水滑石@磺化聚苯乙烯微球的可控制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着材料科学与技术的发展,科学家正在努力探索运用化学或物理的方法来构建具有特定形貌和孔结构的材料,从而可能实现对某些材料的设计,如新型催化剂载体、大分子聚合物分离膜、生物医药材料和药物载体等,最终调控其应用性能。复合金属氢氧化物(LDHs)是一类可人工合成的、具有二维结构的阴离子型层状功能材料,它们由带有正电荷的主体层板、平衡正电荷的层间阴离子客体和部分水分子组成。其层板元素组成和层间阴离子种类可调的特点能够衍生出很多具有不同物理化学特性的功能性组装体,因此有可能作为高性能催化材料、吸附材料、分离材料、功能性助剂材料、生物材料和医药材料等获得应用。目前,在该研究领域的工作中,LDHs类材料通常是以粉体形式使用,这样就会在实际应用过程中(比如作为催化材料、吸附和分离材料等)产生诸如压力高、传质/传热效率低以及分离困难等问题。因此,关于LDHs类材料的形貌可控制备具有明显的科学意义和实际应用价值。
     本论文以LDHs类材料的形貌可控制备为目标,重点研究了水滑石@磺化聚苯乙烯复合微球材料的制备及其应用。具体的研究内容和实验结果如下:
     1.在高电荷、磺酸根改性的聚苯乙烯微球表面,通过表面成核和生长过程在微球表面生长水滑石,而形成均匀的包覆层,其壳层可表现出花状和草莓状的结构,包覆层厚度在40~200nm左右。包覆层的厚度和形貌可以通过改变金属离子和聚苯乙烯微球的浓度来调节;
     2.垂直取向纳微结构的CoFeFe-LDHs薄膜,经硅烷偶联剂修饰后,表现出优异的超疏水性能,与水的静态接触角高达157.7°。
     3.系统地考察了疏水化处理后CoFeFe-LDHs水滑石异质微球其抗酸碱性能,研究结果表明:其具有一定的耐酸性,在pH=2的水溶液中,其静态接触角高达158.8°,150s左右其接触角到达稳定,其接触角为141°。而在pH=12的水溶液中,水滑石存在一个溶解再结晶的过程。造成这两种情况的根本原因是氟化后水滑石的耐酸碱性能改变。
     4.通过SEM表征手段揭示了表面修饰后的CoFeFe-LDHs薄膜产生超疏水性能的内在原因:低温条件下制备的LDHs薄膜较疏松,晶粒之间空隙较大,形成纳微复合结构;并且疏水化处理后薄膜纳微结构基本上没有变化;水滴与薄膜介面上能够容纳较多的空气气囊,从而表现出优异的超疏水性能。
     5.对CoFeFe-LDHs@sPS复合微球进行程序升温煅烧制备CoFe_2O_4中空微球,通过掺杂水滑石层板的金属元素的实现了对尖晶石磁性的调控;
With the development of materials science and technologies,scientists are exploring some methods involving chemistry or physics to construct materials with specific morphology and pore architecture and realizing the design and adjust and control of some functional materials such as new types of catalyst supports,membranes for the separation of large polymers, biomedical materials with macroporosity and drug carriers.Layered double hydroxides(LDHs) are a large family of synthetic anion type of layered materials with two-dimensional nanostructures consisting of positively charged layer with charge balancing anions and water moleculars between the layers.As a result,a large calss of functional isostructural materials with widely varied physicochemical properties can be obtained by changing the nature and molar ratios of the metal elements as well as the type of intercalated anions.Thus,LDHs are promising functional materials for a large number of applications in catalysis,adsorption,separation,functional additives,pharmaceutics and biomaterials.So far,LDHs involved in the above fields such as catalysis,adsorption and separation are usually in powder form,which inevitablly give rise to problems such as high pressure drops, poor mass/heat transfer,poor contact efficiency and difficulties in separation. Thus,it is essential both in science and practice to undertake the morphology control study related to LDHs materials.
     In the present thesis,we take the morphology control of synthetic LDHs as target and put emphasis onto the preparation of microspherical LDHs.The main results are as follows:
     1.The polystyrene microspheres with high-charged and acid modified surface by surface nucleation and growth processes formed a uniform coating, and the shell can be shown with the strawberry-shaped flower structure, coating thickness about 40~200nm.The thickness and morphology of coating can be controlled by the metal ions and the concentration of polystyrene microspheres.
     2.The CoFeFe-LDHs film with vertical orientation and micro-nano structure modified by silane coupling agent have excellent hydrophobic properties and the static water contact angle for 157.7°.
