多形貌纳米银的制备及其可控性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米银材料由于其特殊的物理和化学性质,在催化、光学、电子、表面拉曼增强,生物医药和生物传感器以及许多领域都具有广泛的应用前景。纳米材料这些独特性能与其尺寸、形状密切相关,因而形貌可控地制备纳米材料非常重要。虽然纳米材料的制备方法有很多种,但对于纳米材料的可控制备方面所取得的成果仍然非常有限,因此寻找新的合成方法制备尺寸和形貌可调的银纳米结构具有十分重要的意义和广泛的应用前景。根据目前金属Ag纳米粒子的国内外研究现状,本文通过水热法合成了零维球形纳米银,一维银纳米线,二维花状纳米银自组装结构,表征和分析了合成产物的成分、形貌、结构,提出了上述银纳米结构的生长机理,得到简易的银纳米粒子形貌可控的合成方法。
     采用水热法,不添加任何还原剂,在表面活性剂聚乙烯吡咯烷酮(PVP)保护下,热分解碳酸银制得纳米银溶胶。通过改变反应温度、反应时间、表面活性剂浓度、种类及反应物浓度等反应条件,利用X射线衍射仪(XRD),扫描电子显微镜(SEM)和电子能谱仪(EDS)分析表明,在反应温度为180℃,反应时间为5小时,AgNO3浓度0.1mol/L, NaHCO3浓度0.05mol/L,PVP为1.7 g的最佳制备工艺条件下,纳米银粒子为球形,粒径大小分布范围窄,单一分散,粒径40 nm左右。
     采用水热法,在180℃,以葡萄糖为还原剂,聚乙烯吡咯烷酮(PVP)为表面活性剂,Fe3+的刻蚀作用下,反应时间为3小时,合成高产率的长度达几百微米的银纳米线。讨论了反应温度、反应时间、反应物浓度等反应条件对于形成银纳米线的影响,随着Fe3+的增加,银纳米线直径也由90nm增加到300nm。结果表明Fe3+和PVP浓度对于银纳米线尺寸和形貌的调控具有关键作用。
     由简单的水热法组制备出高产率的花状纳米银自组装结构,这种新颖的纳米结构是在聚乙烯吡咯烷酮(PVP)存在下通过抗坏血酸在150℃,10小时还原生成的。平均粒径大小在1-2微米,由许多纳米棒束自组装而成,显示为面心立方结构并讨论了各反应物浓度因素对于形貌的影响。结果表明,在相对低浓度的PVP有利于合成花状自组装结构,且PVP的浓度改变对于形成组成自组装结构的纳米棒束形貌具有关键作用。与此同时,AgNO3与AsA的浓度和摩尔比对于花状银纳米自组装结构的形成也具有重要影响。这种新颖的纳米结构,可能具有特殊的物理,化学与光电性能。
Nanoscaled silver have received considerable attention due to their unique chemical and physical properties, and have widely potential applications in catalyst, optics, electronics, surface-enhanced Raman scattering (SERS), biomedicine, and biological sensing. These peculiar and fascinating properties of nanomaterials strongly depend on the size and the shape of the nanoparticles. Thereby morphology-controlled preparation of nanomaterials is very important and significative. Nowadays a great variety of methods have been used to obtain metal nanostructures, the shape-controllable synthesis is still a challenge for materials researchers, and finding a new synthesis method for the preparation of adjustable size and morphology of the silver nanostruetures has very important significance and broad application prospects. Based on the development of metallic silver nanoparticles in the world, in this paper, we sucsessfuly synthesized zero-dimensional spheric silver nanoparticles, one-dimensional silver nanowires and two-dimensional flower-like silver nanoplate micro-assemblies by hydrothermal route. The obtained silver products were characterized and tested, and the growth mechanism of former silver naostructures was dicussed. this dissertation presents a facile chemical solution-method to prepare silver nanoparticles with various morphologies and obtain novel silver nanostructures.
