多孔氧化物纳米材料的溶剂热合成、表征及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文本论文包括两部分工作:一、在乙二醇溶剂体系中合成了具有纳米分级结构的前驱体,然后通过后续的热处理过程得到了比表面积很大的γ-Fe_2O-3微球。以罗丹明B作为目标污染物,研究了所合成的γ-Fe_2O_3在污水处理领域中的应用;二、在乙醇与水形成的二元混合溶剂体系中对β-Ni(OH)_2微球和纳米片进行了可控制合成,然后经过随后的热处理得到了形貌保持的多孔的三维组装花状结构的NiO微球和NiO纳米片。主要内容归结如下1.多孔软磁材料是是软磁材料家族里应用范围很广的一员。这种材料在与表面相关的领域有巨大的应用潜力。在本文中,我们通过溶剂热合成和后续的热处理技术,成功地制备了比表面积为82.7 m2/g的γ-Fe_2O_3微球。从测试结果可以看出,该种γ-Fe_2O_3微球的剩余磁化强度(Mr)仅有0.7 emu/g,几乎没有磁记忆能力。在污水处理过程中,目标污染物罗丹明B通过吸附、脱附循环被除去。该种微球在一个磁铁的作用下很容易地实现循环,而且在室温下的乙醇中可以实现再生。2.通过混合溶剂热法成功制备了花状β-Ni(OH)_2微球和β-Ni(OH)_2纳米片,然后经过随后的热处理得到了形貌保持的多孔的三维组装花状结构的NiO微球和NiO纳米片。通过调节混合溶剂中水与乙醇的比实现了β-Ni(OH)_2的形貌可控合成。发现只有当水与乙醇的体积比为1比9时,合成的β-Ni(OH)_2为纳米片组装成的微球;其余比例时得到的产物均为β-Ni(OH)_2纳米片。用XRD、TEM、SEM等对样品进行了表征,并研究了这两种形貌的β-Ni(OH)_2和NiO的磁学性质、比表面性质和光学性质。
In this dissertation, our work concludes two parts. Firstly, the precursor with hierarchical nanoarchitecture was obtained by solovethermal method in glycol, while the maghemite microsphere with large surface area was receieved by the subsequent calcining process. The application of maghemite microsphere in the water treatment was studied, using Rhodamine B as a model organic pollutant. Secondly, in the mixed solventsystem made of H_2O and ethanol, the controllable synthesis ofβ-Ni(OH)_2 flower-like microspheres and nano sheets were realized. Porous NiO microspheres and porous NiO nanosheets were obtained by the subsequent calcining process. The main points list as follows:
     1. Porous soft magnetic material is a member of soft magnetic material family having large surface area. This kind of material has vast potential in the surface-related applications. In this paper, a kind of maghemite (γ-Fe_2O_3) with large surface area, 82.7 m2/g, specifically, was obtained by solvothermal method and subsequent calcining process. As shown in the test results, the maghemite microsphere has no magnetic memory in the magnetic field since the residual magnetization is only 0.7 emu/g. In the waste water treatment process, Rhodamine B, a model organic pollutant in the water, was removed through the adsorption and desorption cycles by the maghemite microspheres. The maghemite microspheres in the water can be recycled easily by a magnetic separation procedure and regenerated in ethanol at room temperature.
     2. in the mixed solventsystem made of H2O and ethanol, the controllable synthesis ofβ-Ni(OH)_2 flower-like microspheres and nano sheets were realized. Porous NiO microspheres and porous NiO nanosheets were obtained by the subsequent calcining process. The morphology ofβ-Ni(OH)_2 was controlled by the volume proportion between the H_2O and ethanol. When the proportion was 9 to 1,β-Ni(OH)_2 was microsphere which was self-assembled by nanosheets. Except that, the morphology ofβ-Ni(OH)_2 was nanosheet. The samples were characterized by XRD, TEM and SEM. The magnetic, optical and surface area properties of the synthesizedβ-Ni(OH)_2 and NiO were also studied.
引文
[1]施利毅,纳米材料,华东理工大学出版社,2007.
