晶相和形貌可控的TiO_2纳米晶和取向薄膜的合成及其在染料敏化太阳电池中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiO2纳米晶是重要的多功能纳米材料,在光催化、气体传感器、光学材料以及染料敏化太阳电池等诸多领域具有广阔的应用。具有高效率和低成本特点的染料敏化太阳电池被誉为是传统硅太阳电池的有力替代者。探索晶型与形貌可控可调、工艺简单易控且收率高的TiO2纳米晶的制备途径,不仅具有理论研究价值,而且也是大规模推广应用TiO2纳米晶的关键。将特性优良的TiO2纳米晶和取向薄膜应用于染料敏化太阳电池,有利于提高染料敏化太阳电池的光电转换效率,推进其商品化进程。
     本论文的第一部分工作是研究强碱性水热法制得的钛酸盐纳米管和纳米棒向晶相组成和形貌各异的TiO2纳米晶的水热转化,采用XRD、TEM以及HRTEM对产物的晶相和微观形貌进行了表征。系统研究了钛酸盐纳米管水热转化中钠离子含量、水热体系pH值和水热温度等工艺条件对所得产物的晶相组成和形貌的影响,并结合HRTEM提出了钛酸盐纳米管向TiO2纳米晶的水热转化机制。结果表明:在pH≥1.0的体系中,钛酸盐纳米管水热转化为以锐钛矿相为主的TiO2纳米晶;在pH≤0.5的体系中则转化为两头为锥形结构的单晶金红石相纳米棒。钛酸盐纳米管中钠离子含量对其水热转化所得TiO2产物的相组成、形貌和尺寸都有明显的影响。在水热处理过程中,钛酸盐纳米管首先转化为尺寸约为3 nm的锐钛矿相纳米晶,再通过这些细小纳米晶的生长,最终得到晶相组成和形貌各异的TiO2纳米晶,这种生长过程涉及质子化、定向附着和Oswald熟化。研究了钛酸盐纳米棒的水热过程中体系的pH值和温度对产物晶相组成和形貌的影响。在pH为0的体系中制得了金红石相和板钛矿相两种晶相共存的纳米棒和纳米颗粒混合产物;在其它pH值为2、4、和7的条件下,均得到了纯锐钛矿相TiO2纳米棒;当二次水热温度低于180℃时,纳米棒前驱体没有转化完全,所得产物为前驱体与锐钛矿相TiO2共存的纳米棒;当水热温度为180℃和210℃时,产物为纯锐钛矿相纳米棒。通过钛酸盐一维纳米材料的水热转化来制备TiO2纳米晶具有产物晶相组成和形貌可控、收率高以及工艺易于控制的特点。
     本论文的第二部分研究工作是采用低温溶液法沉积取向性金红石TiO2膜。用XRD、SEM以及TEM对TiO2膜的晶相和微观形貌进行了表征。结果表明所沉积的金红石TiO2膜为取向性薄膜,且结晶度很好,垂直于衬底表面,在[001]方向择优生长。考察了反应时间,酞酸丁酯体积,四氯化钛浓度以及盐酸用量等工艺条件对TiO2薄膜厚度及形貌的影响,用SEM和TEM观察TiO2膜的微观结构,测定了薄膜的吸收光谱和荧光光谱,并用接触角测定仪表征了薄膜的超亲水性。结果表明:反应时间、前驱体酞酸丁酯体积和四氯化钛浓度以及盐酸体积改变时,TiO2材料的形貌和膜的厚度均发生改变;紫外可见漫反射光谱表明所合成的TiO2材料的最大吸收在波长374nm处,禁带宽度为3.06ev;不同条件下制备的TiO2膜的荧光锋位置和形状几乎相似,但峰强度不同;所合成的TiO2膜用紫外光照射3 min表现出良好的超亲水性。
     第三部分工作是将钛酸盐纳米管水热转化制得的双锥形锐钛矿相纳米晶和用低温溶液沉积法制得的金红石取向性薄膜用作染料敏化太阳电池的光阳极。在基于锐钛矿Ti02纳米晶的染料敏化太阳电池的研究中,制备了不同厚度的TiO2纳米晶多孔膜,采用SEM观测了多孔膜的微观形貌,测定了多孔膜的BET比表面积;测试染料敏化太阳电池的I-V特性,考察膜厚对电池的开路光电压、短路光电流密度、填充因子以及光电转化效率等性能参数的影响,并与基于P25纳米TiO2粉的染料敏化太阳电池进行性能对比。结果表明:(1)用水热法制备的纳米晶Ti02结晶度好,为纯的单晶锐钛矿。与P25粉相比,纳米晶多孔膜的比表面积大。(2)纳米晶TiO2膜的染料吸附量高于P25膜。(3)由纳米晶TiO2组成的染料敏化太阳电池的光捕获效率(LHE)高,导致其光电流密度和转换效率都明显高于用P25组成的DSSC。在基于金红石取向性薄膜的染料敏化太阳电池的初步研究中,测试了电池I-V特性,得到电池光电流密度Jsc为7.9mA/cm2,开路电压Voc为731mV,填充因子FF为59%,电池的总的转换效率η为3.41%。
TiO2 nanocrystals are well-known as important multifunctional nanomaterials, and have been widely used in many fields, such as photocatalysts, gas sensors, optical materials and dye-sensitized solar cells. Dye-sensitized solar cells that possess the properties of high conversion efficiency and low cost are considered as a promising alternative for conventional silicon solar cells.To explore a route with simple process and high production yield for synthesis of TiO2 with controllable phase composition and morphology, not only is of significance for scientific research, but also is the key step to promote the large-scale application of TiO2 nanocrystals.
