乳液技术可控制备银、聚苯乙烯纳米粒子及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米粒子由于表面效应、体积效应、量子尺寸效应及宏观量子隧道效应等能够表现出奇特的光、电、磁、热等性能而使纳米材料具有极大的应用潜能。然而纳米粒子的稳定性及形貌、尺寸的可控性成为限制其进一步发展的重要因素。本工作目的在于借助乳液方法,制备稳定的、尺寸及形貌可控的金属纳米粒子及聚合物纳米粒子,并研究其内部规律。
     通过反相微乳液体系中的化学还原方法来制备银纳米粒子。XRD、TEM及UV-Vis等表征结果表明,参数的改变影响反相微乳液的形成及稳定性,选择OP-10代替AOT作乳化剂能有效地缩短反应时间,在反相微乳液体系中液滴间以相互吸引的方式进行的物质交换是动力学的控制因素,由布朗运动所产生的碰撞是动态交换的动力;在最佳反应条件下得到的产物为稳定的球形单分散银纳米粒子,平均粒径15.2nm,内部结构规整,为面心立方单晶结构。
     本论文在乳液聚合中用银氨络合物作过硫酸钾的分解促进剂快速制备聚苯乙烯纳米粒子。首先讨论了反应温度、搅拌速率、油水质量比、乳化剂用量等因素对苯乙烯乳液聚合的影响,确定出最佳反应条件;动力学研究结果表明过硫酸钾-银氨催化下,苯乙烯单体的转化速率明显提高,一开始乳液聚合的速率就达到最大,之后速率一直下降,在较短时间内反应结束并且转化完全,银氨的加入降低了引发剂过硫酸钾的引发活化能,使得苯乙烯乳液聚合最低温度降低,体系的表观活化能也明显降低。
     FT-IR、DSC、TEM及GPC表征结果表明,过硫酸钾-银氨对聚苯乙烯的结构、形貌及玻璃化转变温度没有影响,但在其作用下,较传统乳液聚合而言,聚苯乙烯纳米粒子的粒径较小,温度升高粒径减小的同时分布也变窄,而分子量降低了一半左右,分布稍稍变宽;银氨的加入具有双重作用,不仅对过硫酸钾的分解有促进作用,使苯乙烯乳液聚合经典乳液聚合机理,聚合场所在胶束内并且仅有胶束成核一种方式,此外,银氨络合离子还具有协助表面活性剂稳定乳胶粒的作用。使用银氨作促进剂进行苯乙烯的快速乳液聚合的研究才刚起步,其促进机理、对其他单体乳液聚合的作用等相关问题的深入研究在理论及工业应用上均具有重大意义。
Nanomaterials have great potential application since these nanoscale particles can exhibit peculiar optical, electrical, magnetic and thermal properties due to Surface effect, volume effect, quantum size effect and macroscopic quantum tunneling effect and so on. However, the stability and the controllability of their size and morphology becomes an important factor to limit the further development. This work aims at preparing stable size&morphology controlled metal nanoparticles and polymer nanoparticles as well as studying the mechanmism.
     Silver nanoparticles are prepared by the chemical reduction in reverse microemulsion. XRD, TEM, UV-Vis and other characterization results show that the formation and stability of microemulsion system are affected by the changing parameters, the reaction time is effectively shorten by selecting OP-10 instead of AOT as emulsifier, the reactants exchange between the droplets via attractive interactions is the control factor of dynamics in the reverse microemulsion system. The obtained stable monodispersed silver nanoparticles under optimum conditions are spherical monocrystalline with an average diameter of 15.2nm.
     The polystyrene nanoparticles are rapidly synthesized in emulsion polymerization via using the silver ammonia complex as accelerator to promote the decomposition of potassium persulfate. We first discuss the reaction temperature, stirring speed, oil-water mass ratio, emulsifier density etc influence in the period of styrene emulsion polymerization to determine the best reaction conditions. Kinetic results show that under the catalysis of KPS-silver ammonia, the styrene monomer conversion rate is significantly enhanced, the polymerization ends in a short time with the maximum rate at the beginning followed by continuous decreasing and the conversion is complete. The adding of silver ammonia decreases the initiator activation energy of potassium persulfate, lowering the minimum polymerization temperature of styrene and significantly decreasing the apparent activation energy of the reaction system.