    [2]张立德,牟季美,纳米材料和纳米结构,科学出版社,2001.
    [3]王世敏,许祖勋,傅晶,纳米材料制备技术,化学工业出版社,2001.
    [4]刘焕彬,陈小泉,纳米科学与技术导论,化学工业出版社,2006.
    [5] B. R. Martin, D. J. Dermody, B. D. Reiss, M. Fang, L. A. Lyon, M. J. Natan, T. E.Mallouk, Adv. Mater. 1999, 11, 1021
    [6] Z. Zhang, D. Gekhtman, M. S. Dresselhaus, J. Y. Ying, Chem. Mater. 1999, 11, 1659.
    [7] R. A. Webb, Phys. Rev. Lett. 1985, 54, 2696.
    [8] H. W. Kroto, Nature 1985, 318, 162.
    [9] H. Weller, A. Eychmuller, Advances in Photochemistry, Vol. 20, New York, John Whiley & Sons. Inc. 1995.
    [10] A. Henglein, Chem. Rev., 1989, 891, 861.
    [11] L. E. Brus, Appl. Phys. A, 1991, 93, 465.
    [12] A. Henglein, Top. Curr. Chem., 1988, 143, 113.
    [13] Y. Wang, N. Herron, J. Phys. Chem., 1991, 95, 525.
    [14] Q. Li, G. Zeng, S. Xi, Chin. Chem. Bull., 1995, 6, 128.
    [15] R. Leon, P. M. Petroff, D.Leonard, et al., Science, 1995, 267, 1966.
    [16] O. Dag, A. Kuperman, G. A. Ozin, Adv. Mater., 1995, 7, 72.
    [17] V. L. Colvin, A. P. Alivisatos, Nature, 1994, 370, 354.
    [18] Y. Wang, Y. Mahaler, N. Herron, J. Opt. Soc. Am., 1989, 86, 808.
    [19] G. A. Ozin, Adv. Mater., 1992, 4, 612.
    [20] R. Pool, Science, 1994, 263, 1698.
    [21] G. A. Ozin, U. S. Patent, Jul., 1990, 494, 2119.
    [22] M. Wark, G. Schulz-Ekloff, N. I. Jaeger, Catal. Today, 1991, 8, 467.
    [23] D. L. Klein, R. Roth, A. K. Lim, et al., Nature, 1997, 389, 699.
    [24] B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, et al., Appl. Phys. Lett., 1995, 66, 1316.
    [25] M. Nirmal, B. O. Dabbousi, M. G. Bawendi, et al., Nature, 1996, 383, 802.
    [26] S. A. Empedocles, D. J. Norris, M. G. Bawendi, Phys. Rev. Lett., 1996, 77, 3873.
    [27] R. P. Andres, T. Bein, M. Dorogi, et al., Science, 1996, 272, 1323.
    [28] R. Dagani, C&EN, 1994, 72, 8.
    [29] L. D. Landau, E. M. Lifshits, Quantum Mechanics: Non-relativistic Theory. [M]. New York: Pergamon Press, 1977, 178.
    [30] A. P. Davis, Nature 1999, 401, 120.
    [31] R. F. Service, Science 1996, 271, 920.
    [32] M. Anpo, T. Shima, S. Kodama, et al. J. Phys. Chem. 1987, 91, 4305.
    [33]王彦妮,张志琨,崔作林,催化学报, 1995, 16, 304.
    [34]钟子宜,陈立刚,颜其洁等,科学通报, 1995, 40, 1279.
    [35] R. Rolison, Science 2003, 299,1698.
    [36] A. T. Bell, Science 2003, 299,1688.
    [37] J. J. Pietron, R. M. Stroud, D. R. Rolison, Nano Lett. 2002 , 2, 545.
    [38] E. Berkoowitz, J. R. MITCHELL, M. J. Carey, Phys. Rev. Lett. 1992, 68, 3745.
    [39] J. Q. Xiao, J. S. Jiang, C. L. Chien, Phys. Rev. Lett. 1992, 68, 3749.
    [40] C. Maeilwain, Narure 2001, 401, 73.