     In the first part of this dissertation, we studied hydrothermal transformation from titanate one-dimensional nanotubes and nanorods produced by the alkaline hydrothermal method into TiO2 nanocrystals with different phase composition and morphology. The obtained products were characterized by XRD,TEM and HRTEM. For the hydrothermal transition of titanate nanotubes, the effects of the sodium content in titanate nanotubes, the pH value and the hydrothermal temperature on the phase composition and morphologies of TiO2 nanomaterials were investigated. Based on the HRTEM images, the transformation mechanisms from titanate nanotubes to TiO2 nanocrystals were presented. It was shown that, the pH value of the titanate nanotube suspension had a significant influence on the phase composition and morphology of TiO2 nanocrystals.The H-titanate nanotubes were predominately transformed into anatase nanoparticle with rhombic shape when the pH value was greater than or equal to 1.0, whereas primarily turned into rutile nanorod with pyramidal ends at the pH value less than or equal to 0.5.We propose a possible mechanism for hydrothermal transformation of H-titanate nanotubes into single-crystalline TiO2 nanomaterials. While the H-titanate nanotubes transform into tiny anatase nanocrystallites of ca.3 nm in size, the formed nanocrystallites as an intermediate grow into the TiO2 nanomaterials with controlled phase composition and morphology. This growth process involves the steps of protonation, oriented attachment, and Ostwald ripening. The sodium content of titanate nanotubes also has an effect on the phase composition and morphology of the obtained TiO2 nanomaterials. For the hydrothermal transformation of titanate nanorods, a mixture of nanoparticles and nanorods with the phase composition of rutile and anatase coexisting was obtained under the condition of pH 0; the anatase nanorods were produced under the condition of pH 2,4 and 7; when the hydrothermal temperaure was low than 180℃, the titanate nanorods have not completely been transformed to TiO2;when the hydrothermal temperaure was 180℃and 200℃, anatase nanorods were obtained.
     In the second part of this dissertation, oriented rutile TiO2 films were deposited by low-temperature solution method. The obtained TiO2 films were characterized by XRD,TEM and HRTEM. The results indicates that the TiO2 film is well crystallized and grows perpendicular to the substrate, and a preferential orientation in the [001]direction. The effects of process conditions including the growth time,the amount of tetrabutyl titanate, the concentration of titanium tetrachloride, and the amount of hydrochloric acid on the thickness and morphology of films were investigated. The microstructure of TiO2 films were characterization by SEM, TEM and HRTEM. The UV-vis and photoluminescence spetra of the oriented films were measured. The super-hydrophilic properties of the oriented films were characterized by measuring the contact angles. The results indicated that the morphology and thickness of rutile TiO2 film varied by changing the growth time, initial titanium precursor concentration of tetrabutyl titanate and titanium tetrachloride,and the amount of hydrochloric acid. The diffuse reflectance UV-Vis spectra of the rutile TiO2 film indicated that the maximum absorbance was at 374nm and the band gap Eg for the rutile TiO2 is about 3.06 eV. The line shapes in the PL spectra from all the samples are similar, but the intensities of the features in the PL spectra are different from each other. Rutile TiO2 films show super-hydrophobic feature after UV illumination only for 3 min.
     In the third part of this dissertation, the single-crystalline anatase nanoparticles prepared by the hydrothermal transformation of titanate nanotubes and the oriented rutile TiO2 films prepaed by the low-temperature solution method were used as the photoanodes of dye-sensitized solar cells (DSSCs).Porous TiO2 films with different thickness were fabricated by using the bipyramidal anatase nanocrystals, and their microstructures and specific surface area were characterized by SEM and N2 adsorption. The I-V curves of the DSSCs, including the open voltage, photocurrent density and conversion efficiency were evaluated as compared with the DSSCs based on the commercially available P25 TiO2 nanopowder. The results indicated that:(1)TiO2 nanocrystalline was pure anatase with good crystallinity, and had larger specific surface area, thus exhibited stronger optical absorption as compared with P25 powder. (2) The mesoporous film made from the nanocrystalline TiO2 absorbed more dye molecules as compared with the film made from P25.(3)The mesoporous film made from the nanocrystalline TiO2 exhibited higher light harvesting efficiency (LHE), thus the photocurrent densities and conversion efficiencies were obviously superior over those of the cells based on the P25 films.DSSCs based on oriented rutile thin films.The I-V properties of the DSSCs were evaluated and photocurrent density Jsc (7.9mA/cm2), open voltage Voc (731mV), fill factor FF (59%) and overall conversion efficiencies of the dye-sensitized solar cellsη(3.41%) were obtained.