     3.Systematic study of the hydrophobic treatment of hydrotalcite CoFeFe-LDHs microspheres heterogeneity of its anti-acid-base performance, and the results showed that:it has a certain degree of acid and,the static contact angle as high as 158.8°with pH=2.The contact angle achieved stability in 150s,and the contact angle of 141°.There is a hydrotalcite recrystallization process of dissolution with the aqueous solution of pH=12. Resulted in both cases the fundamental reason is that after fluorination of the acid properties of hydrotalcite-like change.
     4.The result of CoFeFe-LDHs film with modified surface have a super-hydrophobic properties of the underlying as follows:the LDHs film prepared at low temperature are sparse,and the gap between the larger grains to form a micro-composite structure satisfied;and the thin-film micro-structure treated by hydrophobic satisfied is basically unchanged; because of air ballon between the droplet interface and thin film,the film show the excellent performance of super-hydrophobic.
     5.After calcining CoFeFe-LDHs@sPS composite microspheres by temperature-programmed calcinations,we can control the CoFe_2O_4 hollow microspheres through hydrotalcite doped metal plate elements for the magnetic spinel.
引文
1 Kawahashi N, Persson C, Matijevic E. Zirconium compounds as coatings on polystyrene latex and as hollow spheres [J]., J. Mater. Chem, 1991, 1:577-582
    
    2 Yin J, Qian X, Yin J, et al. Preparation of polystyrene/zirconia core-shell microspheres and zirconia hollow shells[J], Inorg. Chem. Commun., 2003, 6:942-945
    
    3 Wu D Z, Ge X W , Huang Y H, et al. y-Radiation synthesis of silver-polystyrene and cadmium sulfide-polystyrene nanocomposite microspheres [J], Mater Lett, 2003, 57:3549-3553
    
    4 Zhu Y J, Qian Y T, Li X J, et al. y-Radiation synthesis and characterization of polyacrylamide-silver nanocomposites [J]. Chem. Commun., 1997: 1081 -1082
    
    5 Yin J.L, Qian X. f, Yin J, Shi M. w and Zhou G. T., Preparation of ZnS/PS microspheres and ZnS hollow shells [J]. Mater Lett, 2003, 57: 3859-3863
    
    6 Antonietti M, Grohn F, Bronstein J H. Nonclassical Shapes of Noble-Metal Colloids by Synthesis in Microgel Nanoreactors [J]. Angew. Chem. Int. Ed., 1997, 36: 2080-2083
    
    7 valtchevV. Core-Shell Polystyrene/Zeolite A Microbeads. [J]. Chem. Mater., 2002, 14: 956-958
    
    8 Caruso R A, Susha A, Caruso F. Multilayered Titania, Silica, and Laponite NanoparticleCoatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres [J]. Chem Mater, 2001, 13:400-409
    
    9 vahchev V. Silicalite-1 Hollow Spheres and Bodies with a Regular System of Macrocavities[J]. Chem. Mater, 2002, 14: 4371-4377
    
    10 Zhang G, Yu Y, Chen X, et al. Silica nanobottles templated from functional polymer spheres [J]. J. Colloid. Interf. Sci., 2003, 263: 467
    
    11 Wang P H, Pan C Y. Preparation of styrene/acrylic acid copolymer microspheres: polymerization mechanism and carboxyl group distribution [J]. Colloid. Polym. Sci., 2002, 280: 152-159
    
    12 Wang P H, Pan C Y. Ultrafine palladium particles immobilized on polymer microspheres[J]. Colloid Polym Sci, 2001, 279: 171-177
    
    13 Yang X T, Zhang Y. Encapsulation of Quantum Nanodots in Polystyrene and Silica Micro-/Nanoparticles[J].Langrnuir,2004,20:6071-6073
    14 Mokari T,Sertchook H,Aharoni A,et al.Nano@micro:General Method for Entrapment of Nanocrystals in Sol-Gel-Derived Composite Hydrophobic Silica Spheres[J].Chem Mater,2005,17:258-263
    15 Shim J W,Kim J W,Han S H,et al.Zinc oxide/polymethylmethacrylate composite microspheres by in situ suspension polymerization and their morphological study[J]Colloids.Surf.A,2002,207:105-111
    16 a) Bai C L,Fang Y,Zhang Y,et al.Synthesis of Novel Metal Sulfide-Polymer Composite Microspheres Exhibiting Patterned Surface Structures[J].Langmuir.,2004,20,263-265;