     Colloidal silver nanoparticles were prepared by decomposing silver carbonate with hydrothermal method in the presence of polyvinyl pyrrolidone as protecting agents and without any reducing agent. By changing the reaction temperature, time, surfactants concentration, category and the reagents concentration, silver nanoparticles were obtained and investigated by the XRD (X-ray diffraction), SEM (scanning electron microscope) and EDS (energy-dispersive spectroscopy). The optimum preparation conditions was 180℃,5 h, 0.1mol/L AgNO3,0.05mol/L NaHCO3 and 1.7 g PVP(polyvinyl pyrrolidone), and under this condition, the results show that the nanometer silver powder were spherical shape, single dispersion and about 40 nm in particle size with a narrow size distribution.
     We have prepared large scale silver nanowires with lengths of several hundred micrometers by using glucose as reducing agent, PVP as crystal growth control agent at 180℃for 3 h, and Fe3+ as etching agents under hydrothermal process. The influential factors such as reaction temperature, reaction time, and concentration of the reagents were studied. The diameter of synthesized silver nanowires changed from 90 nm to 300 nm with the increase of Fe3+. The results showed that the concentration of Fe3+ and PVP is the key role for controllable size and morphology for silver nanowires.
     We demonstrated the fabrication of the novel flower-like silver nanoplate micro-assemblies in high yields by a facile hydrothermal method. This nanostructure was synthesized in the presence of poly (vinyl pyrrolidone) and ascorbic acid at 150℃for 10h. The micro-assemblies with average size of 1-2μm are consisted of several uniform nanorods and show face centered cubic structure. The effects of the concentration of reactants, molar ratio of silver nitrate to ascorbic acid on the formation of the flower-like silver micro-assemblies were also presented. The results suggest that PVP with relative low concentration is favorable to synthesize the flower-like nanoplate micro-assemblies, and the shapes of the consisted particles in the micro-assemblies are largely modified by altering the concentration of PVP. Additionally, the concentrations and the molar ratio of AgNO3 to AsA are significant parameters for the formation of the flower-like silver nanoplate micro-assemblies. This novel silver structure is expected to behave fascinating properties of chemistry, physics and electronics.
引文
[1]朱静.纳米材料与器件.北京:清华大学出版社,2003
    [2]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001
    [3]王永康,王立.纳米材料科学与技术.杭州:浙江大学出版社,2002
    [4]张立德,解思深.纳米材料和纳米结构一国家重大基础研究项目新进展.北京:化学工业出版社,2005
    [5]白春礼,纳米科学与技术.云南:云南科技出版社,1999
    [6]Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science,1996,271, (5251):933-937
    [7]Pavesi L, Dal Negro L, Mazzoleni C. Optical gain in silicon nanocrystals[J]. Nature,2000,408 (6811):440-444
    [8]Puntes V F, Krishnan K M, Alivisatos A P. Colloidal nanocrystal shape and size control:The case of cobalt[J]. Science,2001,291(5511):2115-2117
    [9]Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides[J]. Science, 2001,291(5510):1947-1949
    [10]Morales A M, Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires[J]. Science,1998,279 (5348):208-211
    [11]Huang M H, Wu Y Y, Feiek H. Catalytic growth of zinc oxide nanowires by vapor transport [J]. Advanced Materials,2001,13 (2):113-116
    [12]Moriarty P. Nanostructured materials[J]. Reports on Progress in Physics,2001, 64(3):297-381