     FT-IR, DSC, TEM and GPC characterization results showed that KPS-silver ammonia does not affect the structure, morphology and glass transition temperature of polystyrene. But under its effect, when compared with the traditional emulsion polymerization, the sizes of polystyrene nanoparticles are smaller, the size and size distribution are both decreased with increasing temperature; the molecular weight reduce by half with a slightly wider distribution. The addition of silver ammonia has a dual role, not only promoting the decomposition of potassium persulfate so that the styrene polymerization does not comply with the classical polymerization mechanism for the polymerization sitting in the micelles and there only exist micellar nucleation, but also assisting the surfactant to stabilize latexes. It has just started to use silver ammonia as promoter for the rapid polymerization of styrene and it's of great significance both in theory and industrial applications for depth study of related issues such as the promotion mechanism, the effect in other monomer polymerization and so on.
引文
[1]Gleiter H. Nanostructured materials [J]. Acta Metallurgica Sinica,1997,33(2):30-38.
    [2]刘焕彬,陈小泉.纳米科学与技术导论[M].北京:化学工业出版社,2006.
    [3]白春礼,纳米科技及其发展前景[J].化学通报,2001,40(2).
    [4]Stadnik Z M, Griesbach P, Dehe G, et al.Ni Mossbauer Study of the Hyperfine Magnetic Field Near the Ni Surface[J].Phys.Rev.,1987,B35(13),6588.
    [5]Birringer R, Gleiter H, Klein H P. Nanocrystalline Materials-an Approach to a Novel Solid Structure with Gas-like Disorder[J].Phys.Lett.,1984,102A(2),365-372.
    [6]Gleiter H. On the structure of grain boundaries in metals [J].Materials Science and Engineering,1982,(52):91-102.
    [7]Chadwick A V, Russell N V, Whitham A R, et al. Nanocrystal-line metal oxide gas sensors[J]. Sens. Actuaturs,1994,B18(1-3),99-102.
    [8]Hahn H, et al. Int. Conf. on diffusion in Metals and Alloys,Balatonfured. Hungary(1988).
    [9]Meirav C A, Daniel M. Studying thiol adsorption Au, Ag and Hg surfaces by Potentiometrie measurements [J]. J. Electroanal. Chem.,2003,550-551:267-276.
    [10]Li Y P, Qu X H, et al. W-Cu Composite Powders with Ultrafine Dispersion Distributions by Thermomechanical Processes[J]. Powder Metallurgy Technology,2004,22(5):266 -269.
    [11]Zilg C, Reiehert P. Plastics and rubber nanocomposites as edu Pon Layered silicates [J]. Kunststoffe Plast Europe,1998,88(10):1812.
    [12]Ziolo R F, Giannelis E P, et al. Matrix-mediated synthesis of nanocrystalline γ-ferri oxide:a new optically transparent magnetic material[J]. Science,1992,257 (10):219-223.
    [13]Jeong U, Teng X, Xia Y. Superparamagnetic colloids: controlled synthesis and niche applications [J]. Adv. Mater,2007,19:33-60.
    [14]Wu B, Heidelburg A, Boland J. Mechanical properties of ultra-high strength gold nanowires[J]. Nature Materials,2005,4 (7):525-529.
    [15]Rupp J, Birringer R. Enhanced specific-heat-capacity measurements of nanometer-sized crystalline materials [J]. Physica Rev. B,1987, B36 (15):7888-7890.
    [16]Sung M, Sung K, Kim C G. Self-assembled monolayer of alkanethiols on oxidized copper surfaces [J]. J. Phys. Chem. B,2000,104 (10):2273-2277.