    [41] C. S. Ju, M. G. Lee, S. S. Honn, Hwahak Konahak 1997, 35, 655.
    [42] Shimizu, Katsura JP 62260716.
    [43] J. Kuyama, H. Inui, S. Imaoka et al., Jpn. J. Appl. Phys. 1991, 30, L864.
    [44] M. S. El-Eskandarany, et al. J. Mater. Res. 1992, 7, 888.
    [45] M. S. El-Eskandarany, et al. Appl. Phys. Lett. 1992, 60, 1562.
    [46] C. C. Kock, Nanostructured Lett. 1993, 2, 109.
    [47] H. Yang et al. J. Mater. Sci. Lett. 1993, 17, 314.
    [48] M. S. El-Eskandarany, et al. J. Mater. Res. 1994, 9, 2891.
    [49] G. T. Fei, L. Liu, X.Z. Ding et al. J. Alloys and Compounds 1995, 229, 280.
    [50] K. N. Clson, R. L. Cook, J. Am. Chem. Soc. 1959, 38, 499.
    [51] M. R. Guire et al. J. Mater. Res.1993, 8, 2327.
    [52] J. L. Shi, et al. J. Eur. Chem. Soc.1993, 13, 265.
    [53] C. W Lu, J. L. Shi, et al. Thernochimica Acta 1994, 232, 77.
    [54] J. L. Shi, et al. J. Mater. Sci. 1995, 30, 793.
    [55] D. Jezequel, et al. J. Mater. Res. 1995, 10, 77.
    [56] J. A. Switzer, M. L. Shane, Phillips, R. Science 1990, 247, 444.
    [57] P. Deshev, Mater. Res. Bull. 1987, 13, 1167.
    [58] K. R. Venkatachari, et al. J. Mater. Res. 1995, 10, 248.
    [59] H. Gleiter, Europhysics News 1989, 20, 130.
    [60] Z. L. Cui, et al. Nanostructured Mater. 1995, 5, 829.
    [61] R. Birringer, H. Gleiter, et al. Phys. Lett. 1984, 102A, 365.
    [62]高晓云,陈进,王冕等,无机材料学报1992, 7, 429.
    [63]隋同波等,硅酸盐学报1993, 21, 33.
    [64]郭广生等,无机材料学报1993, 8, 377.
    [65]高晓云等,无机材料学报1993, 8, 57.
    [66]蔺思惠,李新勇,郭跃华等,无机材料学报1996, 11, 157.
    [67] A. Rabenau, Angew. Chem. Int. Ed. 1985, 24, 1026.
    [68] S.Feng, R. Xu, Ace Chem. Res.2001. 34, 239.
    [69] Y. T. Qian, Adv. Mater.1999, 11, 1101.
    [70] Y. T. Qian, Handbook of Nanostructureed Materials and Nanotechnology, Chap, 9, edited by H. S. Nalwa, Academic Press, New York, 2000.
    [71] Y. Xie, Y. T. Qian,W. Z. Wang, et al., Science 1996, 272, 1926.
    [72] Y. D. Li, Y. T. Qian, et al., J. Am Chem Soc. 1997, 119, 7869.
    [73] R. E. Morris, S. J. Weigel, Chem. Soc. Rev. 1997, 26, 309.
    [74] R. I. Walton, Chem. Soc. Rev 2002, 31, 23.
    [75]刘培生,多孔材料引论,清华大学出版社, 2004.
    [76] IUPAC: Manual of Symbols and Terminology. Pure Appl Chem, 1972, 31, 578
    [1] J. Y. Lee, D. H. Olson, L. Pan, T. J. Emge, J. Li, Advanced Functional Materials 17 (2007) 1255.
    [2] S. H. Jhung, J. H. Lee, J. W. Yoon, C. Serre, G. Ferey, J. S. Chang, Advanced Materials 19 (2007) 121.
    [3] Z. Zhong, J. Ho, J. Teo, S. Shen, A. Gedanken, Chemistry of Materials 19 (2007) 4776.
    [4] Y. Xu, Q. Jiang, Y. Cao, Y. L. Wei, Z. Y. Yun, J. H. Xu, Y. Wang, C. F. Zhou, L. Y. Shi, J. H. Zhu, Advanced Functional Materials 14 (2004) 1113.