    [13]Huang X M H, Zorman C A, Mehregany M. Nanodevice motion at microwave frequencies[J]. Nature,2003,421(6922):496-496
    [14]Collins P G, Zettl A, Bando H. Nanotube nanodevice[J]. Science,1997,278 (5335):100-103
    [15]A Henglein. Small-particle research:physicochemical properties of extremely small colloidal metal and semiconductor particles[J]. Chem. Rev,1989,89: 1861-1873
    [16]W P Halperin. Quantum size effects in metalparticles[J]. Rev. Modern. Phys, 1986,58 (3):533-606
    [17]T Matsumoto J, Suzuki M Ohnuma, et al. Direct evidence of quantum size effect in nanocrystalline silicon[J]. Phys. Rev. B,2001,63:195322(1)-195322(5)
    [18]Nel A, Xia T, Madler L. Toxic potential of materials at the nanolevel[J]. Science, 2006,311,(5761):622-627
    [19]Y Wang, W Mahler, Degenerate four-wave mixing of CdS/polymer composite[J]. Opt. Commun,1987,61 (3):233-236
    [20]S Auer, D Frenke. Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy[J]. Nature,2001,413:711-713
    [21]E Hilinski, P Lucas, Y Wang. A picosecond bleaching study of quantum-confined cadmium sulfide microcrystallites in polymer film[J]. J. Chem. Phys,1988,89 (6):3435-3441
    [22]B Barbara, W Wernsdorfer. TI quantum tunneling effect in magnetic particles[J]. Solid State Mater Sci,1997,2:220-225
    [23]Valiev R. Nanostructuring of metals by severe plastic deformation for advanced Properties[J]. Nature Materials 2004,3(8):511-516
    [24]Xia Y, Xiong Y, lim B, et al. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics[J]. Angew. Chem. Int. Ed,2008,47: 2-46
    [25]Txabe K, Hasegawa T, Nakayama T, et al. Quantized conductance atomic switch[J]. Nature,2005,433:47-50
    [26]L N Lewis. Chemical catalysis by colloids and clusters[J]. Chem. Rev,1993, 93(8):2693-2730
    [27]Y Chen, K Munechika, D S Ginger. Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant singer silver nanoparticles[J]. Nano. Lett,2007,7:690-696
    [28]J P Xie, J Y Lee, D I C Wang, et al. Silver nanoplates:from biological to biomimetic synthesis[J]. ACS. Nano,2007,1(5):429-439
    [29]C B Murray, S Sun, H Doyle, et al. Monodisperse 3d Transition-metal (Co, Ni, Fe) nanoparticles and their assembly into nanoparticle superlattices[J]. Mater. Res. Soc. Bull,2001,26:985-991
    [30]Y Yang, S Matsubara, L M Xiong, et al. Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties[J]. J. Phys. Chem. C, 2007,111:9095-9104
    [31]P V Kamat, Photophysical, photochemical and photocatalytic aspects of metal nanoparticles[J]. J. Phys. Chem. B,2002,106:7729-7744
    [32]Ide E, Angata S, Hirose A, et al. Metal-metal bonding process using Ag metallo-organic nanoparticles[J]. Acta. Materials,2005,53:2385-2393
    [33]J Zhang, I Gryczynski, Z Gryczynski, et al. Dye-labeled silver nanoshell-bright particles[J]. J. Phys. Chem. B,2006,110:8986-8991
    [34]K Aslan, Z Leonenko, J R Lakowicz, et al. Annealed silver-island films for applications in metal-enhanced fluorescence:interpretation in terms of radiating plasmons[J]. J. Fluores.2005,15:643-654
    [35]Haynes C L, McFarland A D, Van Duyne R P. Surface-Enhanced Raman Spectroscopy[J]. Anal.Chem,2005,77:338-346
    [36]S A Maier, M L Brongersma, P G Kilk, et al. Plasmonics-a route to nanoscale optical devices[J]. Adv. Mater.,2001,13:1501-1505
    [37]Moore B D, Stevenson L, Watt A, et al. Rapid and ultra-sensitive determination of enzyme activities using surface-enhanced resonance Raman scattering[J]. Nature Biotechnology 2004,22(9):1133-1138