    b)杨
    菊香,宋少飞,沈淑坤,胡道道,模板法制备新型有机一无机复合微球材料研究进展[J].材料导报,2007,21(3):54-58
    17 Fang Y,Bai C L,Zhang Y.Preparation of metal sulfide-polymer composite microspheres with patterned surface structures[J].Chem.Commun.,2004,804-805
    18 Martinez-Rubio M I,Ireland T G,Fern G R,et al.A New Application for Microgels:Novel Method for the Synthesis of Spherical Particles of the Y_2O_3:Eu Phosphor Using a Copolymer Microgel of NIPAM and Acrylic Acid[J].Langrnuir.,2001,17:7145-7149
    19 Xu L N,Zhou K C,Xu H F,et al.Copper thin coating deposition on natural pollen particles[J].Appl.Surf.Sci.,2001,183:58-61
    20 He J H,Kunitake T,W atanabe T.Porous and nonporous Ag nanostructures fabricated using cellulose fiber as a template[J].Chem.Commun,2005:795-796
    21 Cao J,Rambo C R,Sieber H.Preparation of Porous Al2O3-Ceramics by Biotemplating of Wood[J].J.Porous.Mater.,2004,11:163-172
    22 Meldrnm F.C,Seshadri R.Porous gold structures through templating by echinoid skeletal plates[J].Chem.Commun.,2000:29-30
    23 Ding X B,Sun Z H.Preparation of thermosensitive magnetic particles by dispersion polymerization[J].React.Funct.Polym.,1998,38:11-15
    24 Song L G,Liu T B,Liang D H,et al.Coupling of optical characterization with particle and network synthesis for biomedical Applications[J].J.Biomed.Opt.,2002,7(3):498-506
    25 Furnsawa K,Kimura Y,Tagawa T.Syntheses of composite polystyrene latices with silica particles in the core[J].J.Colloid.Interf.Sci.,1986,109:69-76
    26 Bourgeat Lami E, Lang J. Encapsulation of Inorganic Particles by Dispersion Polymerization in Polar Media: 2. Effect of Silica Size and Concentration on the Morphology of Silica-Polystyrene Composite Particles[J]. J Colloid Interf Sci, 1999, 210(2): 281-289
    27 Gu S C, Kondo T, Konno M. Preparation of silica-polystyrene core-shell particles up to micron sizes[J]. J. Colloid. Interf. Sci., 2004, 272: 314-320
    28 Liu J, Pehon R, Hrymak A N. Properties of Poly(N-isopropylacrylamide)-Grafted Colloidal Silica[J].J. Colloid. Interf. Sci., 2000, 227: 408-411
    29 Kim J W, shim J W , Bae J H, et al. Titanium dioxide/poly(methyl methacrylate) composite microspheres prepared by in situ suspension polymerization and their ability to protect against UV rays [J]. Colloid. Polym. Sci., 2002, 280: 584
    30 Liu X Q, Guan Y P, Ma Z Y, et al. Surface Modification and Characterization of Magnetic Polymer Nanospheres Prepared by Miniemulsion Polymerization., Langmuir, 2004, 20: 10278-10282
    31 Wu D Z, Ge X W , Zhang Z C, et al. Novel One-Step Route for Synthesizing CdS/Polystyrene Nanocomposite Hollow Spheres., Langmuir, 2004, 20, 5192-5195
    32 Nakashima T, Kimizuka N. Interfacial Synthesis of Hollow TiO_2 Microspheres in Ionic Liquids[J]. J.Am. Chem. Soc, 2003, 125(21): 6386-6387
    33 Dai S, Ju Y H, Gao H J, et al. Preparation of silica aerogel using ionic liquids as solvents[J]. Chem. Commun., 2000: 243-244
    34 Deshmukh R. R, Rdagopal R, Srinivasan K. V. Ultrasound promoted C-C bond formation: Heck reaction at ambient conditions in room temperature ionic liquids [J]. Chem. Commun., 2001: 1544-1545
    35 Dupont J, Fonseca G S, Umpierre A P, et al. Transition-Metal Nanoparticles in Imidazolium Ionic Liquids: Recycable Catalysts for Biphasic Hydrogenation Reactions[J]. J. Am. Chem. Soc, 2002, 124: 4228-4229
    36 Qi L M, Li J, Ma J M. Biomimetic Morphogenesis of Calcium Carbonate in Mixed Solutions of Surfactants and Double-Hydrophilic Block Copolymers[J]. Adv. Mater., 2002, 14: 300-303
    37 Qi L M, Colfen H, Antonietti M. Crystal Design of Barium Sulfate using Double-Hydrophilic Block Copolymers[J], Angew. Chem. Int. Ed, 2000, 39: 604-607
    38 Zhang D B,Qi L M,Ma J M,et al.Formation of Silver Nanowires in Aqueous Solutions of a Double-Hydrophilic Block Copolymer[J].Chem.Mater,2001,13:2753-2755
