银微纳米结构的制备及其表面增强拉曼散射性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
最近几十年,银纳米粒子由于其独特地物理和化学性质,已经成为许多基础研究与应用研究所关注的对象。由于在一定频率的外界电磁场作用下银内部的自由电子做规则运动而产生的表面等离子体共振,使得银纳米粒子四周的电磁场被极大地增强。基于这一现象,表面增强拉曼散射(SERS)光谱技术应运而生,最近的研究更是成功地将SERS光谱技术应用到单分子检测中。而银纳米材料的性质与材料的形状、尺寸、结构等因素息息相关。所以,对银纳米材料形貌可控制备的研究就显得非常地重要。本论文主要研究不同形貌银纳米材料的可控制备以及其SERS性质,主要研究内容分为以下三个部分:
     (1)水溶液法是进行无机化学合成的最常用方法,通过添加柠檬酸钠,用弱还原剂抗坏血酸还原硝酸银水溶液成功地制备出具有花状结构的银微纳米材料。通过研究产物的形貌、结构、以及反映中间产物的形貌,提出其生长机理。研究了柠檬酸钠在花状银的形成过程中起到的作用以及pH值对产物的形貌的影响。把产物沉积在硅片上作为SERS基底能够检测到10-8 M的罗丹明6G(R6G)分子,增强因子达到4.1×107。
     (2)为了模拟矿物的形成条件,发明了水热法,在水热法的基础上,把溶剂由水变为有机溶剂就是一种新的化学合成方法:溶剂热法。在无机控制合成中,聚乙烯吡咯烷酮(PVP)是被经常用到的有机物。在实验中PVP既起到稳定纳米颗粒的作用,又起着帽化试剂(capping agent)的作用。讨论了盐酸在立方体银纳米粒子的形成中起到重要的作用,当不加盐酸时,或者用硫酸代替盐酸时,均不能得到立方体银纳米粒子。以R6G为目标分子检测了立方银纳米粒子作为SERS基底增强能力。
     (3)多孔氧化铝薄膜是很好的制备纳米材料的模板,在总结前人经验的基础上,采用优化的二次阳极氧化法制备出具有整齐六方结构的多孔氧化铝薄膜。以多孔氧化铝为模板,用交流电沉积的方法制备出排列整齐的银微纳米线阵列。研究了银纳米线阵列作为SERS基底检测对巯基苯甲酸(PMBA)时的SERS性能。
In the past decades, silver nanoparticles have been the subjects of a numbers of fundamental and practical studies, due to its specially physical and chemical properties. Under irradiation of lights with a proper frequency, the surface plasmon in silver particles can be excited, as a result, the local electromagnetic field close to the particles can be greatly enhanced. This is the foundation of Surface-enhanced Raman scattering (SERS) spectroscopy techniques that sensitive to the electromagnetic fields. Recently, SERS techniques have been used to detect the signs of single molecule. The SERS properties of silver nanoparticles are strongly dependent on the shape, size, and structure of the particles. In this dissertation, controlled synthesis of silver nanoparticles and SERS properties are the main content was studied, the three main parties are following:
     (1) Aqua-solution method is one of the most common method of inorganic chemical synthesis. Flower-like silver micro-nano materials were successfully prepared by ascorbic acid reduces silver nitrate in aqueous solution with the aid of sodium citrate. By studying the morphology and surface structure of the products, and the morphology of intermediate products, its growth mechanism was proposed. The effects of sodium citrate and pH value on the flower-like silver micro-nano materials were studied. The products deposited on silicon were used as SERS substrates to detect 10-8 M Rhodamine 6G (R6G) molecules, and the enhancement factor reached 4.1×107.
     (2) In order to simulate the conditions of mineral formation, the hydrothermal method was invented. When using organic solvents instead of water, a new chemical synthesis method: solvothermal was invented. In the inorganic controlled synthesis, polyvinylpyrrolidone (PVP) are frequently used organic agent. In the experiments, PVP not only plays the role of stable nanoparticles, but also plays the role of capping agent. Hydrochloric acid plays an important role in the formation of the cube silver nanoparticles, as without HCl or sulfuric acid instead of hydrochloric acid, cannot obtained the cube silver nanoparticles. We evaluated the SERS properties of the cube silver nanoparticles dispersed on Si wafer using Rhodamine 6G (R6G) as target molecule.