引文
[1]Pfaff G, Reynders P. Angle-Dependent Optical Effects Deriving from Submicron Structures of Films and Pigments [J].Chemical Reviews,1999,99(7):1963-1981.
    [2]Salvador A, Pascual-Marti M C, Adell J R, et al.Analytical methodologies for atomic spectrometric determination of metallic oxides in UV sunscreen creams [J].J Pharm Biomed Anal,2000,22(2):301-306.
    [3]Zallen R, Moret M P. The optical absorption edge of brookite TiO2[J].Solid State Communications,2006,137(3):154-157.
    [4]Braun J, Baidins A, Marganski R. TiO2 pigment technology:a review [J].Progress in Organic Coatings,1992,20(2):105-138.
    [5]Yuan S,Chen W, Hu S.Fabrication of TiO2 nanoparticles/surfactant polymer complex film on glassy carbon electrode and its application to sensing trace dopamine [J]. Materials Science and Engineering C,2005,25(4):479-485.
    [6]Wan Q, Li Q H, Chen Y J, et al.Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors [J].Applied Physics Letters,2004,84(18):3654-3656.
    [7]Xia Y N, Yang P D, Sun Y Q et al. One-dimensional nanostructures:Synthesis, characterization, and applications [J].Advanced Materials,2003,15(5):353-389.
    [8]Fox M A, Dulay M T. Heterogeneous Photocatalysis [J].Chemical Reviews 1993,93(1): 341-357.
    [9]Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results [J].Chemical Reviews 1995,95(3):735-758.
    [10]Khan S U M, Al-Shahry M, Ingler W B.Efficient photochemical water splitting by a chemically modified n-TiO2 [J].Science,2002,297(5590):2243-2245.
    [11]O'Regan B, Gratzel M. A low costt、high efficiency solar cell based on dye-sensitized colloidal TiO2 films [J].Nature,1991,353(6346):737-740.
    [12]Fang X S,Ye C H, Zhang L D, et al. Twinning-mediated growth of Al2O3 nanobelts and their enhanced dielectric responses [J].Advanced Materials,2005,17(13):1661.
    [13]Nikoobakht B, Wang Z L, El-Sayed M A. Self-assembly of gold nanorods[J].Journal of Physical Chemistry B,2000,104(36):8635-8640.
    [14]Yang C S, Awschalom D D, Stucky G D.Growth of CdS nanorods in nonionic amphiphilic triblock copolymer systems [J].Chemistry of Materials,2002,14(3): 1277-1284.
    [15]Peng X G, Manna L, Yang W D, et al.Shape control of CdSe nanocrystals [J].Nature, 2000,404(6773):59-61.
    [16]Urban J J, Yun W S, Gu Q, et al. Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate [J].Journal of the American Chemical Society,2002,124(7):1186-1187.
    [17]Limmer S J, Seraji S,Wu Y, et al. Template-based growth of various oxide nanorods by sol-gel electrophoresis [J].Advanced Functional Materials,2002,12(1):59-64.
    [18]Iijima S.Helical microtubules of graphitic carbon [J].Nature,1991,354(6348):56-56.
    [19]Kasuga T, Hiramatsu M, Hoson A, et al.Formation of titanium oxide nanotube [J]. Langmuir,1998,14(12):3160-3163.
    [20]Caswell K K, Bender C M, Murphy C J. Seedless, surfactantless wet chemical synthesis of silver nanowires [J].Nano Letters,2003,3(5):667-669.
    [21]Yoon J H, Jang S R, Vittal R, et al.TiO2 nanorods as additive to TiO2 film for improvement in the performance of dye-sensitized solar cells [J].Journal of Photochemistry and Photobiology a-Chemistry,2006,180(1-2):184-188.
    [22]Jiu J T, Isoda S,Adachi M, et al. Preparation of TiO2 nanocrystalline with 3-5 nm and application for dye-sensitized solar cell [J].Journal of Photochemistry and Photobiology a-Chemistry,2007,189(2-3):314-321.
    [23]Zou K, Zhang X H, Duan X F, et al. Seed-mediated synthesis of silver nanostructures and polymer/silver nanocables by UV irradiation [J].Journal of Crystal Growth,2004, 273(1-2):285-291.
    [24]Sun Y G, Gates B,Mayers B,et al. Crystalline silver nanowires by soft solution processing [J].Nano Letters,2002,2(2):165-168.
    [25]Viriya-Empikul N, Sano N, Charinpanitkul T, et al.A step towards length control of titanate nanotubes using hydrothermal reaction with sonication pretreatment [J]. Nanotechnology,2008,19(3):1-6.
    [26]Yuan Z Y, Su B L. Titanium oxide nanotubes, nanofibers and nanowires [J].Colloids and Surfaces a-Physicochemical and Engineering Aspects,2004,241(1-3):173-183.
    [27]Seo H K, Kim G S,Ansari S G, et al.A study on the structure/phase transformation of titanate nanotubes synthesized at various hydrothermal temperatures [J].Solar Energy Materials and Solar Cells,2008,92(11):1533-1539.