    39 Shi H T,Qi L M,Ma J M,et al.Polymer-Directed Synthesis of Penniform BaWO4Nanostructures in Reverse Micelles[J].J.Am.Chem.Soc.,2003,125:3450-3451
    40 Zhang D B,Qi L M,Ma J M,et al.Morphological Control of Calcium Oxalate Dihydrate by a Double-Hydrophilic Block Copolymer[J].Chem.Mater,2002,14:2450-2457
    41 Bouyer F,Gerardin C,Fajula F,et al.Role of double-hydrophilic block copolymers in the synthesisoflanthanum-based nanoparticles[J].Colloids.Surf.A.,2003,217:179-184
    42 Zhang D B,Qi L M,Ma J M.Synthesis of Submicrometer-Sized Hollow Silver Spheres in Mixed Polymer-Surfactant Solutions[J].Adv.Mater.,2002,14:1499-1502
    43 Ma Y R,Qi L M,Ma J M,et al.Synthesis of Submicrometer-Sized CdS Hollow Spheres in Aqueous Solutions of a Triblock Copolymer[J].Langmuir.,2003,19:9079-9085
    44 Ma Y R,Qi L M,Ma J M,et al.Facile Synthesis of Hollow ZnS Nanospheres in Block Copolymer Solutions[J].Langrnuir,2003,19:4040-4042
    45 Worrnuth K.Superparamagnetic Latex via Inverse Emulsion Polymerization[J].J.Colloid.Interf.Sci,2001,241:366-377
    46 Wong M S,Cha J N,Choi K S,et al.Assembly of Nanoparticles into Hollow Spheres Using Block Copolypeptides[J].Nano Lett,2002,2(6):583-587
    47 Sun Q Y,Magusin P C M M,Mezari B,et al.The formation of gigantic hollow silica spheres from an EO_(76)-PO_(29)-EO_(76)/butanol/ethanol/H_2O quaternary systemElectronic supplementary information(ESI) available:Effect of molar ratio and temperature on product morphology and in-situ monitoring of the gigantic hollow spheres by optical microscopy and SAXS[J].J.Mater.Chem.,2004,15.256-259
    48 Hentze H,Raghavan S R,McKelvey C A,et al.Silica Hollow Spheres by Templating of CatanionicVesicles[J].Langrnuir,2003,19:1069-1074
    49 Fujikawa S,Kunitake T.Surface Fabrication of Hollow Nanoarchitectures of Ultrathin Titania Layers from Assembled Latex Particles and Tobacco Mosaic Viruses as Templates[J].Langmuir,2003,19:6545-6552
    50 李桂村,王卫伟,张志煽.纳米卡拉胶微球的制备[J].青岛科技大学学报,2003,24:45-47
    51 Molvinger K, Quignard F, Brunei C, et al. Porous Chitosan-Silica Hybrid Microspheres as a Potential Catalyst[J]. Chem. Mater., 2004, 16: 3367-3372
    52 Pedroni V, Schulz P C, Gschaider de F. et al. A chitosan-templated monolithic siliceous mesoporous-macroporous material [J]. Colloid. Polym. Sci., 2000, 278: 964-971
    53 Ayers M R, Hunt A J. Synthesis and properties of chitosan-silica hybrid aerogels [J]. J. Non-Cryst. Solids., 2001, 285(1-3): 123-127
    54 Airoldi C, Monteiro O AC. Chitosan-organosilane hybrids - Syntheses, characterization, copper adsorption, and enzyme immobilization [J]. J.Appl. Polym. Sci., 2000, 77: 797-804
    55 Constantino V. R. L., Pinnavaia T. J., Structure-reactivity relationships for basic catalysts derived from a Mg~(2+)/Al~(3+)/CO_3 layered double hydroxide [J], Catal. Lett. 1994, 23: 361-368
    56 Miyata S., Kumura T., Hattori H., Tanabe K., Physicochemical properties and structure of magnesia-alumina [J], Nippon Kagaku Zasshi., 1971, 92(6): 514-519
    57 Lee C. F., Thompson M. E., Synthesis and photochemical reactions of a layered manganese carbonyl-zirconium hydrogen phosphate compound [J], Inorg. Chem., 1991, 30(1): 4-5
    58 Sasai R., Shin'ya N., Shichi T., Takagi K., Gekko K., Molecular alignment and photodimerization of 4'-chloro-4-stilbenecarboxylic acid in hydrotalcite clays: bilayer formation in the interlayers [J], Langmuir, 1999, 15(2): 413-418
    59 Millange F., Walton R. I., Lei L., O'Hare D., Efficient separation of threphthalate and phthalate anions by selective ion-exchange intercaltion in the layered double hydroxide Ca_2Al(OH)_6·NO_3·2H_2O[J], Chem. Mater., 2000, 12(5): 1990-1994
    60 Rives V., Layered Double Hydroxides: Present and Future [M], Nova Science Publishers: New York, 2001
    61 Evans D. G., Duan X., Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine [J], Chem. Commun., 2006, 485-496
