. On the modeling of hydrophobic contact angles on rough surfaces. Langmuir. 2003,19:1249-1253.
    [32]Oner D and McCarthy T J. Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir.2000,16:7777-7782.
    [33]Feng L, Li S H, Li Y S, et al. Superhydrophobic surfaces:from natural to artificial. Adv. Mater. 2002,14:1857-1860.
    [34]Patankar N A. Mimicking the lotus effect influence of double roughness structures and slender pillars. Langmuir.2004,20:8209-8213.
    [35]Blossey R. Self-cleaning surfaces-virtual realities. Nat. Mater.2003,2:301-306.
    [36]Nishimoto S and Bhushan B. Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. Rsc Advances.2013,3:671-690.
    [37]Kind H, Bonard J M and Emmenegger C. Patterned films of nanotubes using microcontact printing of catalysts. Adv. Mater.1999,11:1285-1289.
    [38]Gau H, Herminghaus S, Lenz P, et al. Liquid morphologies on structured surfaces:from microchannels to microchips. Science.1999,283:46-49.
    [39]Mertaniemi H, Jokinen V, Sainiemi L, et al. Superhydrophobic tracks for low-friction, guided transport of water droplets. Adv. Mater.2011,23:2911-2914.
    [40]刘思思,张朝辉,刘俊铭.微平面接触分离中弯月面力的计算.物理学报.2010,59:6902-6907.
    [41]Bhushan B. Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS materials and devices. Microelectron. Eng.2007,84:387-412.
    [42]Gao C, Dai P, Homola A, et al. Meniscus forces and profiles:theory and its applications to liquid-mediated interfaces. J. Tribol.1998,120:358-368.
    [43]Peng Y F and Li G X. An elastic adhesion model for contacting cylinder and perfectly wetted plane in the presence of meniscus. J. Tribol.2007,129:231-234.
    [44]Butt H J and Kappl M. Normal capillary forces. Adv. Colloid Interface Sci.2009,146:48-60.
    [45]Peng Y F, Guo Y B and Hong Y Q. An adhesion model for elastic-contacting fractal surfaces in the presence of meniscus. J. Tribol.2009,131:024504.
    [46]Barthlott W and Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta.1997,202:1-8.
    [47]Neinhuis C and Barthlott W. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot.1997,79:667-677.
    [48]Nosonovsky M and Bhushan B. Multiscale friction mechanisms and hierarchical surface in nano-and bio-tribology. Mat. Sci. Eng. R.2007,58:162-193.
    [49]翟锦,李欢军,李英顺,等.碳纳米管阵列超双疏性质的发现.物理.2002,31:483-486.
    [50]Gao X F and Jiang L. Biophysics:water-repellent legs of water striders. Nature.2004,432: 36-36.
    [51]Sun T L, Feng L, Gao X F, et al. Bioinspired surfaces with special wettability. Acc. Chem. Res. 2005,38:644-652.
    [52]Sun M, Luo C, Xu L, et al. Artificial lotus leaf by nanocasting. Langmuir.2005,21:8978-8981.
    [53]Chen W, Fadeev A Y, Hsieh M C, et al. Ultrahydrophobic and ultralyophobic surfaces:some comments and examples. Langmuir.1999,15:3395-3399.
    [54]Bartell F E and Shepard J W. Surface roughness as related to hysteresis of contact angle. I. The system paraffin-water-air. J. Phys. Chem.1953,57:211-215.
    [55]Zhang J, Li J and Han Y. Superhydrophobic PTFE surfaces by extension. Macromol. Rapid Commun.2004,25:1105-1108.
    [56]Shiu J Y, Kuo C, Chen P, et al. Fabrication of tunable superhydrophobic surfaces by nanosphere lithography. Chem. Mater.2004,16:561-564.
    [57]He Y, Jiang C Y, Yin H X, et al. Superhydrophobic silicon surfaces with micro-nano hierarchical structures via deep reactive ion etching and galvanic etching. J. Colloid Interface Sci.2011,364:219-229.
    [58]Khorasani M T, Mirzadeh H and Kermani Z. Wettability of porous polydimethyl-siloxanesruface:morphology study. Appl. Surf. Sci.2005,242:339-345.
    [59]Khorasani M T, Mirzadeh H and Sanunes P G. Laser induced surface modification of polydimethy-lsiloxane as a super-hydrophobic material. Radiat. Phys. Chem.1996,47: 881-888.