     (3) porous alumina film is a good template for preparation of nanomaterials, on the basis of previous experience, 6-fold rotational symmetric porous anodic aluminum oxide film was prepared by the optimized anodic oxidation. Use porous anodic aluminum oxide film as template, silver nanowires array was prepared by the method of the alternating current deposition. We evaluated the SERS properties of the silver nanowires array using R6G as target molecule.
引文
[1] Murray CB, Kagan CR, Bawendi MG, et al. Science[J] 1995, 270, 1335.
    [2] Lover T, Bowmaker GA, Henderson W, et al. Chem. Commun. [J] 1996, 5, 683.
    [3] Lover T, Henderson W, Bowmaker GA, et al. Inorg. Chem. [J] 1997, 36, 3711.
    [4] Suslick KS, Science[J] 1990, 247, 1439.
    [5] Anderson MA, Spanhel L, J. Am. Chem. Soc. [J] 1990, 112, 2284.
    [6] Cavjcchi RE, Silsbee RH, Phys. Rev. Lett. [J] 1984, 52, 1453.
    [7]张立德,牟季美.纳米结构与纳米材料北京:科学出版社, 2000.
    [8]张立德,牟季美.纳米材料学辽宁:科技出版社, 1994.
    [9]都有为,倪刚.物理1998, 27, 524.
    [10] Ball P, Garwin L, Nature 1992, 355, 761.
    [11]张立德,牟季美.物理1992, 21, 167.
    [12] Gleiter H, Nanostructured Materials. Acta. [J].Metallurgia Sinica, 1997, 33, 30.
    [13]倪星元,沈军,张志华.纳米材料的理化特性与应用北京:化学工业出版社, 2006.
    [14]周全法.贵金属深加工及其应用北京:化学工业出版社, 2002.
    [15]阎子峰.纳米催化技术北京:化学工业出版社, 2003.
    [16]魏建红,官建国,袁润章.武汉理工大学学报2001, 23, 1-4.
    [17]高书燕.中国科学院长春应用化学研究所博士学位论文2006.
    [18]李宇农,何建军,龙小兵.稀有金属与硬质合金2003, 31, 45-50.
    [19]胡军辉,吴润,夏辉.激光技术2000, 24, 348-350.
    [20] Fu X, Wang DB, Wang J, et al. Mater. Res. Bull. [J] 2004, 39, 1869.
    [21]麦振洪,赵永男.物理2001, 30, 106.
    [22] Ohnot T, J. Cryst. Growth[J] 1984, 70, 541.
    [23] Zhang J, Liu H, Wang Z, et al. Adv. Funct. Mater. [J] 2007, 17, 3295.
    [24] Chiang CL, J. Colloid Interf. Sci. [J] 2000, 230, 60.
    [25] Reetzm MT, Helbig W, Quaiser SA, et al. Science[J] 1995, 267, 367.
    [26] Bian YM, An MZ, Semiconductor Optoelectronics[J] 2003, 24, 382.
    [27] Didenko YT, McNamara WB, Suslick KS, et al. J. Am. Chem. Soc. [J] 1999, 121, 5817.
    [28] Okitsu K, Yue A, Tanabe S, et al. Langmuir[J] 2001, 17, 7717.
    [29] Dhas NA, Gedanken A, J. Mater. Chem. [J] 1998, 8, 445.
    [30] Okitsu K, Yue A, Tanabe S, et al. Chem. Mater. [J] 2000, 12, 3006.
    [31] Mizukoshi Y, Oshima R, Maeda Y, et al. Langmuir[J] 1999, 15, 2733.
    [32] Yu W, Tu W, Liu H, et al. Langmuir[J] 1999, 15, 6.
    [33] Cushing BL, Kolesnichenko VL, Connor CJO, et al. Chem. Rev. [J] 2004, 104, 3893.
