阳极氧化TiO_2纳米管阵列的制备与阳离子掺杂
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,TiO_2纳米管阵列的制备与应用得到了广泛的研究。阳极氧化法制备TiO_2纳米管阵列具有工艺简单、成本低廉、易于放大等优点,引起人们的极大关注。为了获得TiO_2纳米管阵列的最佳性能,一方面需要有效地控制纳米管管径、管长、管壁厚度、管壁形貌、表面形貌质量等;另一方面就是对TiO_2纳米管阵列进行掺杂改性。
     本文采用阳极氧化法分别在水溶液和丙三醇溶液中制备了掺杂与未掺杂的TiO_2纳米管阵列,并研究了纳米管的形貌可控性、掺杂元素对纳米管形貌和热稳定性的影响,以及掺杂元素对TiO_2晶粒生长和相变的影响。
     首先,研究了氧化电压和水分含量对TiO_2纳米管管径、管长、表面形貌的影响。发现采用高的氧化电压可以制备出大管径的TiO_2纳米管,并且纳米管的管径随着氧化电压的升高而线性地增大。当丙三醇溶液中的水分含量从零开始升高时,TiO_2纳米管的管径随之增大,但是管长先减小后增大,表面形貌质量先上升后下降。此外,讨论了节状管壁的产生机理,认为水分是产生节状纳米管的必备条件。
     其次,通过氧化钛锆合金的方法制备出锆掺杂的TiO_2纳米管,发现锆掺杂可以增加TiO_2纳米管的长度。在480°C至680°C的高温热处理过程中,锆元素能够阻碍锐钛矿相TiO_2晶粒的生长以及向金红石相的转变,并且ATNTA中锆含量越多,阻碍作用越明显。同时,锆掺杂还可以明显提高纳米管阵列形貌的热稳定性。此外,ATNTA的锆掺杂量可以通过改变基体的成分而很方便地得到调整。
     最后,通过氧化钛铬合金的方法制备出铬掺杂的TiO_2纳米管,发现铬掺杂改变了TiO_2纳米管阵列的形貌。管壁较厚的TiO_2纳米管排列松散,管间距较大。在480°C至580°C的高温热处理过程中,基体发生了由β相向α相的转变,但没有破坏纳米管阵列的结构。铬掺杂促进了锐钛矿相TiO_2晶粒向金红石结构的转变。在热处理的过程中,氧化膜中一直没有出现锐钛矿型的TiO_2,而是在非晶的氧化膜中直接产生了金红石型的TiO_2晶粒。
The preparation and application of TiO_2 nanotube array is widely investigated in recent years. Anodic oxidation adopted to prepare TiO_2 nanotube array has attracted intensive attention due to its simplicity, low cost and easy industrialization. The preparation of TiO_2 nanotube array by anodic oxidation is reviewed in this paper. Two approaches are applied to optimize the properties of TiO_2 nanotube array: one is the efficient control of pore size, tube length, wall thickness, wall appearance and the quality of surface morphology; the other is the introduction of effective modification methods.
     In this investigation, undoped and doped TiO_2 nanotube arrays were prepared in both aqueous solution and glycerol electrolytes. The control of tube morphology and the effects of dopants on tube morphology, phase transition and thermal stability are also studied.
     First, the effect of anodization voltage and water addition on pore size, tube length and surface morphology was studied. High anodization voltage results in TiO_2 nanotube of large pore size. Furthermore, the outer diameter is found to be linear increase with the voltage. Wide TiO_2 nanotubes can also be produced in glycerol solutions with high water content. These tubes shorten first and then prolong a little as more water addition is contained in glycerol electrolytes. For surface morphology, it becomes better first and worse later as the water content increases. Also, the detailed growth mechanism of ridges on outer tube walls is proposed with the presence of water.
     Additionally, Zr-doped TiO_2 nanotube array was produced by anodizing Ti-Zr alloy in fluoride containing solutions. The dopants cause a sharp increase, as far as three times, in the length of TiO_2 nanotubes. The Zr~(4+) ions replace a portion of Ti~(4+) ions in the crystal matrixs and successfully retard the growth of anatase TiO_2 grains and their phase transition to rutile structure when the nanotube array was annealed at elevated temperatures from 480°C to 680°C. Besides, the nanotube array can keep stable at high temperatures due to Zr-doping. Futhermore, the Zr content in TiO_2 nanotubes array can be conveniently adjusted by varying the composition of Ti-Zr alloys.