    [28]Chen Q, Du G H, Zhang S,et al. The structure of trititanate nanotubes [J].Acta Crystallographica Section B-Structural Science,2002,58(part 4):587-593.
    [29]Chen Q, Zhou W Z, Du G H, et al.Trititanate nanotubes made via a single alkali treatment [J].Advanced Materials,2002,14(17):1208.
    [30]Sun X M, Li Y D.Synthesis and characterization of ion-exchangeable titanate nanotubes [J].Chemistry-a European Journal,2003,9(10):2229-2238.
    [31]Nakahira A, Kato W, Tamai M, et al.Synthesis of nanotube from a layered H2Ti4O9 center dot H2O in a hydrothermal treatment using various titania sources [J].Journal of Materials Science,2004,39(13):4239-4245.
    [32]Yang J, Jin Z, Wang X, et al.Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2 [J].Journal of the Chemical Society Dalton Transactions,2003, 20):3898-3901.
    [33]Ma R Z, Bando Y, Sasaki T. Nanotubes of lepidocrocite titanates [J].Chemical Physics Letters,2003,380(5-6):577-582.
    [34]Ma R Z, Fukuda K, Sasaki T, et al. Structural features of titanate nanotubes/nanobelts revealed by Raman, X-ray absorption fine structure and electron diffraction characterizations [J].Journal of Physical Chemistry B,2005,109(13):6210-6214.
    [35]Armstrong G, Armstrong A R, Canales J, et al.Nanotubes with the TiO2-B structure [J]. Chemical Communications,2005,(19):2454-2456.
    [36]Pradhan S K, Mao Y, Wong S S, et al. Atomic-scale structure of nanosized titania and titanate:Particles, wires, and tubes [J].Chemistry of Materials,2007,19(25):6180-6186.
    [37]Feist T P, DAVIS P K. The soft chemical synthesis of TiO2 (B) from layered titanates [J]. J Solid State Chem,1992,101(2):275-297.
    [38]Zhang S,Peng L M, Chen Q, et al.Formation Mechanism of H2TiO7 Nanotubes [J]. Physical Review Letters,2003,91(25):2561031-2561034.
    [39]Wang N, Lin H, Li J B,et al. Crystalline transition from H2Ti3O7 nanotubes to anatase nanocrystallines under low-temperature hydrothermal conditions[J].Journal of the American Ceramic Society,2006,89(11):3564-3566.
    [40]Du G H, Chen Q, Che R C, et al.Preparation and structure analysis of titanium oxide nanotubes [J].Applied Physics Letters,2001,79(22):3702-3704.
    [41]Yao B D, Chan Y F, Zhang X Y, et al.Formation mechanism of TiO2 nanotubes [J]. Applied Physics Letters,2003,82(2):281-283.
    [42]Qamar M, Yoon C R, Oh H J, et al. The effect of synthesis conditions on the formation of titanate nanotubes [J]. Journal of the Korean Physical Society,2006,49(4):1493-1496.
    [43]Lin C H, Chao J H, Liu C H, et al.Effect of calcination temperature on the structure of a Pt/TiO2 (B) nanofiber and its photocatalytic activity in generating H-2 [J].Langmuir, 2008,24(17):9907-9915.
    [44]Mao Y B, Wong S S.Size-and shape-dependent transformation of nanosized titanate into analogous anatase titania nanostructures [J].Journal of the American Chemical Society,2006,128(25):8217-8226.
    [45]Zhu H Y, Gao X P, Lan Y, et al. Hydrogen titanate nanofibers covered with anatase nanocrystals:A delicate structure achieved by the wet chemistry reaction of the titanate nanofibers [J].Journal of the American Chemical Society,2004,126(27):8380-8381.
    [46]Zhu H Y, Lan Y, Gao X P, et al. Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions [J].Journal of the American Chemical Society,2005,127(18):6730-6736.
    [47]Yu H G, Yu J G, Cheng B,et al. Effects of hydrothermal post-treatment on microstructures and morphology of titanate nanoribbons [J].Journal of Solid State Chemistry,2006,179(2):349-354.
    [48]Yu Y X, Xu D S.Single-crystalline TiO2 nanorods:Highly active and easily recycled photocatalysts [J].Applied Catalysis B-Environmental,2007,73(1-2):166-171.
    [49]Shen L M, Bao N Z, Zheng Y Q, et al.Hydrothermal splitting of titanate fibers to single-crystalline TiO2 nanostructures with controllable crystalline phase, morphology, microstructure, and photocatalytic activity [J].Journal of Physical Chemistry C,2008, 112(24):8809-8818.
    [50]Bavykin D V, Friedrich J M, Lapkin A A, et al. Stability of aqueous suspensions of titanate nanotubes [J].Chemistry of Materials,2006,18(5):1124-1129.
    [51]Nian J N, Teng H S.Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor [J].Journal of Physical Chemistry B,2006,110(9): 4193-4198.
    [52]Murakami N, Kamai T, Tsubota T, et al. Control of the crystal structure of titanium(IV) oxide by hydrothermal treatment of a titanate nanotube under acidic conditions[J]. Crystengcomm,2010,12(2):532-537.