    [5] S. H. Lin, R. S. Juang, Journal of Environmental Management 90 (2009) 1336.
    [6] E. Sabio, F. Zamora, J. Ganì?an, C. M. Gonzalez-Garcia, J. F. Gonzalez, Water Research 40 (2006) 3053.
    [7] M. S. El-Geundi, Adsorption Science and Technology 15 (1997) 777.
    [8] Z. Sun, L. Wang, P. Liu, S. Wang, B. Sun, D. Jiang, F. S. Xiao, Advanced Materials 18 (2006) 1968.
    [9] P. Li, D. E. Miser, S. Rabiei, R. T. Yadav, M. R. Hajaligol, Applied Catalysis B: Environmental 43 (2003) 151.
    [10] N. Pinna, S. Grancharov, P. Beato, P. Bonville, M. Antonietti, M. Niederberger, Chemistry of Materials 17 (2005) 3044.
    [11] A. A. Bharde, R. Y. Parikh, M. Baidakova, S. Jouen, B. Hannoyer, T. Enoki, B. L. V. Prasad, Y. S. Shouche, S. Ogale, M. Sastry, Langmuir 24 (2008) 5787.
    [12] H. M. Lee, Y. R. Uhm, C. K. Rhee, Journal of Alloys and Compounds 461 (2008) 604.
    [13] Y. C. Zhang, J. Y. Tang, X. Y. Hu, Journal of Alloys and Compounds 462 (2008) 24.
    [14] N. Chemin, L. Rozes, C. Chane′ac, S. Cassaignon, E. L. Bourhis, J.P. Jolivet, O. Spalla, E. Barthel, C. m. Sanchez, Chemistry of Materials 20 (2008) 4602.
    [15] M. I. Shukoor, F. Natalio, M. N. Tahir, M. Divekar, N. Metz, H. A. Therese, P. Theato, V. Ksenofontov, H. C. Schr?der, W. E. G. Müller, W. Tremel, Journal of Magnetism and Magnetic Materials 320 (2008) 2339.
    [16] Y. J. Lee, K.W. Jun, J. Y. Park, H. S. Potdar, R. C. Chikate, Journal of Industrial and Engineering Chemistry 14 (2008) 38.
    [17] J. S. Hu, L. S. Zhong, H. P. Liang, A. M. Cao, W. G. Song, L. J. Wan,, Advanced Materials 18 (2006) 2426-2431.
    [18] A. F. Thunemann, J. Kegel, J. Polte, F. Emmerling, Analytical Chemistry 80 (2008) 5905.
    [19] S. Basak, K. S. Rane, P. Biswas, Chemistry of Materials 20 (2008) 4906.
    [20] J. S. Hu, A. M. Cao, H. P. Liang, L. J. Wan,, Angewandte Chemie International Edition 44 (2005) 4391.
    [21] Y. Wang, X. Jiang, Y. Xia, Journal of the American Chemical Society 125 (2003) 16176.
    [22] X. Jiang, Y. Wang, T. Herricks, Y. Xia, Journal of Materials Chemistry 14 (2004) 695.
    [23] J. F. Moulder, J. Chastain, Handbook of x-ray photoelectron spectroscopy : a reference book of standard spectra for identification and interpretation of XPS data, Physical Electronics Division, Perkin-Elmer Corp., Eden Prairie, Minn., (1992) 80.
    [24] S. Y. Zeng, K. B. Tang, T. W. Li, Z. H. Liang, D. Wang, Y. K.Wang, Y. X. Qi, W. W. Zhou, Journal of Physics Chemistry C 112 (2006) 4836.
    [25] A. Rosalie David, H.G. M. Edwards, D. W. Farwell, D. L. A. De Faria,, Archaeometry 43 (2001) 461.
    [26] J. W. Long, M. S. Logan, C. P. Rhodes, E. E. Carpenter, R. M. Stroud, D. R. Rolison, Journal of the American Chemical Society 126 (2004) 16879.