    [38]Xu H X, Bjerneld E J, Kall M,et al. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering[J]. Physical Review Letters 1999,83 (21):4357-4360
    [39]Zheng J, Dickson R M. individual water-soluble dendrimer-encapsulated silver nanodot fluorescence[J]. Journal of the American Chemical society 2002,124 (47):13982-13963
    [40]Jin R, Y W Cao, C A Mirkin, etal. Photoinduced conversion of silver nanospheres to nanoprisms[J]. Science,2001,294(5548):1901-1903
    [41]Chen S, D L Carroll. Synthesis and characterization of truncated triangular silver nanoplates[J]. Nano. Lett,2002,2(9):1003-1007
    [42]Nagy A J, Mestl G, Schlogl R. The role of subsurfaece oxygen in the silver-catalyzed, oxidative coupling of methane[J]. Journal of Catalysis 1999, 188(1):58-68
    [43]Wiley B J, Y Xiong, Z Y Li, etal. Right bipyramids of silver:A new shape derived from single twinned seeds[J]. Nano. Lett,2006,6(4):765-768
    [44]Yu D, v w w Yam. Controlled sythesis of monodisperse silver nanocubes in water[J]. J.Am.Chem.Soc,2004,126(41):13200-13201
    [45]Joo J, Lee C Y, High frequency electromagnetic interference shielding response of mixtures and multilayer films based on conducting polymers[J]. Journal of Applied Physics,2000,88(1):513-518
    [46]Wiley B, Y Sun, Y Xia. Polyol synthesis of silver nanostructures:Control of product morphology with Fe(Ⅱ) or Fe(Ⅲ) species[J]. Langmuir,2005,21(18): 8077-8080
    [47]P K Dutta, J R Gregg. Hydrothermal synthesis of tetragonal barium titanate[J]. Chem. Mater,1992,4:843-846
    [48]E Hosono, S Fujihara, K Kakiuchi, et al. Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions[J]. J.Am.Chem. Soc,2004,126:7790-7791
    [49]Wang Z H, Liu J W, Chen X Y, et al. A simple hydrothermal route to large-scale synthesis of uniform silver nanowires[J]. Chemistry-a European Journal 2005,11(1):160-163
    [50]Xin He, Xiujian Zhao, Yun xia Chen, etal. Synthesis and characterization of silver nanowires with zigzag morphology in N, N-dimethyl formamide[J]. Journal of solid State Chemistry,2007.180:2262-2267
    [51]Sun Y, B Gates, B Mayers, et al. Crystalline silver nano wires by soft solution processing[J]. Nano. Lett,2002,2(2):165-168
    [52]Jiang P, S Y Li, S S Xie, etal. Machinable long PVP-stabilized silver nanowires[J]. Chem.Eur.J,2004,10(19):4817-4821.
    [53]Chen H, Y Gao, H Zhang, et al. Transmission-eleetron-microscopy study on fivefold twinned silver nanorods[J].J.Phys.Chem.B,2004,108(32): 12038-12043
    [54]Sherry L J, Chang S H, Schatz G C, ea tl. Localized surfaceplasmon resonance spectroscopy of single silver nanocubes[J]. Nano.Letters,2005,5(10): 2034-2038
    [55]Chen C, L Wang, G Jiang, et al. The influence of seeding conditions and shielding gas atmosphere on the synthesis of silver nanowires through the polyol process[J]. Nanotechnology,2006,17(2):466-474
    [56]Gou L, M Chipara, J M Zaleski. Convenient rapid synthesis of Ag nanowires[J]. Chem.Mater,2007,19(7):1755-1760
    [57]Sun Y G, Xia Y N. Large-scale synthesis of unoform silver nanowires through a soft,self-seeding,polyol process[J]. Advanced Materials 2002,14(11):833-837
    [58]Sun Y, Y Xia. Shape-controlled synthesis of gold and silver nanoparticles[J]. Science,2002,298:2176-2179
    [59]Wiley B J, Chen Y C, McLellan J M,et.al. Synthesis and optical properties of silver nanobarsand nanorice[J]. Nano. Letters,2007,7(4):1032-1036