    [53]Wen P H, Itoh H, Tang W P, et al.Single nanocrystals of anatase-type TiO2 prepared from layered titanate nanosheets:Formation mechanism and characterization of surface properties [J]. Langmuir,2007,23(23):11782-11790.
    [54]Xu Y M, Fang X M, Zhang Z G. Formation of single-crystalline TiO2 nanomaterials with controlled phase composition and morphology and the application in dye-sensitized solar cell [J].Applied Surface Science,2009,255(21):8743-8749.
    [55]Wang P, Zakeeruddin S M, Moser J E, et al. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte [J].Nature Materials,2003,2(6):402-407.
    [56]Hotchandani S,Bedja I, Fessenden R W, et al. Electrochromic and photoelectrochromic behavior of thin WO3 films prepared from quantum size colloidal particles [J].Langmuir, 1994,10(1):17-22.
    [57]Bjorkstbn U, Mosen J. PHotoelectrochemical studies on nanocrystalline hematite films [J].Chemmater,1994,6(3):858-863.
    [58]孟庆波,林原,戴松元.染料敏化纳米晶薄膜太阳电池[J].物理学与新能源材料专题,2004,33(3):177-178.
    [59]He J, Lindstrom H, Hagfeldt A, et al.Dye-sensitized nanostructured tandem cell-first demonstrated cell with a dye-sensitized photocathode[J].Solar Energy Materials and Solar Cells,2000,62(3):265-273.
    [60]Streitwieser A, Heathcock H. Introduction to Organic Chemistry[M].New York; Macmillan Publishing Co.1981:251-253.
    [61]Peng Q, Dong Y J, Li Y D.ZnSe semiconductor hollow microspheres [J].Angewandte Chemie-International Edition,2003,42(26):3027-3030.
    [62]Zhang J, Sun L D, Liao C S,et al. A simple route towards tubular ZnO [J].Chemical Communications,2002,(3):262-263.
    [63]林原,张东社等.TiO2纳米晶多孔膜的光散射特性[J].科学通报,2002,47(15):1145-1147.
    [64]Ngamsinlapasathian S, Pavasupree S,Suzuki Y, et al. Dye-sensitized solar cell made of mesoporous titania by surfactant-assisted templating method[J].Solar Energy Materials and Solar Cells,2006,90(18-19):3187-3192.
    [65]Hu L H, Dai S Y, Weng J, et al. Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules[J].Journal of Physical Chemistry B, 2007,111(2):358-362.
    [66]Nazeeruddin M K, De Angelis F, Fantacci S,et al. Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers [J]. Journal of the American Chemical Society,2005,127(48):16835-16847.
    [67]Zukalova M, Zukal A, Kavan L, et al.Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells [J].Nano Letters,2005,5(9): 1789-1792.
    [68]Alarcon H, Hedlund M, Johansson E M J, et al. Modification of nanostructured TiO2 electrodes by electrochemical Al3+ insertion:Effects on dye-sensitized solar cell performance [J].Journal of Physical Chemistry C,2007,111(35):13267-13274.
    [69]Ma T L, Akiyama M, Abe E, et al. High-efficiency dye-sensitized solar cell based on a nitrogen-doped nanostructured titania electrode [J].Nano Letters,2005,5(12): 2543-2547.
    [70]Kang S H, Kim J Y, Kim Y K, et al.Effects of the incorporation of carbon powder into nanostructured TiO2 film for dye-sensitized solar cell [J].Journal of Photochemistry and Photobiology a-Chemistry,2007,186(2-3):234-241.
    [71]Shin K, Jim Y, Han G Y, et al.Effect of incorporation of TiO2 nanoparticles into oriented TiO2 nanotube based dye-sensitized solar cells [J].Journal of Nanoscience and Nanotechnology,2009,9(12):7436-7439.
    [72]Park N G, van de Lagemaat J, Frank A J. Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells [J].Journal of Physical Chemistry B,2000,104(38): 8989-8994.
    [73]Liu Z, Subramania V R, Misra M. Vertically oriented TiO2 nanotube arrays grown on Ti meshes for flexible dye-sensitized solar cells [J].Journal of Physical Chemistry C,2009, 113(31):14028-14033.
    [74]Mor G K, Shankar K, Paulose M, et al. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells [J].Nano Letters,2006,6(2):215-218.
    [75]Zhu K, Neale N R, Miedaner A, et al.Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays [J].Nano Letters,2007,7(1):69-74.
    [76]Chou T P, Fryxell G E, Li X S,et al.Development of titania nanostructures for the exploration of electron transport in dye-sensitized solar cells; proceedings of the Nanophotonic Materials, August 2,2004-August 3,2004, Denver, CO, United states, F, 2004[C].SPIE.
    [77]Chou T P, Limmer S J, Cao G.Ordered dye-functionalized TiO2 nanostructures for photoelectrochemical applications; proceedings of the Nanomaterials and Their Optical Applications, August 5,2003-August 7,2003,San Diego, CA, United states, F,2003 [C]. SPIE.