    62 Williams G. R., O'Hare D., Towards understanding, control and application of layered double hydroxide chemistry [J], J. Mater. Chem., 2006, 16: 3065-3074
    63 Lagaly G., Beneke K., Intercalation and exchange reactions of clay minerals and non-clay layer compounds[J].Colloid.Polym.Sci.,1991,269:1198-1121
    64 Allmann R.,Double layer structures with brucite-like ions[M(Ⅱ)1_(-x)M(Ⅲ)_x(OH)]_(x+)[J].Chemica,1970,24(3):99-108
    65 Koch C.B.,Structures and properties of anionic clay minerals[J].Hyperfine Interactions,1998,117(14):131-157
    66 段雪,张法智等,插层组装与功能材料[M].北京:北京化学工业出版社,2007
    67 Rives V.,Characterisation of layered double hydroxides and their decomposition products [J].Mater.Chem.Phys.,2002,75:19-25
    68 Dimotala E.D.,Pinnavaia,T.J.,New route to layered double hydroxides intercalated by organic anions:precusors to polyoxometalate-pillared derivates[J],Inorg.Chem.,1990,29(13):2393-2395
    69 Taviot-Gueho C.,Feng.Y.J.,Williams,G.R.,Leroux,F.,O'Hare,D.,Selective anion-exchange properties of second-stage layered double hydroxide heterostructures[J].Chem.Mater.,2006,18(18):4312-4318
    70 Genin J.M.R.,Thermodynamic equilibria in aqueous suspersions of synthesis and natural Fe(Ⅱ)-Fe(Ⅲ) green rusts:occurrences of the mineral in hydromorphic soils[J],Environ.Sci.Tech.,1998,32:1058-1068
    71 Baltpurvins K.A.,Bums R.C.,Lawrance G.A.,Stuart A.D.,Effect of Ca~(2+),Mg~(2+),and anion type on the aging of iron(Ⅲ) hydroxide precipitates[J],Environ.Sci.Technol.,1997,31:1024-1032
    72 Bellotto M.,Rebours B.,Clause O.,Lynch J.,Bazin D.,Elkaim E.,Hydrotalcite decomposition mechanism:a clue to the structure and reactivity of spinel-like mixed oxides[J],J.Phys.Chem.,1996,100(20):8535-8542
    73 Cavani F.,Trifiro F.,Vaccari A.,Hydrotalcite-type anionic clays:preparation,properties and applications[J],Catal.Today,1991,11(2):173-301
    74 Fornasari G.,Gazzano M.,Matteuzzi D.,Trifro F.,Vaccari A.,Structure and reactivity of high-surface-area Ni/Mg/Al mixed oxides[J],Appl.Clay Sci.,1995,10:69-82
    75 Constantino V.R.L.,Pinnavaia T.J.,Basic properties of Mg_(1-x)~(2+)Al_x~(3+x) layered double hydroxides intercalated by carbonate,hydroxide,chloride,and sulfate anions[J],Inorg.Chem.,1995,34:883-892
    76 Millange F., Walton R. I., O'Hare D., Time-resolved in site X-ray diffraction study of the liquid-phase reconstruction of Mg-Al-carbonate hydrotalcite-like compounds [J], J. Mater. Chem., 2002, 10: 1713-1720
    77 Aramendia M. A., Aviles Y., Borau V., Thermal decomposition of Mg/Al and Mg/Ga layered double hydroxides: a spectroscopic study [J], J. Mater, Chem., 1999, 9:1603-1607
    78 Shen J., Guang B., Tu M., Chen Y., Preparation and characterization if Fe-MgO catalysts obtained from hydrotalcite-like compounds [J], Catal. Today, 1996, 30:77-82
    79 Rebours B., d'Espinosa de la Caillerie J. B., Clause O., Decoration of nickel and magnesium oxide crystallites with spinel-type phases [J], J. Am. Chem. Soc, 1994, 116: 1707-1717
    80 Kloprogge J. T., Frost R. L.. Fourier Transform Infrared and Raman spectroscopic study of the local structure of Mg-, Ni-, and Co-hydrotalcites [J], J. Solid State Chem., 1999, 146: 506-515
    81 Clause O., Coelho M. G., Gazzano M., Synthesis and thermal reactivity of nickel-containing anionic clays [J]. Appl. Clay Sci., 1993, 8:169-186
    82 Malherbe F., Forano C., Besse J. P., Use of organic media to modify the surface and porosity properties of hydrotalcite-like compounds [J]. Micro. Mater., 1997, 10: 67-84
    83 Yun S. K., Pinnavaia T. J., Water content and particle texture of synthetic hydrotalcite-like layered double hydroxides [J]. Chem. Mater., 1995, 7: 348-354
    84 Zhao Y, Li F, Zhang R, Evans D G, Duan X., Preparation of layered double hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps[J], Chem. Mater., 2002, 14:4286-4291