    [17]Feng Y, Teo W K, Siow K S, et al. Corrosion protection of copper by a self-assembled monolayer of alkanethiol[J]. J. Electrochem. Soe.,1997,144 (1):55-64.
    [18]Capek I. Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions[J]. Advances in Colloid and Interface Science 2004,110 (1-2) 49-74.
    [19]Hayat M A (Ed.). Colloidal Gold: Principles, Methods and Applications[M]. Academic Press, San Diego,1989.
    [20]Deng Y, Yan Z, Yang N. Synthesis of Polystyrene-based Cationic Copolymers and Their Colloidal Properties in Water [J]. Colloid and Polym Sci.1999,277:227-233.
    [21]Knauth P, Schoonman J. Nanostructured materials: selected synthesis methods, properties, and applications[M]. Kluwer Academic Publishers,2002.
    [22]Brian L C, Vladimir L K, Charles J O. Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles [J].Chem. Rev.,2004,104 (9):3893-3946.
    [23]Murray R W. Nanoelectrochemistry: Metal Nanoparticles, Nanoelectrodes, and Nanopores[J]. Chemical Review,2008,108:2688-2720.
    [24]Xia Y, Rogers J A, Whitesides G M. Unconventional methods for fabricating and Pattering nanostruetures[J]. Chem. Rev.,1999,99:1823-1848.
    [25]Sakai H, Takashi K. Preparation of Highly Dispersed Core/Shell-type Titania Nanocapsules Containing a Single Ag Nanoparticle[J]. J.Am.Chem.Soc.2006,128:4944-4945.
    [26]Zhang J, Sun L D.Synthesis and optical properties of nanosized CdS prepared in a quaternary CTAB/nhexanol/n-heptane/water reverse micelle Chinese Sci. Bull.2001,46(22):1873-1877.
    [27]Lattes A. Formamide, a water substitute in micelles and microemulsions structural analysis using a diels-alder reaction as a chemical probe[J]. Tetrahedron,1987,43(7):1725-1735.
    [28]Candau F. Microemulsion polymerization. In: Asua J M, ed., Polymeric dispersions: principles and. applications. Dordrecht: Kluwer Academic,1997:127-140.
    [29]Paul B, Moulik S. Microemulsions: an overview[J]. J.Dispersion Sci. Technol.1997,18:301.
    [30]Eastoe J, Robinson B H, et al. Rotational dynamics of AOT reversed micelles in near-critical and supercritical alkanes[J].J. Chem. Soc., Faraday Trans.1991,87:1899-1903.
    [31]Pileni M P, Zemb T, Petit C. Solubilization by reverse micelles:Solute localization and structure perturbation[J]. Chem. Phys. Lett.1985,118 (4):414-420.
    [32]Khan A, Robinson B H, Towey T, et al. in: D.M. Bloor, E. Wyn-Jones (Eds.),The structure, dynamics and equilibrium properties of colloidal systems, 324, Kluwer Acad. Publ, Dordrecht,1990: 373,NATO ASI Series C.
    [33]May S, Shaul A. Molecular Theory of the Sphere to Rod Transition and the Second CMC in Micellar Solutions[J].J. Phys. Chem. B.2001,105:630-640.
    [34]Andersson M, PedersenJ, Anders P. Silver nanoparticle formation in microemulsions acting both as template and reducing agent [J]. Langmuir 2005,21(24):11387-11396.
    [35]Mayer A, Mark J. Colloidal Gold Nanoparticles Protected by Water-Soluble Homopolymers and Random Copolymer[J].Eur. Polym. J.1998,34:103-108.
    [36]L.M. Liz-Marza'n, I. Lado-Touri-no, Reduction and Stabilization of Silver Nanoparticles in Ethanol by Nonionic Surfactants[J].Langmuir 1996,12 (15):3585-3589.