    [60]Wiley B J, Xiong Y J, Li Z Y, et al. Right bipyramids of silver:A new shapederived from single twinned seeds[J]. Nano. Letters,2006,6 (4):765-768
    [61]N R Jana, L Gearheart, C J Murphy. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio[J]. Chem. Commun,2001:617-618
    [62]R Jin, Y Cao, C A Mirkin, et al. Photoinduced conversion of silver nanospheres to nanoprisms [J]. Science,2001,294(30):1901-1903
    [63]Y G Sun, B Gates, B T Mayers, et al. Crystalline silver nanowires by soft solution processing [J]. Nano. Lett,2002,2:165-168
    [64]M Maillard, P Huang, L Brus. Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag+] [J]. Nano. Lett,2003,3:1611-1615
    [65]F K Liu, P W Huang, Y C Chang. Formation of silver nanorods by microwave heating in the presence of gold seeds[J]. J. Cryst. Growth,2005,273:439-445
    [66]S H Chen, Z Y Fan, D L Carroll. Silver nanodisks:synthesis, characterization and self-assembly[J]. J. Phys. Chem. B,2002,106(42):10777-10781
    [67]Y G Sun, Y N Xia. Triangular nanoplates of silver:synthesis, characterization, and use as sacrificial templates for generating triangular nanorings of gold[J]. Adv. Mater,2003,15(9):695-699
    [68]C J Murphy, N R Jana. Controlling the aspect ratio of inorganic nanorods and nanowires[J]. Adv. Mater.,2002,14(1):80-82
    [69]M Tsuji, K Matsumoto, N Miyamae, et al. Rapid preparation of silver nanorods and nanowires by a microwave-polyol method in the presence of Pt catalyst and polyvinylpyrrolidone [J]. Cryst. Growth Des,2007,7(2):311-320
    [70]N R Jana, L Gearheart, C J Murphy. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods[J]. J. Phys. Chem. B,2001,105:4065-4067
    [71]Jin R C, Cao Y W, Mirkin CA, et al. Photoinduced conversion of silver nano spheres to nanoprisms[J]. Science,2001,294(5548):1901-1903
    [72]N R Jana, L Gearheart, C J Murphy. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template[J]. Adv. Mater,2001,13(18):1389-1393
    [73]Y G Sun, Y D Yin, B T Mayers, et al. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone)[J]. Chem. Mater.,2002,14:4736-4745
    [74]Jin R C, Cao Y C, Hao E C, et al. Controlling anisotropic nanoparticle growth through plasmon excitation[J]. Nature,2003,425(6957):487-490
    [75]Y Zhang, H Dai. Formation of metal nanowires on suspended single-walled carbon nanotubes[J]. Appl. Phys. Let,2000,77(19):3015-3017
    [76]Y G Sun, Y N Xia. Triangular nanoplates of silver:synthesis, characterization, and use as sacrificial templates for generating triangular nanorings of gold[J]. Adv. Mater,2003,15(9):695-699
    [77]X Y Zhang, L D Zhang, W Chen, et al. Electrochemical fabrication of highly ordered semiconductor and metallic arrays[J]. Chem.Mater,2001,13:2511-2515
    [78]R J Tonucci, B L Justus, A J Campillo, et al. Nanochannel array glass [J]. Science, 1992,258:783-785
    [79]V M Cepak, C R Martin. Preparation and Stability of Template-Synthesized Metal Nanorod Sols in Organic Solvents[J]. J. Phys. Chem. B,1998,102: 9985-9990
    [80]J K N Mbindyo, T E Mallouk, J B Mattzela, et al. Template synthesis of metal Nanowires containing monolayer molecular junctions [J]. J.Am.Chem. Soc,2002, 124(15):4020-4026
    [81]R L Zong, J Zhou, Q Li, et al. Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina Membrane [J]. J. Phys. Chem. B,2004,108: 16713-16716
    [82]Y Wang, N Herron. Photoluminescence and relaxation dynamics of cadmium sulfide superclusters in zeolites[J]. J. Phys. Chem,1988,92:4988-4994