    [78]Imahori H, Umeyama T. Donor-acceptor nanoarchitecture on semiconducting electrodes for solar energy conversion [J].Journal of Physical Chemistry C,2009,113(21): 9029-9039.
    [79]Kawakita M, Kawakita J, Sakka Y, et al.Orientation dependence of semiconductor properties in anatase TiO2 polycrystalline aggregates [J].Journal of the Electrochemical Society,2010,157(1):H65-H68.
    [80]Kawakita M, Uchikoshi T, Kawakita J, et al.Preparation of crystalline-oriented titania photoelectrodes on ITO gflasses from a 2-propanol-2,4-pentanedione solvent by electrophoretic deposition in a strong magnetic field [J].Journal of the American Ceramic Society,2009,92(5):984-989.
    [81]Liu W, Yan L, Gao Y, et al.Preparation of nano-sized TiO2 thin films by electrophoretic deposition [J].Taiyangneng Xuebao/Acta Energiae Solaris Sinica,2009,30(7):874-877.
    [82]Miyasaka T, Kijitori Y.Low-temperature fabrication of dye-sensitized plastic electrodes by electrophoretic preparation of mesoporous TiO2 layers [J].Journal of the Electrochemical Society,2004,151(11):A1767-A1773.
    [83]Tan W, Chen J, Zhou X, et al.Preparation of nanocrystalline TiO2 thin film at low temperature and its application in dye-sensitized solar cell[J].Journal of Solid State Electrochemistry,2009,13(5):651-656.
    [84]Tan W, Yin X, Zhou X, et al. Electrophoretic deposition of nanocrystalline TiO2 films on Ti substrates for use in flexible dye-sensitized solar cells [J].Electrochimica Acta,2009, 54(19):4467-4472.
    [85]Wang H-W, Ting C-F, Hung M-K, et al. Dye-sensitized solar cells based on indium-tin oxide nanowires coated with titania layers; proceedings of the 2008 Conference on Optoelectronic and Microelectronic Materials and Devices, COMMAD'08,July 28,2008-August 1,2008,Sydney, NSW, Australia, F,2008 [C].Institute of Electrical and Electronics Engineers Inc.
    [86]Wang H-W, Ting C-F, Hung M-K, et al. Three-dimensional electrodes for dye-sensitized solar cells:Synthesis of indium-tin-oxide nanowire arrays and ITO/TiO2 core-shell nanowire arrays by electrophoretic deposition [J].Nanotechnology,2009,20(5)
    [87]Wang N, Lin H, Li J, et al. Preparation of TiO2 nanocrystalline films by electrophoretic deposition and their application in dye-sensitized solar cells [J].Key Engineering Materials,2007,336-338111(2193-2195.
    [88]Chang H, Su H-T, Chen W-A, et al. Fabrication of multilayer TiO2 thin films for dye-sensitized solar cells with high conversion efficiency by electrophoresis deposition [J].Solar Energy,2010,84(1):130-136.
    [89]Jarernboon W,Pimanpang S,Maensiri S,et al.Optimization of titanium dioxide film prepared by electrophoretic deposition for dye-sensitized solar cell application [J].Thin Solid Films,2009,517(16):4663-4667.
    [90]Kawakita M, Uchikoshi T, Besra L, et al. Formation of crystalline-oriented titania thin films on ITO glass electrodes by EPD in a strong magnetic field [J].Key Engineering Materials,2009,412(143-148.
    [91]Feng X J, Shankar K, Varghese O K, et al. Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications[J].Nano Letters,2008,8(11):3781-3786.
    [92]Liu B, Aydil E S.Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells [J].Journal of the American Chemical Society,2009,131(11):3985-3990.
    [93]Shimizu K, Imai H, Hirashima H, et al.Low-temperature synthesis of anatase thin films on glass and organic substrates by direct deposition from aqueous solutions [J].Thin Solid Films,1999,351(1-2):220-224.
    [94]Pizem H, Sukenik C N. Effects of substrate surface functionality on solution-deposited titania films [J].Chemistry of Materials,2002,14(6):2476-2485.
    [95]Richardson T J, Rubin M D.Liquid phase deposition of electrochromic thin films [J]. Electrochimica Acta,2001,46(13-14):2119-2123.
    [96]Kim K J, Benkstein K D, van de Lagemaat J, et al. Characteristics of low-temperature annealed TiO2 films deposited by precipitation from hydrolyzed TiCl4 solutions [J]. Chemistry of Materials,2002,14(3):1042-1047.
    [97]Yamabi S,Imai H. Synthesis of rutile and anatase films with high surface areas in aqueous solutions containing urea [J].Thin Solid Films,2003,434(1-2):86-93.
    [98]Goh G K L, Donthu S K, Pallathadka P K. Cracking and orientation of solution-deposited rutile TiO2 films [J].Chemistry of Materials,2004,16(15):2857-2861.
    [99]Goh G K L, Han X Q, Liew C P K, et al. Crystallinity and orientation of solution deposited anatase TiO2 films [J].Journal of the Electrochemical Society,2005,152(8): C532-C536.
    [100]Goh G K L, Liew C P K, Kim J, et al. Structure and optical properties of solution deposited TiO2 films [J].Journal of Crystal Growth,2006,291(1):94-99.