    [37]Yu H, Jiang J, Su S L, et al. Reverse Microemulsion-Mediated Synthesis of Silica-Coated Gold and Silver Nanoparticles [J]. Langmuir 2008,24(11):5842-5848
    [38]Seip C T, O'Connor C J. The fabrication and organization of self-assembled metallic nanoparticles formed in reverse micelles[J]. Nanostruct. Mater.1999,12 (1-4):183-186.
    [39]Liu W J, Zhang Z C, He W D, et al.Novel method for the preparation of core-shell nanoparticles with movable Ag core and polystyrene loop shell[J]. Journal of Solid State Chemistry 2006,179 (4):1253-1258.
    [40]Toshiyuki T, Mitsuru W, et al. Formation of Metal Nanoparticles on the Surface of Polymer Particles Incorporating Polysilane by UV Irradiation Langmuir,2008,24(24):14203-14208.
    [41]Ming W, Jones F, Fu S. High Solids-cont- ent Nanosize Polymer Latexes Made by Microemulsion Polymer ization[J]. Macromol. Chem. Phys.,1998,199:1075-1079.
    [42]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用[M].化学工业出版社,1999,1.
    [43]冯新德.高分子合成化学(上册)[M].科学技术出版社,1981,1.
    [44]卢志敏,李国明.常规乳液聚合的影响因素[J].上海涂料,2005,43(12):23-28.
    [45]潘祖仁.高分子化学[M].化学工业出版社,2005,1.
    [46]Bartlett, P. D. and Cotman. J. D.:J. Am. Chem. Soc.,1949,71:1419-1422
    [47]Bartlett, P. D. and Nozaki,N.:J. Polym. Sci.,1948,3:216-222
    [48]Bacon R. Reduction Actibation. A New Polymer-Isation Technique[J]. Trans. Faruduy SOC., 1946,42:140-155.
    [49]Dekker A, Levy H, Yost D. Reduction of Peroxysulfate by Manganous Ion and by Hydrazine with Silver Ion as Catalyst[J]. J. Amer. Chem. SOC.,1937,59:2129-2131.
    [50]King C. Silver ion catalysis of persulfate oxidations. Ⅳ. Oxidation of oxalate ion [J]. J. Amer. Chem. SOC.,1928,50:2089-2099.
    [51]Bawn H, Margerson D. Molecular Dissociation Processes in Solution. Part 4: The Rate of Decomposition of Persulphate ion and its Catalysis By Metal Ions[J].Trans. Faraday Soc.,1955,51:925-934.
    [52]Shukla J S, Misra D C. Aqueous Polymerization of Acrylamide Initiated by Acidic Permanganate/Thiourea Redox System[J].Macromol.Chem.,1973,173:91-99.
    [53]李民乾.纳米科学技术—面向21世纪的新科技物理[J].物理,1992,21(2):65-70.
    [54]Gong J L, Jiang J H, Liang Y,et al. Synthesis and Characterization of Surface-enhanced Raman Scattering Tags with Ag/SiO2 Core-Shell Nanostructures using Reverse Micelle Technology[J]. Journal of Colloid and Interface Science,2006,298 (2):752-756
    [55]Guascito M R, Filippo E, Malitesta C,et al. A New Amperometric Nanostructured Sensor for the Analytical Determination of Hydrogen Peroxide [J]. Biosensors and Bioelectronics,2008, 24(4):1063-1069.
    [56]Thawatchai M, Seiichi T, Ratana R. Impregnation of Silver Nanoparticles into Bacterial Cellulose for Antimicrobial Wound Dressing [J]. Carbohydrate Polymers,2008,72(1):43-51.
    [57]Lu Y, Mei Y, Schrinner M, et al. In Situ Formation of Ag Nanoparticles in Spherical Polyacrylic Acid Brushes by UV Irradiation [J]. The Journal of Physical Chemistry C,2007, 111(21):7676-7681.
    [58]Kim S H, Choi B S, Kang K,et al. Low Temperature Synthesis and Growth Mechanism of Ag Nanowires[J].Journal of Alloys and Compounds,2007,433(1-2):261-264.