    [34] Foss JCA, Hornyak GL, Stoekert J. A., et al. Martin C. R., Adv. Mater. [J] 1993, 5, 135.
    [35] Wiley B, Im SH, Li ZY, et al. J. Phys. Chem. B[J] 2006, 110, 15666.
    [36] Tian N, Zhou ZY, Sun SG, et al. Science[J] 2007, 316, 732.
    [37] Xiong Y, Cai H, Wiley BJ, et al. J. Am. Chem. Soc. [J] 2007, 129, 3665.
    [38] Lim B, Xiong Y, Xia Y, et al. Angew. Chem. Int. Ed. [J] 2007, 46, 9279.
    [39] Xiong Y, McLellan JM, Yin Y., et al. Angew. Chem. Int. Ed. [J] 2007, 46, 790.
    [40] Raman CV, Krishnan KS, Nature[J] 1928, 121, 5.
    [41] Cabanes J, Compt. Rend. Acad. Sci. Paris 1928, 186, 1201.
    [42] Behringer J, Brandmuller J, Z. Electrochem[J] 1956, 60, 643.
    [43] Birke RL, LuT, Lombardi JR, et al. Surface-Enhanced Raman Spectroscopy in Techniques for Characterization of Electrodes and Electrochemical Processes, Varma R., Selman J. R., Eds. John Wiley&Sons, 1991.
    [44] Campion A, Kambhampati P, Chem. Soc. Rev. [J] 1998, 27, 241.
    [45] Chang RK, Futak TE, Surface enhanced Raman Scattering, Plenum Press: New York, 1982.
    [46] Fleischmann M, Hendra RJ, MeQuillan AJ, et al. Chem. Phys. Lett. [J] 1974, 26, 163.
    [47] Jeanmaire DL, Van Duyne RP, J. Electroanal. Chem. [J] 1977, 84, 1.
    [48] Albrecht MG, Creighton JA, J. Am. Chem. Soc. [J] 1977, 99, 5215.
    [49] Moskovits M, Rev. Mod. Phys. [J] 1985, 57, 783.
    [50] Gersten J. I., Nitzan A., Surface Enhanced Raman Scattering, 1982,
    [51] Chang RK, Furtak TE, Plenum Press, New York pp.35.
    [52] Campion A, Kambhampati P, Chem. Soc. Rev.[J] 1998, 27, 241.
    [53] Zayats AV, Smolyaninov II, J. Opt. A: Pure Appl. Opt. [J] 2003, 5, 16.
    [54] Burstein E, Chen CY, Lundquist S, et al. In Light Scattering in Solids Birman J. L. Ed., Plenum, New York, 1979.
    [55] Demuth JE, Christmann K., Sanda P. N., et al. Chem. Phys. Lett. [J] 1980, 76, 201.
    [56] Sanda PN, Warlaumont JM, Demuth JE, et al. Phys. Rev. Lett. [J] 1980, 45, 1519.
    [57] Seki H, Philpott MR, J. Chem. Phys. [J] 1980, 73, 5376.
    [58] Furtak TE, Roy D, Phys. Rev. Lett. [J] 1983, 50, 1301.
    [59] Pettkofer C, Eickmans J, Erturk U, et al. Surf. Sci. [J] 1985, 151, 9.
    [60] Otto A, In Light scattering in solid IV.Electronic scattering,spin effects, SERS and morphic effects Cardona, M.; Guntherodt, G. Eds.; Springer-Verlag: Berlin, Germany, 1984.
    [61] Otto A, Mrozek I, Grabhorn H, et al. J. Phys. Chem. Condens. Matter. [J] 1992, 4, 1143.
    [62] Kambhampati P, Child CM, Foster MC, et al. J. Chem. Phys. [J] 1998, 12, 5013.
    [63] Chang RK, Bunsenges B, Phys. Chem. [J] 1987, 91, 296.
    [64] Otto A, Bomemann T, Erturk U, et al. Petennkofer C, Surf. Sci. [J] 1989, 210, 363.