    [101]Goh G K L, Tay C S S, Chan K Y S,et al.Cracking of low temperature solution deposited CeO2 thin films [J].Journal of Electroceramics,2006,16(4):575-579.
    [102]Mane R S,Joo O S,Min S K, et al.A simple and low temperature process for super-hydrophilic rutile TiO2 thin.films growth[J].Applied Surface Science,2006,253(2): 581-585.
    [103]Ma B,Goh G K L, Ma J, et al. Growth kinetics and cracking of liquid-phase-deposited anatase films [J].Journal of the Electrochemical Society,2007,154(10):D557-D561.
    [104]Mahe M, Heintz J M, Rodel J, et al. Cracking of titania nanocrystalline coatings [J]. Journal of the European Ceramic Society,2008,28(10):2003-2010.
    [105]Peng P, Liu X D, Sun C S,et al. Facile fabrication of rutile monolayer films consisting of well crystalline nanorods by following an IL-assisted hydrothermal route [J].Journal of Solid State Chemistry,2009,182(5):1003-1008.
    [106]Gao Y F, Nagai M, Seo W S,et al.Thick transparent rutile TiO2 films crystallized in solution[J].Langmuir,2007,23(9):4712-4714.
    [107]Lee S C,Yu H G,Yu J G,et al.Fabrication, characterization and photocatalytic activity of preferentially oriented TiO2 films [J].Journal of Crystal Growth,2006,295(1):60-68.
    [108]Chen X, Mao S S.Titanium dioxide nanomaterials:Synthesis, properties, modifications, and applications [J].Chemical Reviews,2007,107(7):2891-2959.
    [109]Ding Z, Lu G Q, Greenfield P F. Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water [J].Journal of Physical Chemistry B,2000, 104(19):4815-4820.
    [110]Adachi M, Murata Y, Takao J, et al. Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "oriented attachment" mechanism [J].Journal of the American Chemical Society,2004,126(45):14943-14949.
    [111]Seo J W, Chung H, Kim M Y, et al.Development of water-soluble single-crystalline TiO2 nanoparticles for photocatalytic cancer-cell treatment [J].Small,2007,3(5): 850-853.
    [112]Bavykin D V, Friedrich J M, Walsh F C.Protonated titanates and TiO2 nanostructured materials:Synthesis, properties, and applications [J].Advanced Materials,2006,18(21): 2807-2824.
    [113]Li Y, Gao X P, Li G R, et al. Titanate Nanofiber Reactivity:Fabrication of MTiO3 (M= Ca, Sr, and Ba) Perovskite Oxides[J].Journal of Physical Chemistry C,2009,113(11): 4386-4394.
    [114]Zhang H, Li G R, An L P, et al. Electrochemical lithium storage of titanate and titania nanotubes and nanorods [J].Journal of Physical Chemistry C,2007,111(16):6143-6148.
    [115]Qamar M, Kim S J, Ganguli A K. TiO2-based nanotubes modified with nickel:synthesis, properties, and improved photocatalytic activity [J].Nanotechnology,2009,20(45):
    [116]Yang D J, Liu H W, Zheng Z F, et al.An Efficient Photocatalyst Structure:TiO2(B) Nanofibers with a Shell of Anatase Nanocrystals [J].Journal of the American Chemical Society,2009,131(49):17885-17893.
    [117]Deng Q X, Wei M D, Ding X K, et al. Large single-crystal anatase TiO2 Bipyramids [J]. Journal of Crystal Growth,2010,312(2):213-219.
    [118]张立德,,牟季红.纳米材料与结构[M].北京;科学出版社.2001:147.
    [119]spurr R A, Myers H. Chem Lett,1957,29(1):760.
    [120]Powder Diffraction File of the Joint Committee on Powder Diffraction Standards, Card 47-0124 [M].Newton Square, PA,;International Centre for Diffraction Data:.2002.
    [121]Tsai C C, Teng H. Nanotube formation from a sodium titanate powder via low-temperature acid treatment [J].Langmuir,2008,24(7):3434-3438.
    [122]Tsai C C, Teng H S.Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments [J].Chemistry of Materials,2006,18(2):367-373.
    [123]Ding Y, Wang Z L. Structure analysis of nanowires and nanobelts by transmission electron microscopy [J].Journal of Physical Chemistry B,2004,108(33):12280-12291.
    [124]Li J R, Tang Z L, Zhang Z T. H-titanate nanotube:a novel lithium intercalation host with large capacity and high rate capability [J].Electrochemistry Communications,2005, 7(1):62-67.
    [125]Zhang S,Chen Q, Peng L M. Structure and formation of H2Ti3O7 nanotubes in an alkali environment [J].Phys Rev B,2005,71(1):014104.
    [126]Lee C K, Wang C C, Lyu M D, et al. Effects of sodium content and calcination temperature on the morphology, structure and photocatalytic activity of nanotubular titanates [J].J Colloid Interf Sci,2007,316(2):562-569.
    [127]Penn R L, Banfield J F. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions:Insights from titania [J]. Geochim Cosmochim Ac,1999,63(10):1549-1557.