    [59]Wang X Q, Itoh H, Naka K,et al. Tetrathiafulvalene-Assisted Formation of Silver Dendritic Nanostructures in Acetonitrile[J].Langmuir,2005,19(15):6242-6246.
    [60]Xu X J, Fei G T, Wang X W,et al. Synthetic Control of Large-area, Ordered Silver Nanowires with Different Diameters[J]. Materials Letters,2007,61(1):19-22.
    [61]Liz-Marza'n L M. Tailoring Surface Plasmon Resonance through the Morphology and Assembly of Metal Nanoparticles [J].Langmuir,2006,22(1):32-41.
    [62]Sondi I, Goia D V, Matijevic E. Prearation of Highly Concentrated Stable Didpersion of Uniform Silver Nanoparticles[J].Journal of Colloid and Interface Science,2003,260(1):75-81.
    [63]Zhang W Z, Qiao X L, Chen J G,et al. Preparation of Silver Nanoparticles in Water-in-oil AOT Reverse Micelles[J].Journal of Colloid and Interface Science,2006,302(1):370-373.
    [64]Liu J C, Raveendran P, et al. Synthesis of Ag and AgI Quantum Dots in AOT-Stabilized Water-in-CO2 Microemulsions[J]. Chemistry-A European Journal,(2005),11:1854-1860.
    [65]Prince L M. Microemusions, Theory and Practice, Chapter 5,Acdemic Press ,New York,1977.
    [66]刘树信,霍冀川,等.反相微乳液法制备纳米颗粒研究进展[J],无机盐工业,2004,36(5).
    [67]武汉大学化学系.仪器分析[M].高等教育出版社,2001.
    [68]Evanoff Jr D D, Chumanov G Size-Controlled Synthesis of Nanoparticles.2.Measurement of Extinction, Scattering, and Absorption Cross Sections[J]. Journal of Physical Chemistry B, 2004,108 (37):13957-13962.
    [69]Zhang W Z, Qiao X L, Chen J G Synthesis of Silver Nanoparticles-Effects of Concerned Parameters in Water/Oil Microemulsion[J]. Materials Science and Engineering B,2007,142(1):1-15.
    [70]Lo'pez-Quintela M A, Tojo C, Blanco M C,et al. Microemulsion Dynamics and Reactions in Microemulsions[J]. Current Opinion in Colloid and Interface Science,2004,9(3-4):264-278.
    [71]Eicke H F, Zinsli P E. Nanosecond Spectroscopic Investigations of Molecular Processes in W/O Microemulsions[J].Journal of Colloid and Interface Science,1978,65(1):131-140.
    [72]Greighton J A, Eaton D G Ultravoilet-visible Absorption Spectra of the Colloidal Metallic Elements[J]. Journal of the Chemical Society, Faraday Transactions.1991,87(24),3881-3891.
    [73]Fletcher P D I, Howe A M, Robinson B H. The Kinetics of Solubilisate Exchange between Water Droplets of a Water-in-oil Microemulsion[J]. Journal of the Chemical Society, Faraday Transactions 1,1987,83:985-1006.
    [74]Lo'pez-Quintela M A, Rivas J, Blanco M C,et al.Synthesis of Nanoparticles in Microemulsions. In: Marza'n Liz LM, Kamat PV,editors. Nanoscale Materials. Chapter 6. Boston:Kluwer Academic Publishing/Plenum; 2003:135-155.
    [75]Lo'pez-Quintela M A. Synthesis of Nanomaterials in Microemulsions: Formation Mechanisms and Growth Control [J].Current Opinion in Colloid and Interface Science, 2003,8(2):137-144.
    [76]丘坤元.自由基聚合近20年的发展[J].高分子通报,2008,7:15-28.
    [77]金关泰.高分子化学的理论和应用进展[M],中国石化出版社,1995,3.
    [78]刘静,彭慧,等.聚硅氧烷大单体与丙烯酸酯乳液共聚合[J].应用化学,2003,20(8):778-782.
    [79]金日光,华幼卿.高分子物理[M].北京:化学工业出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700