    [65] El-Sayed IH, Huang XH, El-Sayed MA, et al. Nano Lett. [J] 2005, 5, 829.
    [66] Liang HP, Wan LJ, Bai CL, et al. J. Phys. Chem. B[J] 2005, 109, 7795.
    [67] Ghaemi HF, Thio T, Grupp DE, et al. Phys. Rev. B[J] 1998, 58, 6779.
    [68] Schroter U, Heitmann D, Phys. Rev. B[J] 1998, 58, 15419.
    [69] Chao Y, Zhou Q, Li Y, J. et al. Phys. Chem. C[J] 2007, 111, 16990.
    [70] Tian ZQ, Ren B, Wu DY, et al. J. Phys. Chem. B[J] 2002, 106, 9463.
    [71] Nikoobakht B, El-Sayed MA, J. Phys. Chem. A[J] 2003, 107, 3372.
    [72] Schwartzberg AM, Grant CD, Wolcott A, et al. J. Phys. Chem. B[J] 2004, 108, 19191.
    [73] Xu HX, Bjerneld EJ, Kall M, et al. Phys. Rev. Lett. [J] 1999, 83, 4357.
    [74] Kneipp K, Wang Y, Kneipp H, et al. Phys. Rev. Lett. [J] 1997, 78, 1667.
    [75] Michaels A. M, Jiang J, Brus L, et al. J. Phys. Chem. B[J] 2000, 104, 11965.
    [1] Hu JW, Zhao B, Xu WQ, et al. Chem. J. Chinese Universities[J] 2002. 23, 123.
    [2] Nabika H, Deki S, J. Phys. Chem. B[J] 2003, 107, 9161.
    [3] Alivisatos AP. J. Phys. Chem.[J] 1996, 100, 13226.
    [4] Zhang YM, Liu HY, Song WB, Chem. J. Chinese Universities[J] 2010, 31, 157.
    [5] Yang Y, Matsubara S, Xiong L, et al. J. Phys. Chem. C[J], 2007, 111, 9095.
    [6] Ning XH, Xu SP, Dong FX, et al. Chem. J. Chinese Universities[J] 2009, 30, 159.
    [7] Sun Y, Xia Y. Science[J] 2002, 298, 2176.
    [8] Zhou J, An J, Tang B, et al. Langmuir[J] 2008, 24, 10407.
    [9] Sun Y, Mayers B, Herricks T, et al. Nano Lett.[J] 2003, 3, 955.
    [10] Hao E, Bailey RC, Schatz GC, et al. Nano Lett.[J] 2004, 4, 327.
    [11] Liang H, Li Z, Wang W, et al. Adv. Mater.[J] 2009, 21, 4614.
    [12] Lu L, Kobayashi A, Tawa K, et al. Chem. Mater.[J] 2006, 18, 4894.
    [13] Wang LY, Ji XH, Zhang XT, et al. Chem. J. Chinese Universities [J] 2002, 23,2169.
    [14] Yabu H, Hirai Y, Matsuo Y, et al. Chemical Communications[J] 2010, 46, 2298.
    [15] Li XL, Xu WQ, Zhang JH, et al. Chem. J. Chinese Universities [J] 2003, 24, 707.
    [16] Mulvihill MJ, Ling XY, Henzie J, et al. Am. Chem. Soc.[J] 2010, 132, 268.
    [17] Jin RC, Cao YC, Hao EC, et al. Nature[J] 2003, 425, 487.
    [18] Jin RC, Cao YW, Mirkin CA, et al. Science[J] 2001, 294, 1901.
    [19] Chen SH, Carroll DL. Nano Lett.[J] 2002, 2, 1003.
    [20] Hao E, Kelly KL, Hupp JT, et al. J. Am. Chem. Soc.[J] 2002, 124, 15182.
    [21] Maillard M, Giorgio S, Pileni MP. Adv. Mater.[J] 2002, 14, 1084.
    [22] Pastoriza-Santos I, Liz-Marzan LM. Nano Lett.[J] 2002, 2, 903.