    [27] K. Mori, S. Kanai, T. Hara, T. Mizugaki, K. Ebitani, K. Jitsukawa, K. Kaneda, Chemistry of Materials 19 (2007) 1249.
    [28] C. Pascal, J. L. Pascal, F. Favier, M. L. Elidrissi Moubtassim, C. Payen, Chemistry of Materials 11 (1999) 141.
    [29] G. J. Zhang, Z. R. Shen, M. Liu, C. H. Guo, P. C. Sun, Z. Y. Yuan, B. H. Li, D. T. Ding, T. H. Chen, Journal of Physical Chemistry B 110 (2006) 25782.
    [30] J. U. Keller, R. Staudt, MyiLibrary, Gas adsorption equilibria experimental methods and adsorptive isotherms, Springer, New York, (2005) 43.
    [31] D. J. Craik, Magnetic Oxide, Wiley, New York, (1975) 697.
    [32] A. Uheida, G. Salazar-Alvarez, E. Bj?rkman, Z. Yu, M. Muhammed, Journal of Colloid and Interface Science 298 (2006) 501.
    [33] D. K. Yi, S. S. Lee, G. C. Papaefthymiou, J. Y. Ying, Chemistry of Materials, 18 (2006) 614.
    [1]徐毓龙,氧化物与化合物半导体基础,西安电子科技大学出版社,1991
    [2] D. Leevin, J. Y. Ying, Stud Surf Sci.Catal. 1997, 110, 367.
    [3] M.Yoshio, Y. Todorov, K.Yamato, H.Noguchi, J.Itoh,M.Okada,T.Mouri,J.Power Sources 1998, 74, 46.
    [4] H. X. Yang,Q. F. Dong,X. H. Hu,J. Power Sources 1999, 79, 256.
    [5] Takenoshita,Hidehiro,Patent JP 09263444 1997, 7, 10, P.6.
    [6] E. L. Miller,R. E. Roeheleau,J. Electrochem. Soe. 1997, 144, 3072.
    [7] Y. Wu, G. Wu, X. Ni, J. Vac. Sci. Teehnol. 1999, 19, 228.
    [8] R. C. Makkus, K.Hemmes, J. H. W. D. Wir,J. Electrochem. Soe. 1994,141,3429.
    [9] M. E. MeHenry,D. E. Laughlin, Acta Mater. 2000, 48, 223.
    [10] W. Zhu,L. Seve,R. Sears,B. Sinkovie,S. S. P. Parkin,Phys. Rev. Lett. 2001, 86, 5389.
    [11] P. Poizot,S. Laruelle,S. Grugeon,L. Dupont,J. M. Taraseon,Nature 2000, 407, 496.
    [12] G. Boschloo,A. Hagfeldt,J. Phys. Chem. B 2001, 105, 3039.
    [13] K. W. Nam,K. W. B. Kim,J. Eleetroehem. Soe. 2002, 149, A346.
    [14] F. B. Zhang, Y. K. Zhou, H. L. Li, Mater. Chem. Phys. 2004, 83, 260.
    [15] D. Y. Han, H. Y. Yang, C. B. Shen, X. Zhou, F. H. Wang, Powder Technol. 2004, 147, 113.
    [16] N. Dharmaraj, P. Prabu, S. Nagarajan, C. H. Kim, J. H. Park, H. Y. Kim, Mater. Sci. Eng. B 2006, 128, 111.
    [17] X. L. Li, X. X. Zhang, Z. R. Li, Y. T. Qian, Solid State Commun. 2006, 137, 581.
    [18] W. Z. Wang, Y. K. Liu, C. K. Xu, C. L. Zheng, G. H. Wang, Chem. Phys. Lett. 2002, 362, 119.
    [19] Y. Lin, T. Xie, B. C. Cheng, B. Y. Geng, L. D. Zhang, Chem. Phys. Lett. 2003, 380, 521.
    [20] C. K. Xu, K. Q. Hong, S. Liu, G. H. Wang, X. N. Zhao, J. Cryst. Growth 2003, 255, 308.