    85 Mariko A. P., Claude F., Besse J. P., Synthesis of Al-rich hydrotalcite-like compounds by using the urea hydrolysis reaction-control of size and morphology [J]. J. Mater. Chem., 2003, 13: 1988-1993
    86 Oh J. M., Hwang S. H., Choy J. H., The effect of synthetic conditions on tailoring the size of hydrotalcite particles [J]. Solid State Ionics, 2002, 151: 285-291
    87 Costantino U., Marmottini F., Nocchetti M., Vivani R., New synthetic routes to hydrotalcite-like compounds- characterisation and properties of the obtained materials [J]. Eur. J. Inorg.Chem., 1998, 1439-1446
    88 Ogawa M., Kaiho H., Homogeneous precipitation of uniform hydrotalcite particles [J]. Langmuir, 2002, 18:4240-4242
    89 Pagano M. A., Forano C., Besse J. P., Synthesis of Al-rich hydrotalcite-like compounds by using the urea hydrolysis reaction-control of size and morphology [J]. J. Mater. Chem., 2003, 13: 1988-1993
    90 Pausch I., Lohse H. H., Schumann K., Allmann R., Synthesis of disordered and Al-rich hydrotalcite-like compounds [J]. Clays. Clay. Miner., 1986, 34: 507-511
    91 Tetsuya S., Shinsuke Y., Katsuhiko T., Photopolymerization of 4-vinylbenzoate and m-and p-phenylenediacrylates in hydrotalcite interlayers [J]. Superamolecular. Sci., 1998, 5: 303-308
    92 Drezdzon M. A. , Synthesis of isopolymetalate-pillared hydrotalcite via organic-anion-pillared precursors [J]. Inorg. Chem., 1988, 27:4628-4632
    93 Lee J. H., Rhee S. W., Jung D. Y., Solvothermal ion exchange of aliphatic dicarboxylates into the gallery space of layered double hydroxides immobilized on Si substrates [J], Chem. Mater., 2004, 16:3774-3779
    94 Lee J H, Rhee S W, Jung D. Y., Orientation-controlled assembly and solvothermal ion-exchange of layered double hydroxide nanocrystals[J]. Chem. Commun., 2003, 2740-2741
    95 Liu Z. P., Ma R., Osada M., Iyi N., Ebina Y., Takada K., Sasaki T., Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies [J]. J. Am. Chem. Soc, 2006, 128: 4872-4880
    96 Wang L., Li C Liu M., Evans D. G., Duan X., Large continuous, transparent and oriented self-supporting films of layered double hydroxides with tunable chemical composition[J]. Chem. Commun., 2007, 1:123-125
    97 Gardner E., Huntoon K.M., Pinnavaia T. J., Direct synthesis of alkoxide-intercalated derivatives of hydrocalcite-like layered double hydroxides: precursors for the formation of colloidal layered double hydroxide suspensions and transparent thin films [J]. Adv. Mater., 2001, 13: 1263-1266
    98 Lei X, Yang L, Zhang F, Evans D G, Duan X., Synthesis of oriented layered double hydroxide thin films on sulfonated polystyrene substrates [J]. Chem. Let., 2005, 34(12): 1610-1611
    99 Gao Y.F.,Nagai M.,Masuda Y.,Sata F.,Seo W.S.,Koumoto K.,Surface precipitation of highly porous hydrotalcite-like film on Al from a zinc aqueous solution[J].Langmuir.,2006,22(8):3521-3527
    100 Chen H.Y.,Zhang F.Z.,Fu S.S.,Duan X.,In situ microstructure control of oriented layered double hydroxide monolayer films with curved hexagonal crystals as superhydrophobic materials[J].Advanced.Materials.,2006,18:3089-3093
    101 Vayssieres L.,Beermann N.,Lindquist S.E.,Hagfeldt A.,Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays:application to Iron(Ⅲ)oxides[J].Chem.Mater.,2001,13(2):233-235
    102 Kohjiyo S.,Sato T.,Nakayama T.,Polymerization of propylene oxide by calcined synthetic hydrotalcite[J].Makromol Chem.Rapid Commum.,1981,2:231-233
    103 Reichle W.T.,Pulse microreactor examination of the vapor-phase aldol condensation of acetone[J],J.Catal.,1980,63(2):295-306
    104 吕亮,吾国强,段雪,李峰,杜以波,水滑石的制备、表征及其在酯交换反应中的应用[J].精细石油化工,2001,(1):9-12
    105 胡长文,李丹峰,郭伊荇,王恩波,超分子层柱双氢氧化物[J].科学通报,2001,46(5):359-364
    106 Cavani F.,Trifiro F.,Vaccari A.,Hydrotalcite-type anionic clays:preparation,properties and applications[J],Catal Today,1991,11,173-301