     Finally, Cr-doped TiO_2 nanotube array was produced by anodizing Ti-Cr alloys in fluoride containing solutions. The morphology of TiO_2 nanotube array on Ti-Cr alloys is quite different form that on Ti and Ti-Zr alloys, notably the large distance among tubes. Phase transition fromβ-type toα-type of substrate takes place when the samples were annealed at elevated temperatures from 480°C to 580°C. This event has few negative effects on the structural stability of nanotube array. In addition, the phase transition from anatase TiO_2 to rutile TiO_2 is found to be accelerated with Cr-doping during the heat treatment. Rutile TiO_2 has emerged in heated amorphous oxide films on Ti-Cr alloys, while anatase TiO_2 has not been found.
引文
1黄亚平.太阳能光伏发电研究现状与发展前景探讨.广东白云学院学报. 2007, 14(2): 113~117
    2陈云霞. TiO2基太阳能电池研究进展.陶瓷学报. 2007, 28(1-1): 73~78
    3 O. Regan, B. Gratze. A Low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 Films. Nature. 1991, 353: 737~740
    4胡智学,钱鸣毅.染料敏化纳米薄膜太阳电池的研究进展.化学工程师. 2007, 12: 29~30
    5毛宗强,刘志华.中国氢能发展战略思考.电池. 2002, 32(3): 150~152
    6温和瑞,张镇雷,韩雪峰.太阳能光解水催化剂的研究进展.化学世界. 2008, 1: 52~55
    7李敏贤.纳米TiO2光催化剂的制备与应用研究进展.化工中间体. 2007, 9: 28~32
    8丁红春.纳米二氧化钛光催化机理及其新型COD测定方法与仪器的研究.华东师范大学. 2006: 11~12
    9 O.K. Varghese, C.A. Grimes. Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv. Mater.. 2003, 15: 624~627
    10赵英娜,吴印林,张文丽.纳米二氧化钛的制备及光催化性能的研究.现代技术陶瓷. 2005, 4: 7~9
    11郭孟狮,杨靖华,李荀. TiO2纳米管研究及应用进展.化工新型材料. 2006, 34(7): 14~17
    12江宏富. TiO2的掺杂改性及光催化研究.中国科学技术大学博士论文. 2006: 3~5
    13李晓红,张校刚,力虎林. TiO2纳米管的模板法制备及表征.高等学校化学学报. 2001, 22 (1-1): 130~132
    14 H.J. Jong, K. Hideki. Creation of novel helical ribbon and double-layered nanotube TiO2 st ructures using an organogel template. Chem. Mater.. 2002, 14(4) : l445~l447
    15宋旭春,岳林海,徐铸德.水热法合成掺杂铁离子的小管径TiO2纳米管.无机化学学报. 2003, 19(8): 899~901
    16 D.W. Gong, C.A. Grimes. Titanium oxide nanotube arrays prepared byanodic oxidation. 2001, 16(12): 3331~3334
    17 O.K. Varghese, C.A. Grimes. Hydrogen sensing using titania nanotubes. Sensors and Actuators B. 2003, 93: 338~344
    18 G.K. Mor, O.K. Varghese, C.A. Grimes. A review on highly ordered vertically oriented TiO2 nanotube arrays: fabrication, material properties and solar energy applications. Solar Energy Materials & Solar Cells. 2006, 90: 2011~2075
    19 J.M. Macak, S. Aldabergerova, P. Schmuki. Smooth Anodic TiO2 Nanotubes. Angew. Chem. Int. Ed.. 2005, 44: 7463~7465
    20 M. Paulse, G.K. Mor, O.K. Varghese, C.A. Grimes. Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134μm in Length. J. Phys. Chem. B. 2006, 110(33): 16179~16184
    21 K. Shankar, G.K. Mor, C.A. Grimes. Highly-ordered TiO2 nanotube arrays up to 220μm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology. 2007, 18: 065707
    22 S.P. Albu, A. Ghicov, P. Schmuki. 250μm long anodic TiO2 nanotubes with hexagonal self-ordering. Phys. Stat. Sol.. 2007, 1(2): R65~R67
    23 H.E. Prakasam, K. Shankar, C.A. Grimes. A new benchmark for TiO2 nanotube array growth by anodization. J. Phys. Chem. C. 2007, 111(20): 7235~7241
    24 M. Paulse, C.A. Grimes. TiO2 nanotube arrays of 1000μm length by anodization of titanium foil: phenol red diffusion. J. Phys. Chem. C. 2007, 111(20): 14992~14997
    25赖跃坤,孙岚,左娟林.氧化钛纳米管阵列制备及形成机理.物理化学学报. 2004, 20(9): 1063~1066
    26 K.S. Raja, M. Misra, K. Paramguru. Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium. Electrochimica Acta. 2005, 51: 154~165
    27 J.L. Zhao, L.T. Li. Fabrication of titanium oxide nanotube arrays by anodic oxidation. Solid State Communications. 2005, 134: 705~710
    28 G.K. Mor, O.K. Varghese, C.A. Grimes. Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements. Thin Solid Films. 2006, 496: 42~48