    [23] Wang ZL. J. Phys. Chem. B[J] 2000, 104, 1153.
    [24] Germain V, Li J, Ingert D, et al. J. Phys. Chem. B[J] 2003, 107, 8717.
    [25] Xiong Y, McLellan JM, Chen J, et al. J. Am. Chem. Soc.[J] 2005, 127, 17118.
    [26] Xiong Y, Washio I, Chen J, et al. Langmuir[J] 2006, 22, 8563.
    [27] Washio I, Xiong Y, Yin Y, et al. Adv. Mater.[J] 2006, 18, 1745.
    [28] Cleveland CL, Landman U. J. Chem. Phys.[J] 1991, 94, 7376.
    [29] Liu S, Liu W, Zuo J, et al. Inorg. Chem. Commun.[J] 2005, 8, 328.
    [30] Henglein A, Giersig M. J. Phys. Chem. B[J] 1999, 103, 9533.
    [31] Watanable H, Hayazawa N, Inouye Y, et al. J. Phys. Chem. B[J] 2005, 109, 501.
    [32] Deng S, Fan HM, Zhang X, et al. Nanotechnology[J] 2009, 20, 175705.
    [33] Kottmann JP, Martin OJF, Smith DR, et al. Phys. ReV. B[J] 2001, 64, 235402.
    [34] Fang JX, Yi Y, Ding BJ, et al. Appl. Phys. Lett.[J] 2008, 92, 131115.
    [1] Barnes WL, Dereux A, Ebbesen TW. Nature[J] 2003, 424, 824.
    [2] Qiu JR, Jiang X, Zhu C, et al. Angew. Chem. Int. Ed.[J] 2004, 43, 2230.
    [3] Yang Y, Nogami M, Shi J, et al. J. Phys. Chem. B[J] 2005,109, 4865.
    [4] Nie S, Emory SR. Science[J] 1997, 275, 1102.
    [5] Haynes CL, McFarland AD, Van Duyne RP. Anal. Chem.[J] 2005, 77, 338A
    [6] Lim IS, Yang J, Luo J, et al. J. Chem. Mater.[J] 2005, 17, 6528.
    [7] Yang Y, Xiong L, Shi J, et al. Nanotechnology[J] 2006, 17, 2670.
    [8] Murphy CJ, Jana NR. Adv. Mater.[J] 2002, 14, 80.
    [9] Lou Y, Maye MM, Han L, et al. J. Chem. Commun.[J] 2001, 5, 473.
    [10] Yang Y, Nogami M, Shi J, et al. Mater. Chem.[J] 2003, 13, 3026.
    [11] Daniel MC, Astruc D. Chem. Rev.[J] 2004, 104, 293.
    [12] Yang Y, Nogami M, Shi J, et al. Appl. Phys. Lett.[J] 2006, 88, 081110.
    [13] Wiley B, Sun Y, Mayers B, et al. Chem.sEur. J.[J] 2005, 11, 454.
    [14] Sun Y, Xia Y. Science[J] 2002, 298, 2176
    [15] Zhou J, An J, Tang B, Langmuir[J] 2008, 24, 10407
    [16] Busbee BD, Obare SO, Murphy CJ. AdV. Mater.[J] 2003, 15, 414.
    [17] Hanarp P, Kall M, Sutherland DS. J. Phys. Chem. B[J] 2003, 107, 5768.
    [18] Jana NR, Gearheart L, Murphy CJ. AdV. Mater.[J] 2002, 13, 1389.
    [19] Hu JQ, Chen Q, Xie ZX, et al. Adv Funct. Mater.[J] 2004, 14, 183.
    [20] Pileni MP. J. Phys. Chem. C[J] 2007, 111, 9019.
    [21] Yang Y, Matsubara S, Xiong LM, et al. J. Phys. Chem. C[J] 2007, 111, 9095
    [22] Pastoriza-Santos I, Liz-Marzan LM. Langmuir[J] 1999, 15, 948.
    [23] Pastoriza-Santos I, Liz-Marzan LM. Langmuir[J] 2002, 18, 2888.