    [60]屈孟男.从自然到仿生:超疏水材料制备方法研究.兰州:兰州大学博士学位论文,2008.
    [6l]张寒冰.基于硅基底微柱结构的超疏水表面的制备及其摩擦学性能研究.北京:北京交通大学硕士学位论文,2011.
    [62]Fernandez-Blazquez J P, Fell D, Bonaccurso E, et al. Superhydrophilic and superhydrophobic nanostructured surfaces via plasma treatment. J. Colloid Interface Sci.2011,357:234-238.
    [63]Youngblood J P and McCarthy T J. Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly (tetrafluoroethylene) using radiofrequency plasma. Macromolecules.1999,32:6800-6806.
    [64]Lakshmi R V, Bharathidasan T and Basu B J. Superhydrophobic sol-gel nanocomposite coatings with enhanced hardness. Appl. Surf. Sci.2011,257:10421-10426.
    [65]Su D, Huang C Y, Hu Y, et al. Preparation of superhydrophobic surface with a novel sol-gel system. Appl. Surf. Sci.2011,258:928-934.
    [66]Tadanaga K, Kitamuro K, Morinaga J, et al. Preparation of super-water-repellent alumina coating film with high transparency on poly (ethylene terephthalate) by the sol-gel method. Chem. Lett.2000,29:864-865.
    [67]Tadanaga K, Morinaga J, Matsuda A, et al. Superhydrophobic-superhydrophilic micropatterning on flowerlike alumina coating film by the sol-gel method. Chem. Mater.2000, 12:590-592.
    [68]Fadeev Y A and McCarthy J T. Trialkylsilane monolayers covalently attached to silicon surfaces: wettability studies indicating that molecular topography contributes to contact angle hysteresis. Langmuir.1999,15:3759-3766.
    [69]Khorasani M T and Mirzadeh H. In vitro blood compatibility of modified PDMS surfaces as superhydrophobic and superhydrophilic materials. J. Appl. Polym. Sci.2004,91:2042-2047.
    [70]Zhang F, Chen S G, Dong L H, et al. Preparation of superhydrophobic films on titanium as effective corrosion barriers. Appl. Surf. Sci.2011,257:2587-2591.
    [71]Song X Y, Zhai J, Wang Y L, et al. Self-assembly of amino-functionalized monolayers on silicon surfaces and preparation of superhydrophobic surfaces based on alkanoic acid dual layers and surface roughening J. Colloid Interface Sci.2006,298:267-273.
    [72]Gu G T, Tian Y P, Li Z T, et al. Electrostatic powder spraying process for the fabrication of stable superhydrophobic surfaces. Appl. Surf. Sci.2011,257:4586-4588.
    [73]Ogihara H, Xie J, Okagaki J, et al. Simple method for preparing superhydrophobic paper: spray-deposited hydrophobic silica nanoparticle coatings exhibit high water-repellency and transparency. Langmuir.2012,28:4605-4608.
    [74]Timonen J V, Latikka M, Leibler L, et al. Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces. Science.2013,341:253-257.
    [75]冯军勇.辛烷基三乙氧基硅烷/十八烷基三氯硅烷混合自组装单分子膜的制备.浙江:浙江大学硕士学位论文,2007.
    [76]Tsukruk V V. Molecular lubricants and glues for micro-and nanodevices. Adv. Mater.2001,13: 95-108.
    [77]Kim H I, Koini T, Lee T R, et al. Systematic studies of the frictional properties of fluorinated monolayers with atomic force microscopy:comparison of CF3-and CH3-terminated films. Langmuir.1997,13:7192-7196.
    [78]孙昌国.自组装技术改性处理轻金属及其合金的摩擦学特性研究.大连:大连海事大学博士学位论文,2009.
    [79]Xiao X D, Hu J, Charych D H, et al. Chain length dependence of the frictional properties of alkylsilane molecules self-assembled on mica studied by atomic force microscopy. Langmuir. 1996,12:235-237.
    [80]Bhushan B and Liu H W. Nanotribological properties and mechanisms of alkylthiol and biphenyl thiol self-assembled monolayers studied by AFM. Phys. Rev. B:Condens. Matter. 2001,63:245412.