    29 Q.Y. Cai, C.A. Grimes. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J. Mater. Res.. 2005, 20(1-1): 230~236
    30 L. V. Taveira, P. Schmuki. Initiation and growth of self-organized TiO2 nanotubes anodically formed in NH4F/(NH4)2SO4 Electrolytes. Journal of the Electrochemical Society. 2005, 152 (10): B405~B410
    31 X.J. Feng, J.M. Macak, P. Schmuki. Robust Self-Organization of Oxide Nanotubes over a Wide pH Range. Chem. Mater.. 2007, 19: 1534~1536
    32 J.M. Macak, P. Schmuki. Self-organized nanotubular oxide layers on Ti-6Al-
    7Nb and Ti-6Al-4V formed by anodization in NH4F solutions. J. Biomedical Materials Research Part A. 2005, 75A (4): 928~933
    33 X.J. Feng, J.M. Macak, P. Schmuki. Flexible self-organization of two size-scales oxide nanotubes on Ti45Nb alloy. Electrochemistry Communications. 2007, 9: 2403~2407
    34 A. Ghicov, B. Schmidt, P. Schmuki. Photoresponse in the visible range from Cr doped TiO2 nanotubes. Chemical Physics Letters. 2007, 433: 323~326
    35 W.Y. Zhang, Z.P. Xi. Fabrication of TiO2 nanotube arrays on biologic titanium alloy and properties. Trans. Nonferrous Met. Soc. China. 2007, 17: s692~s695
    36孙岚,林昌健. TiO2纳米管阵列的制备、改性及其应用研究进展.无机化学学报. 2007, 23(11): 1841~1850
    37 Y.L. Su, X.W. Zhang, L.C. Lei. F–B-codoping of anodized TiO2 nanotubes using chemical vapor deposition. Electrochemistry Communications. 2007, 9: 2291~2298
    38 L.C. Lei, Y.L. Su, X.W. Zhang. Fabrication of multi-non-metal-doped TiO2 nanotubes by anodization in mixed acid electrolyte. Materials Research Bulletin, 2007, 42: 2230~2236
    39 A. Ghicov, J.M. Macak, P. Schmuki. Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes. Nano Letters. 2006, 6 (1-5): 1080~1082
    40 K. Shankar, C.A. Grimes. An electrochemical strategy to incorporate nitrogen in nano- structured TiO2 thin films: modification of bandgap and photoelectron-chemical properties. J. Phys. D: Appl. Phys. 2006, 39: 2361~2366
    41 R.P. Vitiello, J.M. Macak, P. Schmuki. N-Doping of anodic TiO2 nanotubes using heat treatment in ammonia. Electrochemistry Communications. 2006, 8: 544~548
    42 K. Shankar, G.K. Mor, C.A. Grimes. A study on the spectral photoresponse and photo- electrochemical properties of flame-annealed titania nanotube-arrays. J. Phys. D: Appl. Phys. 2005, 38: 3543~3549
    43 X.H. Tang, D.Y. Li. Sulfur-Doped Highly Ordered TiO2 Nanotubular Arrays with Visible Light Response. J. Phys. Chem. C. 2008, 112: 5405~5409
    44 M. Paulose, G.K. Mor, C. A. Grimes. Visible light photoelectrochemical and water- photoelectrolysis properties of titania nanotube arrays. Journal of Photochemistry and Photobiology A: Chemistry. 2006, 178: 8~15
    45 J.L. Zhao, X. Wang, R. Chen. Synthesis of thin films of barium titanate and barium strontium nanotubes on titanium substrates. Mater. Lett.. 2005, 59(18): 2329~2332
    46 J.M. Macak, M. Zlamal, P. Schmuki. Self-organized nanotube layers as highly efficient photo catalysts. Small. 2007, 3(2): 300~304
    47 H.Y. Li, X.D. Bai, J.S. Wang. Fabrication of titania nanotubes as cathode protection for stainless steel. Electrochemical and Solid-State Letters. 206, 9 (1-5): B28~B31
    48李静,云虹,林昌健. TiO2纳米管阵列的制备及其对316不锈钢光生阴极保护作用的研究.电化学. 2007, 13(4): 367~370
    49李静,云虹,林昌健.铁掺杂TiO2纳米管阵列对不锈钢的光生阴极保护.物理化学学报. 2007, 23(12): 1886~1892
    50 Q. Zheng, B.X. Zhou. Self-Organized TiO2 Nanotube Array Sensor for the determination of chemical oxygen demand. Adv. Mater.. 2008, 20: 1044~1049
    51 K.C. Popat, T.A. Desai, C. A. Grimes. Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials. 2007, 28: 4880~4888
    52 V M Prida, K R Pirota. Synthesis and magnetic properties of Ni nanocylinders in self-aligned and randomly disordered grown titania nanotubes. Nanotechnology. 2005, 16: 2696~2702