    [24] Pastoriza-Santos I, Liz-Marzan LM. Nano. Lett.[J] 2002, 2, 903.
    [25] Wang ZL. J. Phys. Chem. B[J] 2000, 104, 1153.
    [26] Cleveland CL, Landman UJ. Chem. Phys.[J] 1991, 94, 7376.
    [27] Washio I, Xiong Y, Yin Y, et al. Adv. Mater.[J] 2006, 18, 1745.
    [28] Cleveland CL, Landman UJ. Chem. Phys.[J] 1991, 94, 7376.
    [1] Keller F, Hunter MS, Robinson DL, J. Electrochem. Soc. [J] 1953, 100, 411.
    [2] Dorsey G. J. Electrochem. Soc. [J] 1969, 116, 466.
    [3] Murphy JF, Michelson CE. A theory for the formation of anodic coatings on aluminum. A.D.A.Conference on anodizing of aluminium, Nottingham,1961
    [4] Thompson GE, Furneaux RC, Wood GC. Trans. Inst. Met. Fin. [J] 1978, 56, 159.
    [5] Wada K, Shimohira T. J. Mater. Sci. [J] 1986, 21, 3810.
    [6] Parkhutik VP, Shershulsky VI. J. Phys. D: Appl. Phys. [J] 1992, 25, 1258.
    [7] Masuda H, Yasui K, Nishio K. Adv. Mater. [J] 2000, 12, 1031.
    [8] Gao T, Fan JC, Meng GW, Chu ZQ, et al. Thin Solid Films[J] 2001, 401, 102.
    [9] Liu K, Nogues J, Leighton C, et al. Appl. Phys. Lett. [J] 2002, 81, 4434.
    [10] Mei X, Kim D, Ruda HE, et al. Appl. Phys. Lett. [J] 2002, 81, 361.
    [11] Liang J, Chik H, Yin A, et al. J. Appl. Phys. [J] 2002, 91, 2544.
    [12] Deb P, Kim HY, Rawat V, et al. Nano Lett. [J] 2005, 5, 1847.
    [13] Lei Y, Chim WK. Chem. Mater. [J] 2005, 17, 580.
    [14] Masuda H. Fukuda K. Science[J] 1995, 268, 1466.
    [15] Nakao M, Oku S, Tamamura T, et al. J.Appl.Phys. [J] 1999, 38, 1052.
    [16] Crouse D, Lo YH, Miller AE, et al. Appl. Phys. Lett. [J] 2000, 76, 49.
    [17] Knanmori Y, Hane K, Sai H, et al. Appl.Phys.Lett. [J] 2001, 78, 142.
    [18] Yanagishita T, Nishio K, Masuda H. Adv. Mater. [J] 2005, 17, 2241.
    [19] Sauer G, Brehm G, Schneider S, et al. J. Appl. Phys. [J] 2002, 91, 3243.
    [20] Yang S, Zhu H, Yu D, et al. J. Magnestism Magnetic Mater. [J] 2000, 222, 97.
    [21] Routkevitch D, Tager AA, Haruyama J, et al. Trans. Electron Devices[J] 1996, 43, 1646.
    [22] Wang XF, Zhang J, Shi HZ, et al. J. Appl. Phys. [J] 2001, 89, 3847.
    [23]杜亚冰,河南大学硕士学位论文,2007.
    [24] Thompson GE, Furneaux RC, Wood GC, et al. Nature[J] 1978, 272, 433.
    [25] Muller F, Gosele U. Appl. Phys. Lett.[J] 1998, 72, 1173.
    [26] Michota A, Bukowska J. J. Raman Spectrosc[J]. 2003, 34, 21.
    [27] Deng S, Fan HM, Zhang X, et al. Nanotechnology[J] 2009, 20, 175705.
    [28] Kottmann J P, Martin OJF, Smith DR, et al. Phys. ReV. B[J] 2001, 64, 235402.
    [29] Fang JX, Yi Y, Ding BJ, et al. Appl. Phys. Lett.[J] 2008, 92, 131115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700