    [81]Song X Y, Zhai J, Wang Y L, et al. Fabrication of superhydrophobic surfaces by self-assembly and their water-adhesion properties. J. Phys. Chem. B.2005,109:4048-4052.
    [82]Ran C B, Ding G, Liu W, et al. Wetting on nanoporous alumina surface:transition between Wenzel and Cassie states controlled by surface structure. Langmuir.2008,24:9952-9955.
    [83]王奔,念敬妍,铁璐,等.稳定超疏水性表面的理论进展.物理学报.2013,62:146801.
    [84]Herminghaus S. Roughness-induced non-wetting. Europhys. Lett.2000,52:165-170.
    [85]Guo Z G and Liu W M. Biomimic from the superhydrophobic plant leaves in nature:Binary structure and unitary structure. Plant Sci.2007,172:1103-1112.
    [86]Guo Z, Chen X, Li J, et al. ZnO/CuO hetero-hierarchical nanotrees array:hydrothermal preparation and self-cleaning properties. Langmuir.2011,27:6193-6200.
    [87]Gao N, Yan Y Y, Chen X Y, et al. Superhydrophobic surfaces with hierarchical structure. Mater. Lett.2011,65:2902-2905.
    [88]Youngblood J P and McCarthy T J. Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly (tetrafluoroethylene) using radio frequency plasma. Macromolecules.1999,32:6800-6806.
    [89]Yoshimitsu Z, Nakajima A, Watanabe T, et al. Effects of surface structure on the hydrophobicity and sliding behavior of water droplets. Langmuir.2002,18:5818-5822.
    [90]Ramiasa M, Ralston J, Fetzer R, et al. Contact line motion on nanorough surfaces:a thermally activated process. J. Am. Chem. Soc.2013,135:7159-7171.
    [91]Nishino T, Meguro M, Nakamae K, et al. The lowest surface free energy based on -CF3 alignment. Langmuir.1999,15:4321-4323.
    [92]Marchetto D, Rota A, Calabri L, et al. AFM investigation of tribological properties of nano-patterned silicon surface. Wear.2008,265:577-582.
    [93]Marchetto D, Rota A, Calabri L, et al. Hydrophobic effect of surface patterning on Si surface. Wear.2010,268:488-492.
    [94]Song Y, Premachandran Nair R, Zou M, et al. Adhesion and friction properties of micro/nano-engineered superhydrophobic/hydrophobic surfaces. Thin Solid Films.2010,518: 3801-3807.
    [95]McDermott M T, Green J B D and Porter M D. Scanning force microscopic exploration of the lubrication capabilities of n-alkanethiolate monolayers chemisorbed at gold:structural basis of microscopic friction and wear. Langmuir.1997,13:2504-2510.
    [96]Bhushan B. Introduction to tribology. New York:Wiley,2002.
    [97]Bent S F, Schilling M L, Wilson W L, et al. Structural characterization of self-assembled multilayers by FTIR. Chem. Mater.1994,6:122-126.
    [98]Satyanarayana N, Gosvami N, Sinha S, et al. Friction, adhesion and wear durability of an ultra-thin perfluoropolyether-coated 3-glycidoxypropyltrimethoxy silane self-assembled monolayer on a Si surface. Philos. Mag.2007,87:3209-3227.
    [99]Bhushan B, Kasai T, Kulik G, et al. AFM study of perfluoroalkylsilane and alkylsilane self-assembled monolayers for anti-stiction in MEMS/NEMS. Ultramicroscopy.2005,105: 176-188.
    [100]Yoon E S, Singh R A, Oh H J, et al. The effect of contact area on nano/micro-scale friction. Wear.2005,259:1424-1431.
    [101]温诗铸,黄平.界面科学与技术.北京:清华大学出版社,2011.
    [102]Kim S H, Asay D B and Dugger M T. Nanotribology and MEMS. Nano today.2007,2:22-29.
    [103]Hornbeck L J. The DMDTM projection display chip:a MEMS-based technology. MRS Bull. 2001,26:325-327.
    [104]Savage N. A revolutionary chipmaking technique? Spectrum, IEEE.2003,40:18-18.
    [105]Sangeet S G, Green R D, Yue Y J, et al. Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nat. Biotechnol.1999,17:974-978.
    [106]Ishino C and Okumura K. Nucleation scenarios for wetting transition on textured surfaces:the effect of contact angle hysteresis. Europhys. Lett.2006,76:464-470.