    [21] K. Matsui, B. K. Pradhan, T. Kyotani, A. Tomita, J. Phys. Chem. B 2001, 105, 5682.
    [22] X. M. Ni, Q. B. Zhao, F. Zhou, H. G. Zheng, J. Cheng, B. B. Li, J. Cryst. Growth 2006, 289, 299.
    [23] X. H. Liu, G. Z. Qiu, Z. Wang, X. G. Li, Nanotechnology 2005, 16, 1400.
    [24] J. H. Liang, Y. D. Li, Chem. Lett. 2003, 12, 1126.
    [25] X. Wang, L. Li, Z Y. G. hang, S. T. Wang, Z. D. Zhang, L. F. Fei, Y. T. Qian, Cryst. Growth Des. 2006, 6, 2163.
    [26] Z. H. Liang, Y. J. Zhu, X. L. Hu, J. Phys. Chem. B 2004, 108, 3488.
    [27] S. A. Needham, G. X. Wang, H. K. Liu, J. Power Sources 2006, 159, 254.
    [28] X. M. Sun, J. F. Liu, Y. D. Li, Chem. Eur. J. 2006, 12, 2039.
    [29] M. M. Titirici, M. Antonietti, Thomas, A. Chem. Mater. 2006, 18, 3808.
    [30] D. B. Wang,; C. X. Song, Z. S. Hu, X. J. Fu, Phys. Chem. B 2005, 109, 1125. [31] Y. Wang, Q. S. Zhu, H. G. Zhang, Chem. Commun. 2005, 5231.
    [32] J. Liu, S. F. Du, L. Q. Wei, H. D. Liu, Y. J. Tian, Y. F. Chen, Mater. Lett. 2006, 60, 3601.
    [33]吴春艳,刘胜峰,昊飞,等.合肥工业大学学报,自然科学版,2003, 26, 404-406.
    [34]邓祥义,吴高安.化学研究与应用,2002, 14, 577-579.
    [35]刘胜峰,吴春艳,韩效钊.无机化学学报,2003, 19, 624-626.
    [36] K. Huang, Z.H. Liu, Q. H. Li, et al. Metallurgical Review of MMIJ (Mining and Metallurgical Institute of Japan), 1999, 16, 169-178.
    [37] G. P. Choi, W. S. Lee, J. S. Park Journal of Materials Science, 2004, 39, 4375-4377.
    [38] X. Y. Deng, Z. Chen. Materials Letters, 2004, 58, 276-280.
    [39] L. Y. Bai, F. L. Yuan, P. Hu, S. K. Yan, X. Wang, S. H. Li. Materials Letters. 2007, 61, 1698–1700.
    [40] X. Wang, L. J. Yu, P. Hu, and F. L. Yuan, Crystal Growth & Design, 2007, 7, 2415-2418.
    [41] L. X. Yang, Y. J. Zhu, H. Tong, Z. H. Liang, W. W. Wang, Crystal Growth & Design, 2007, 7, 2716-2719.
    [42] W. G. Tian, P. P. Wang, L. Ren, G. B. Sun, L. N. Sun, K. Yang, B. Q. Wei, C. W. Hu, Journal of Solid State Chemistry, 2007, 180, 3551–3559.
    [43] X. M. Ni, Y. F. Zhang, D. Y. Tian, H. G. Zheng, X. W. Wang. Journal of Crystal Growth, 2007, 306, 418–421.
    [44] J. U. Keller, R. Staudt, MyiLibrary, Gas adsorption equilibria experimental methods and adsorptive isotherms, Springer, New York, (2005) 43.
    [45] N. Kuleshov, V. Shcherbitsky, V. Mikhailov, S. Kück, J. Koetke, K. Petermann, G. Huber,J. Lumin. 1997, 71, 265.
    [46] E. Zannoni, E. Cavalli, A. Toncelli, M. Tonelli, M. Bettinelli, J. Phys. Chem. Solids 1999, 60, 449.
    [47] L. Galoisy, G. Calas, Geochim. Cosmochim. Acta 1993, 57, 3613.
    [48] Y. Tanabe, S. Sugano, J. Phys. Soc. Jpn. 1954, 9, 766.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700