    [83]M S Sander, R Gronsky, T Sands, et al. Structure of bismuth telluride nanowire arrays fabricated by electrodeposition into porous anodic alumina templates[J]. Chem. Mater,2003,15:335-339
    [84]H C Lee, H J Kim, S H Chung, et al. Synthesis of unidirectional alumina nanostructures without added organic solvents[J]. J. Am. Chem. Soc,2003,125: 2882-2883
    [85]G Wei, H Zhou, Z Liu, et al. One-step synthesis of silver nanoparticles, nanorods, and nanowires on the surface of DNA network[J]. J. Phy. Chem. B,2005,109: 8738-8743
    [86]M Wu, J Long, A Huang, et al. Microemulsion-mediated hydrothermal synthesis and characterization of nanosize rutile and anatase particles[J]. Langmuir,1999, 15(26):8822-8825
    [87]H T Shi, L M Qi, J M Ma, et al. Polymer-directed synthesis of penniform BaWO4 nanostructures in reverse micelles[J]. J. Am. Chem. Soc,2003,125: 3450-3451
    [88]V F Puntes, K M Krishnan, A P Alivisatos. Colloidal nanocrystal shape and size control:the case of cobalt[J]. Science,2001,291:2115-2117
    [89]Y J Han, J M Kim, G D Stucky. Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15[J]. Chem. Mater,2000,12:2068-2069
    [90]S Bhattacharyya, S K Saha, D Chakravoyty. Silver nanowires grown in the pores of a silica gel[J]. Appl. Phys. Lett,2000,77(23):3770-3772
    [91]Qu L T, Shi G Q, Wu X F, et al. Facile route to silver nanotubes[J]. Advanced Materials,2004,16(14):1200-1203
    [92]Lahav M, Sehayek T, Vaskevich A, et al. Nanoparticle nanotubes[J]. Angewandte Chemic International Edition,2003,42(45):5575-5579
    [93]Chen M, Wang LY, Han J T,et al. Preparation and study of polyacryamide-stabilized silver nanoparticles through a one-pot process[J]. J.Phys.Chem B, 2006,110(23):11224
    [94]F Tao, Z Wang, D Chen, et al. Synthesis of silver dendritic hierarchical structures and Transformation into silver nanobelts through an ultrasonic process[J]. Nanotechnology,2007,18:295602 (6)
    [95]Sendova M, Sendova Vassileva M, Pivin JC, et al. Experimental study of interaction of laser radiation with silver nanoparticles in SiO2 matrix[J]. Journal of nanoscience and nanotechnology,2006,6 (3):748
    [96]Pang Y T, Meng G W, Fang Q. Silver nanowire array infrared polarizers[J]. Nanotechnology,2003,14:20-24
    [97]Mallick K, M J Witcomb, M S Scurrell. Self-assembly of silver nanoparticles in a polymer solvent:Formation of a nanochain through nanoscale soldering[J]. Materials Chemistry and Physics,2005,90(2-3):221-224
    [98]F K Liu, P W Huang, Y C Chang. Formation of silver nanorods by microwave heating in the presence of gold seeds[J]. Cryst. Growth,2005,273:439-445
    [99]Sun Y, Xia Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles[J]. Science,2002,298:2176-2179
    [100]Andersson M, Pedersen J S, Palmqvist A E. Silver nanoparticle for mation in microemulsions acting both as template and reducing agent[J]. Langmuir,2005, 21(24):11387
    [101]Yin B, Ma H, Wang S, et al. Electrochemical Synthesis of Silver Nanoparticles Under Protection of Poly(N-vinylpyrrolidone)[J]. J.Phys. Chem.B,2003,107: 8898-8904
    [102]Shankar S S, Ahmad A, Sastry M. Geranium leaf assisted biosynthesis of silver nanoparticles[J]. Biotechnol.Prog,2003,19 (6):1627
    [103]Zhang Z T, B Zhao, L M Hu. PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes[J]. Journal of Solid State Chemistry,1996,121(1):105-110
    [104]Wiley B, Sun Y, Xia Y, Synthesis of silver nanostructures with controlled shapes and properties[J]. Accounts of Chemical Research,2007,40 (10):1067-1076