    [107]Papadopoulos P, Mammen L, Deng X, et al. How superhydrophobicity breaks down. Proc. Natl. Acad. Sci.2013,110:3254-3258.
    [108]Nosonovsky M and Bhushan B. Superhydrophobic surfaces and emerging applications: non-adhesion, energy, green engineering. Curr. Opin. Colloid Interface Sci.2009,14:270-280.
    [109]Extrand C W. Model for contact angles and hysteresis on rough and ultraphobic surfaces. Langmuir.2002,18:7991-7999.
    [110]Bormashenko E, Pogreb R, Whyman G, et al. Cassie-Wenzel wetting transition in vibrating drops deposited on rough surfaces:is the dynamic Cassie-Wenzel wetting transition a 2D or 1D affair? Langmuir.2007,23:6501-6503.
    [111]He B, Patankar N A and Lee J. Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces. Langmuir.2003,19:4999-5003.
    [112]Bico J, Marzolin C and Quere D. Pearl drops. Europhys. Lett.1999,47:220-226.
    [113]Nosonovsky M and Bhushan B. Patterned nonadhesive surfaces:superhydrophobicity and wetting regime transitions. Langmuir.2008,24:1525-1533.
    [114]Moulinet S and Bartolo D. Life and death of a fakir droplet:impalement transitions on superhydrophobic surfaces. Eur. Phys. J. E.2007,24:251-260.
    [115]Ishino C and Okumura K. Wetting transitions on textured hydrophilic surfaces. Eur. Phys. J. E. 2008,25:415-424.
    [116]Whyman G and Bormashenko E. How to make the Cassie wetting state stable? Langmuir.2011, 27:8171-8176.
    [117]Cao L L, Hu X H and Gao D. Design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrophilic materials. Langmuir.2007,23:4310-4314.
    [118]Karlsson M, Forsberg P and Nikolajeff F. From hydrophilic to superhydrophobic:fabrication of micrometer-sized nail-head-shaped pillars in diamond. Langmuir.2009,26:889-893.
    [119]Zhu M F, Zuo W W, Yu H, et al. Superhydrophobic surface directly created by electrospinning based on hydrophilic material. J. Mater. Sci.2006,41:3793-3797.
    [120]Patankar N A. Consolidation of hydrophobic transition criteria by using an approximate energy minimization approach. Langmuir.2010,26:8941-8945.
    [121]Jung Y C and Bhushan B. Wetting transition of water droplets on superhydrophobic patterned surfaces. Scripta Mater.2007,57:1057-1060.
    [122]Ishino C, Okumura K and Quere D. Wetting transitions on rough surfaces. Europhys. Lett.2004, 68:419-425.
    [123]Bormashenko E, Bormashenko Y, Whyman G, et al. J. Colloid Interface Sci.2006,302: 308-311.
    [124]Im M, Im H, Lee J H, et al. Analytical modeling and thermodynamic analysis of robust superhydrophobic surfaces with inverse-trapezoidal microstructures. Langmuir.2010,26: 17389-17397.
    [125]Bormashenko E, Bormashenko Y, Whyman G, et al. Micrometrically scaled textured metallic hydrophobic interfaces validate the Cassie-Baxter wetting hypothesis. J. Colloid Interface Sci. 2006,302:308-311.
    [126]Chen Y L, Helm C A and Israelachvili J. Molecular mechanisms associated with adhesion and contact angle hysteresis of monolayer surfaces. J. Phys. Chem.1991,95:10736-10747.
    [127]Dupre A. Theorie mechaique de la chaleur. Paris:Gauthier-Villars,1869.
    [128]Chaudhury M K and Whitesides G M. Direct measurement of interfacial interactions between semispherical lenses and flat sheets of poly (dimethylsiloxane) and their chemical derivatives. Langmuir.1991,7:1013-1025.
    [129]Good R J. A thermodynamic derivation of Wenzel's modification of Young's equation for contact angles; together with a theory of hysteresis. J. Am. Chem. Soc.1952,74:5041-5042.
    [130]Liu H H, Zhang H Y and Li W. Thermodynamic analysis on wetting behavior of hierarchical structured superhydrophobic surfaces. Langmuir 2011,27:6260-6267.
    [131]Furstner R, Barthlott W, Neinhuis C, et al. Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir.2005,21:956-961.