    107 Ikeda T.,Amoh H.,Yamamoto T.,Stereoselective exchange kinetics of L- and D-histidines for chloride ion in the interlayer of a hydrotalcite-like compound by the chemical relaxation method[J],J.Am.Chem.Soc.,1984,106:5772-5779
    108 Ulibarri M.A.,Pavlovic I.,Cornijo J.,Hermosin M.C.,Hydrotalcite-like compounds as potential sorbents of phenols from water[J],Appl.Clay Sci.,1995,10:131-145
    109 Ogawa M.,Kuroda K.,Photofunctions of intercalation compounds[J],Chem.Rev.,1995,95(2):399-438
    110 周彤,李峰,战可涛,Evans D.G.,段雪,张密林,层状前体镍铁水滑石及磁性材料的制备及表征[J].化学学报,2002,6:131-136
    111 周彤,战可涛,李峰,Evans D.G.,段雪,张密林,层状前体镁铁水滑石及磁性材 料的制备及表征[J].无机化学学报, 2002, 18(8): 777-781
    112 Caruso F, Spasova M, Susha A, Giersig M, and Caruso R.A. .Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach[J]. Chem. Mater., 2001, 13 (1): 109-116
    
    113 Tartaj P, Gonzμlez-Carre(?)o T, and Serna C J. Single-Step Nanoengineering of Silica Coated Maghemite Hollow Spheres with Tunable Magnetic Properties[J]. Adv. Mater., 2001, 13: 1620-1624
    
    114 Xia Y N, Gates B, Yin Y D, Lu Y. Monodispersed Colloidal Spheres: Old Materials with New Applications[J]. Adv. Mater. 2000, 12: 693-713
    1 Lei X D, Yang L, Zhang F Z. Evans D G, Duan X, Synthesis of Oriented Layered Double Hydroxide Thin Films on Sulfonated Polystyrene Substrates [J], Chem. Lett., 2005, 34:1610-1611
    2 Gardner E, Huntoon K M, Pinnavaia T J. Direct synthesis of alkoxide-intercalated derivatives of hydrotalcite-like layered double hydrocides: precursors for the formation of colloidal layered double hydroxide suspensions and transparent thin films [J]. Adv. Mater., 2001, 13: 1263-1266
    3 Morigi M, Scavetta E, Berrettoni M, Giogetti M, Tonelli D. Sulfate-selective electrodes based on hydrotalcites [J]. Anal. Chim. Acta., 2001, 439: 265-272
    4 Ven L, Gemert M L M, Batenbrug L F, Keern J J, Gielgens L H , Koster T P M, Fischer H R. On the action of hydrotalcite-like clay materials as stabilizers in polyvinylchloride [J]. Appl. Clay Sci., 2000, 17:25-34
    5 Oh J M, Hwang S H, Choy J H. The effect of synthetic conditions on tailoring the size of hydrotalcite particles[J]. Solid State Ionics, 2002, 151:285-291
    6 Costantino U, Marmottini F, Nocchetti M, Vivani R. New synthetic routes to hydrotalcite-like compounds- characterisation and properties of the obtained materials [J]. Eur. J. Inorg. Chem., 1998, 10: 1439-1446
    7 Ogawa M, Kaiho H. Homogeneous precipitation of uniform hydrotalcite particles [J]. Langmuir, 2002, 18:4240-4242
    8 Pagano M A, Forano C, Besse J P. Synthesis of Al-rich hydrotalcite-like compounds by using the urea hydrolysis reaction-control of size and morphology [J]. J. Mater. Chem., 2003, 13: 1988-1993
    9 Zhao Y, Li F, Zhang R, Evans D G, Duan X. Preparation of layered double hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps [J]. Chem. Mater., 2002, 14:4286-4291
    10 Feng Y, Li D, Li C, Wang Z, Evans D G, Duan X. Synthesis of Cu-containing layered double hydroxides with a narrow crystallite-size distribution [J]. Clay Clay Miner., 2003, 51: 566-569
    11 Meyn M,Beneke K,Lagaly G.Anion-exchange reactions of layered double hydroxides[J].Inorg.Chem.,1990,29:5201
    12 Hussein M Z B,Zainal Z,Yahaya A H,FooD W V.Controlled release of a plant growth regulator,a-naphthaleneacetate from the lamella of Zn-Al-layered double hydroxide nanocomposite[J].J.Control Rel.,2002,82:417
    13 L.A.Harris,J.D.Goff,A.Y.Carmichael,J.S.Riffle,et al.,Magnetite Nanoparticle Dispersions Stabilized with Triblock Copolymers[J].Chem.Mater.,2003,15:1367-1377
    14 李晖.配位化学[M].北京:化学工业出版社,2005,12
    15 Tarasevich B J,Rieke P C,Liu J.Nucleation and Growth of Oriented Ceramic Films onto Organic Interfaces[J].Chem.Mater.,1996,8:292-300
    1 Vogelaar L, Lammertink R G.H, Wessling M. superhydrophobic surfaces having two-fold adjustable roughness prepared in a single step [J]. Langmuir, 2006, 22 (7): 3125-3130.