    53 S.E. Kim, J.H. Lim. Anodically nanostructured titanium oxides for implant applications. Electrochimica Acta 53. 2008, 2008: 4846~4851
    54 G. Liu, F. Li, H. M. Cheng. Electron field emission of a nitrogen-doped TiO2 nanotube array. Nanotechnology. 2008, 19: 025606
    55 M. Paulose, O.K. Varghese, C. A. Grimes. Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes. Nanotechnology. 2006, 17: 398~402
    56 M. Paulose, K. Shankar, C.A. Grimes. Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes. Nanotechnology. 2006, 17: 1446~1448
    57 S. Bauer, S. Kleber, P. Schmuki. TiO2 nanotubes: tailoring the geometry in H3PO4/HF electrolytes. Electrochemistry Communications. 2006, 8: 1321~1325
    58 S. Kaneco, Y. S. Chen, P. Westerhoff and J.C. Crittenden. Fabrication of uniform size titanium oxide nanotubes: impact of current density and solution conditions. Scripta Materialia. 2007, 56: 373~376
    59 K. Shankar, G.K. Mor, C.A. Grimes. Cation effect on the electrochemical formation of very high aspect ratio TiO2 nanotube arrays in Formamide-Water Mixtures. J. Phys. Chem. C. 2007, 111: 21~26
    60 K.S. Raja, T. Gandhi, M. Misra. Effect of water content of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes. Electrochemistry Communications. 2007, 9: 1069~1076
    61 S.P. Albu, D. Kim, P. Schmuki. Growth of aligned TiO2 bamboo-type nanotubes and highly ordered Nanolace. Angew. Chem. Int. Ed.. 2008, 47: 1916~1919
    62 Y.T. Sul, C.B. Johansson. The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Medical Engineering & Physics. 2001, 23: 3293~46
    63 J.M. Macak, K. Sirotna1, P. Schmuki. Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochimica Acta. 2005, 50: 3679~3684
    64 D.J. Yang, H. G. Kim, S.J. Cho. Thickness-conversion ratio from titanium to TiO2 nanotube fabricated by anodization method. Materials Letters. 2008, 62 :775~779
    65 K. Yasuda, P. Schmuki. Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH4)2SO4/NH4F electrolytes. Electrochimica Acta. 2007, 52: 4053~4061
    66 L. Young. Anodic oxide films on tantalum electrodes. Trans. Faraday. Soc.. 1954, 50: 159~171
    67 K. Yasuda, P. Schmuki. Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH4)2SO4/NH4F electrolytes. Electrochimica Acta. 2007, 52: 4053~4061
    68 J.M. Macak, P. Schmuki. Self-organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH4F solutions. J. Biomedical Materials Research Part A. 2005, 75A (4): 928~933
    69 H. Tsuchiya, P. Schmuki. Self-organized porous and tubular oxide layers on TiAl alloys. Electrochemistry Communications. 2007, 9: 2397~2402
    70 X.J Feng, J.M. Macak, P. Schmuki. Flexible self-organization of two size-scales oxide nanotubes on Ti45Nb alloy. Electrochemistry Communications. 2007, 9: 240~2407
    71 R.J. Matyi, L.H. Schwartz. Particle size, particle size distribution and related measurements of supported metal catalysts. J. Catalysts Review: Science and Engineering. 1987, 29: 41~99
    72 K.P. Kumar, J. Kumar. Effect of peptization on densification and phase-t ransformation behavior of sol-gel-derived nano structrured titania. J. Am. Ceram. Soc.. 1994, 77(5): 1396~1400
    73 J. F. Banfield, B.L. Bischoff. TiO2 accessory minerals: coarsening, and transfo rmation kinetics in pure and doped synthetic nanocrystalline materials. J. Chem istry Geology. 1993, 110: 211~231
    74 O.K. Varghese, C.A. Grimes. Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J. Mater. Res.. 2003, 18(1): 156~165
    75鲍林(L. Pauling),卢嘉锡,黄耀曾.化学键的本质.上海:上海科学技术出版社. 1981
    76许可,吕德义,郇昌永.离子掺杂对纳米二氧化钛晶型转变的影响.材料科学与工程学报. 2005, 23(4): 629~632

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700