    [132]Salvadori M C, Cattani M, Oliveira M R S, et al. Design and fabrication of microcavity-array superhydrophobic surfaces. J. Appl. Phys.2010,108:024908.
    [133]Wang J D and Chen D R. Criteria for entrapped gas under a drop on an ultrahydrophobic surface. Langmuir.2008,24:10174-10180.
    [134]Jopp J, Grill H and Yerushalmi-Rozen R. Wetting behavior of water droplets on hydrophobic microtextures of comparable size. Langmuir.2004,20:10015-10019.
    [135]Fisher R A. On the capillary forces in an ideal soil; correction of formulae given by W. B. Haines. J. Agr. Sci.1926,16:492-505.
    [136]Cai S B and Bhushan B. Meniscus and viscous forces during separation of hydrophilic and hydrophobic surfaces with liquid-mediated contacts. Mater. Sci. Eng., R.2008,61:78-106.
    [137]Wei Z and Zhao Y P. Experimental investigation of the velocity effect on adhesion forces with an atomic force microscope. Chin. Phys. Lett.2004,21:616-619.
    [138]Wei Z and Zhao Y P. Growth of liquid bridge in AFM. J. Phys. D:Appl. Phys.2007,40: 4368-4375.
    [139]Patton S T, Cowan W D, Eapen K C, et al. Effect of surface chemistry on the tribological performance of a MEMS electrostatic lateral output motor. Tribol. Lett.2001,9:199-209.
    [140]Nosonovsky M and Bhushan B. Hierarchical roughness optimization for biomimetic superhydrophobic surfaces. Ultramicroscopy.2007,107:969-979.
    [141]Orr F M, Scriven L E and Rivas A P. Pendular rings between solids:meniscus properties and capillary force. J. Fluid Mech.1975,67:723-742.
    [142]Cai S B and Bhushan B. Meniscus and viscous forces during normal separation of liquid-mediated contacts. Nanotechnology.2007,18:465704.
    [143]Fortes M A. Axisymmetric liquid bridges between parallel plates. J. Colloid Interface Sci.1982, 88:338-352.
    [144]黄斌,郭群英.ICP硅深槽刻蚀技术研究.集成电路通讯.2009,23-27.
    [145]Welch C C, Goodyear A L, Wahlbrink T, et al. Silicon etch process options for micro-and nanotechnology using inductively coupled plasmas. Microelectron. Eng.2006,83:1170-1173.
    [146]展明浩, 宋同晶, 皇华, 等. 基于ICP的硅高深宽比沟槽刻蚀技术.电子科技.2012,77-79.
    [147]Ulman A. Formation and structure of self-assembled monolayers. Chem. Rev.1996,96: 1533-1554.
    [148]Brzoska J B, Shahidzadeh N and Rondelez F. Evidence of a transition temperature for the optimum deposition of grafted monolayer coatings. Nature.1992,719-721.
    [149]卿涛,邵天敏,温诗铸.材料表面之间黏附过程分析.物理学报.2007,56:1555-1562.
    [150]Bhushan B and Dandavate C. Thin-film friction and adhesion studies using atomic force microscopy. J. Appl. Phys.2000,87:1201-1210.
    [151]Binggeli M and Mate C M. Influence of capillary condensation of water on nanotribology studied by force microscopy. Appl. Phys. Lett.1994,65:415-417.
    [152]Xiao X D and Qian L M. Investigation of humidity-dependent capillary force. Langmuir.2000, 16:8153-8158.
    [153]Skinner J and Gane N. Sliding friction under a negative load. J. Phys. D:Appl. Phys.1972,5: 2087-2094.
    [154]卿涛,邵天敏,温诗铸.相对湿度对材料表面粘附力影响的研究.摩擦学学报.2006,26:295.299.
    [155]Yoon E S, Yang S H, Han H G, et al. An experimental study on the adhesion at a nano-contact. Wear.2003,254:974-980.
    [156]Varenberg M, Etsion I and Halperin G. An improved wedge calibration method for lateral force in atomic force microscopy. Rev. Sci. Instrum.2003,74:3362-3367.
    [157]余家欣,钱林茂.一种改进的原子力显微镜摩擦力标定方法.摩擦学学报.2007,27:472-475.
    [158]Tocha E, Schonherr H and Vancso G J. Quantitative nanotribology by AFM:a novel universal calibration platform. Langmuir.2006,22:2340-2350.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700