    2 Miwa M, Nakajima A, Fujishima A, Hashimoto K, Watanabe T. Effects of the Surface roughness on sliding angles of water droplets on superhydrophobic surfaces [J]. Langmuir, 2000, 16(13): 5754-5760.
    3 Jeong H E, Lee S H, Kim J K, Suh K. Y. Nanoengineered multiscale hierarchical structures with tailored wetting properties [J]. Langmuir, 2006, 22(4): 1640-1645.
    4 Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D. Super-hydrophobic surfaces: from natural to artificial [J]. Adv. Mater. 2002, 14: 1857-1860.
    5 Chen W. Fadeev A, Hsieh M C, Oner D, Youngblood J, McCarthy T J, Ultrahydrophobic and ultralyophobic surfaces: some comments and examples [J]. Langmuir, 1999, 15(10): 3395-3399.
    6 McCarthy T J, Oner D. Ultrahydrophobic surfaces effects of topography length scales on wettability [J]. Langmuir, 2000, 16(20): 7777-7782.
    7 Yabu H, Shimomura M. Single-step fabrication of transparent superhydrophobic porous polymer films [J]. Chem. Mater. 2005, 17(21): 5231-5234.
    8 Zhao N, Xu J, Xie Q, Weng L, Guo X, Zhang X, Shi L, Macromol. Fabrication of biomimetic superhydrophobic coating with a micro-nano-binary structure [J]. Rapid Commun., 2005, 26: 1075-1080.
    9 Feng L, Zhang Z, Mai Z, Ma Y, Liu B, Jiang L, Zhu D. A super-hydrophobic and Super-oleophilic coating mesh film for the separation of oil and Water [J]. Angew. Chem. Int. Ed., 2004, 43:2012-2014.
    10 Tavana H, Amirfazli A, Neumann A W. Fabrication of superhydrophobic surfaces of n-Hexatriacontane [J]. Langmuir, 2006, 22(13): 5556-5559
    1 Tartaj P,Gonzalez-Carreno T,Serna C.J,Single-Step Nanoengineering of Silica Coated Maghemite Hollow Spheres with Tunable Magnetic Properties.,Adv.Mater,2001,13:1620-1624
    2 Tartaj P,Gonzalez-Carreno T,Serna C.J,From Hollow to Dense Spheres:Control of Dipolar Interactions by Tailoring the Architecture in Colloidal Aggregates of Superparamagnetic Iron Oxide Nanocrystals.,Adv.Mater,2004,16:529-533
    3 Caruso F,Spasova M,Susha A,Giersig M,and Caruso R.A..Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach[J].Chem.Mater.,2001,13(1):109-116
    4 Shiho H,Manabe Y,Kawahashi N,Magnetic compounds as coatings on polymer particles and magnetic properties of the composite particles.,J.Mater.Chem.,2000,10:333-336
    5 Shiho H,Kawahashi N,Iron Compounds as Coatings on Polystyrene Latex and as Hollow Spheres.,J.Colloid.Interf.Sci.,2000,226:91-97
    6 S.Velntemillas-Verdagner,Morales M.P.and Serna C.J.,Continuous production of γ-Fe2O3ultrafine powders by laser pyrolysis.,Mater.Lett.,1998,35:227-231
    7 宛德福,马兴隆,磁性物理学[M],电子科技大学出版社,1994
    8 李国栋,1997-1998年国际磁学进展综述,磁学材料与器件,1999
    9 O'Connora C J.,Seipa C T,et al,Synthesis and reactivity of nanophase ferrites in reverse micellar solutions Nanostructured Materials.,1999,12:Pages 65-70
    10 O'Connor C J,Kolesnichenko V,et al,Fabrication and properties of magnetic particles with nanometer dimensions.,Synthetic Metals.,2001,122:547-557
    11 钟文定,铁磁学[M],北京:科学出版社,1987
    12[美]R.C.奥汉德利著,周永洽等译,现代磁性材料原理和应用[M],化学工业出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700