    [105]Sloan J, Wright D M, Woo H G, et al.Capillarity and silver nanowire formation observed in single walled carbon nanotubes[J]. Chemical Communications, 1999,8:699-700
    [106]Hong B H, Bae S C, Lee C W, et al. Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase[J]. Science,2001,294(5541): 348-351
    [107]Wang C Y, Chen M H, Zhu G M, et al.A novel soft-template technique to synthesize metal Ag nanowire[J]. Journal of Colloid and Interface Science, 2001,243(2):362-364
    [108]S W Liu, R J Wehmschulte, G D Lian, et al. Room temperature synthesis of silver nanowires from tabular silver bromide crystals in the presence of gelatin[J]. J. Solid. State. Chem,2006,179:696-701
    [109]C J Murphy, N R Jana. Controlling the aspect ratio of inorganic nanorods and nanowires[J]. Adv. Mater,2002,14(1):80-82
    [110]N R Jana, L Gearheart, C J Murphy. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template[J]. Adv. Mater,2001,13(18):1389-1393
    [111]Y G Sun, B Gates, B T Mayers, et al. Crystalline silver nanowires by soft solution processing[J]. Nano. Lett,2002,2:165-168
    [112]J Q Hu, Q Chen, Z X Xie, et al. A simple and effective route for the synthesis of crystalline silver nanorods and nanowires[J]. Adv. Funct. Mater,2004,14: 183-189
    [113]J J Zhu, X H Liao, X N Zhao, et al. Preparation of silver nanorods by electrochemical methods[J]. Mater. Lett,2001,49:91-95
    [114]Z H Wang, X Y Chen, J W Liu, et al. Glucose reduction route synthesis of uniform silver nanowires in large-scale [J]. Chem. Lett,2004,33:1160-1161
    [115]何鑫.多形貌纳米银粒子的化学制备及其在荧光增强中的应用,博士学位 论文,武汉理工大学,2008
    [116]任国庆.金属纳米形貌的可控制备,硕士学位论文,浙江大学,2008
    [117]K K Caswell, C M Bender, C J Murphy, Seedless, surfactantless wet chemical synthesis of silver Nanowires[J]. Nano. Lett,2003,3(5):667-669
    [118]J J Zhu, S W Liu, O Palchik, et al. Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods[J]. Langmuir,2000,16: 6396-6399
    [119]Sun Y, Mayers B, Herricks T, et al. Polyol synthesis of uniform Silver nanowires:a plausible growth mechanism and the supporting evidence[J]. Nano. Lett,2003,3,955-960
    [120]Ajayan P M, Marks L D. Quasimelting and phases of small particles[J]. Phys.Rev.Lett,1998,60:585-587
    [121]Lofton C, Sigmund W. Mechanisms controlling crystal habits of gold and silver Colloids[J].Adv.Funct.Mater,2005,15:1197-1208
    [122]K Zou, X H Zhang, X F Duan, et al. Seed-mediated synthesis of silver nanostructures and silver nanocables by UV irradiation [J]. J. Cryst. Growth, 2004,273:285-291
    [123]N R Sieb, N C Wu, E Majidi, et al. Hollow metal nanorods with tunable dimensions, porosity, and photonic properties[J]. ACS.Nano,2009 3(6) 1365-1372
    [124]M A El-Sayed. Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes[J]. Acc.Chem.Res,2001, 34(4):257-264
    [125]张万忠.纳米银的可控制备与形成机制研究,博士学位论文,华中科技大学,2007
    [126]段君元.尺寸与形貌可控的低维银纳米结构的制备,硕士学位论文,武汉:武汉理工大学,2009
    [127]Nehl C L, Liao H W, Hafner J H. Optical Properties of Star-Shaped Gold Nanoparticles[J]. Nano. Lett,2006,6:683-688
    [128]Pastoriza-Santos I, Liz-Marzan L M. Synthesis of Silver Nanoprisms in DMF [J]. Nano. Lett,2002,2:903-905
    [129]Sun Y, B Mayers, Y Xia. Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process[J]. Nano Lett,2003,3(5), 675-679
    [130]Chen S, D L Carroll. Silver nanoplates:size control in two dimensions and formation mechanisms[J]. J.Phys.Chem.B,2004,108(18):5500-5506

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700