    [128]Brian L B, Marc A A. Peptization Process in the Sol-Gel Preparation of Porous Anatase (TiO2)[J].journal of materials,1995,7(10):1772-1778.
    [129]Penn R L, Banfield J F. Imperfect oriented attachment:Dislocation generation in defect-free nanocrystals[J].Science,1998,281(5379):969-971.
    [130]Su C, Tseng C M, Chen L F, et al. Sol-hydrothermal preparation and photocatalysis of titanium dioxide [J].Thin Solid Films,2006,498(1-2):259-265.
    [131]Barnard A S,Curtiss L A. Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry [J].Nano Letters,2005,5(7):1261-1266.
    [132]Sato T, Baba K, Hirozawa T, et al. Fabrication techniques and characteristics of Al-SiO, laminated optical polarizers [J].IEEE JQuantum Electron,1993,29(1): 175-181.
    [133]Goh G K L, Levi C G, Lange F F. Hydrothermal epitaxy of KTaO3 thin films [J].J Mater Res,2002,17(11):2852-2858.
    [134]Kubelka P. New contributions to the optics of intensely light scattering materials.Part I [J].J Opt Soc Am,1948,38(5):448-457.
    [135]Wu J M, Shih H C, Wu W T. Formation and photoluminescence of single-crystalline rutile TiO2 nanowires synthesized by thermal evaporation[J].Nanotechnology,2006, 17(1):105-109.
    [136]De Haart L G J, Blasse G. Journal of Solid State Chemistry, Volume 61,Issue 1,p. 135-136 [J].Journal of Solid State Chemistry,1986,61(1):135-136.
    [137]Jing L Q, Sun X J, Cai W M, et al. The preparation and characterization of nanoparticle TiO2/Ti films and their photocatalytic activity [J].J Phys Chem Solids,2003,64(4): 615-623.
    [138]Serpone N D, Lawless R, Khairutdinov. Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles:Size Quantization or Direct Transitions in This Indirect Semiconductor? [J].J Phys Chem,1995,99(45):16646-16654.
    [139]Wang R, Hashimoto K, Fujishima A, et al. Light-induced amphiphilic surfaces[J]. Nature,1997,388(6641):431-432.
    [140]Watanabe T, Nakajima A, Wang R, et al.Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass [J].Thin Solid Films,1999,351(1-2): 260-263.
    [141]Wang R, Sakai N, Fujishima A, et al. Studies of surface wettability conversion on TiO2 single-crystal surfaces [J].Journal of Physical Chemistry B,1999,103(12):2188-2194.
    [142]Sun R D, Nakajima A, Fujishima A, et al. Photoinduced surface wettability conversion of ZnO and TiO2 thin films[J].Journal of Physical Chemistry B,2001,105(10): 1984-1990.
    [143]Snaith H J, Schmidt-Mende L. Advances in liquid-electrolyte and solid-state dye-sensitized solar cells [J].Advanced Materials,2007,19(20):3187-3200.
    [144]Hagfeldt A, Gra'tzel M. Light-induced redox reactions in nanocrystalline systems [J]. Chemical Reviews,1995,95(1):49-68.
    [145]Fang X M, Ma T L, Guan G Q, et al.Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell [J].J Electroanal Chem,2004,570(2):257-263.
    [146]Fang X M, Ma T L, Akiyama M, et al. Flexible counter electrodes based on metal sheet and polymer film for dye-sensitized solar cells [J].Thin Solid Films,2005,472(1-2): 242-245.
    [147]Wang P, Zakeeruddin S M, Comte P, et al. Enhance the performance of dye-sensitized solar cells by Co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 nanocrystals [J].Journal of Physical Chemistry B,2003,107(51):14336-14341.
    [148]Hsiao P T, Wang K P, Cheng C W, et al. Nanocrystalline anatase TiO2 derived from a titanate-directed route for dye-sensitized solar cells [J].Journal of Photochemistry and Photobiology a-Chemistry,2007,188(1):19-24.
    [149]Hsiao P T, Teng H S.Coordination of Ti4+ Sites in Nanocrystalline TiO2 Films Used for Photoinduced Electron Conduction:Influence of Nanoparticle Synthesis and Thermal Necking [J].Journal of the American Ceramic Society,2009,92(4):888-893.
    [150]Wang K, Teng H. Structure-intact TiO2 nanoparticles for efficient electron transport in dye-sensitized solar cells [J].Applied Physics Letters,2007,91(17):173102-173105.
    [151]周永溶.半导体材料[M].北京理工大学出版社.1992.
    [152]Barnes P R F, Anderson A Y, Koops S E, et al. Electron Injection Efficiency and Diffusion Length in Dye-Sensitized Solar Cells Derived from Incident Photon Conversion Efficiency Measurements [J].Journal of Physical Chemistry C,2009,113(3):1126-1136.
    [153]Sommeling P M, O'Regan B C, Haswell R R, et al. Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells[J].Journal of Physical Chemistry B,2006,110(39):19191-19197.
    [154]Nazeemuddin M K, Kay A, Rodicio I, et al. Conversion of light to electricity by cis-X2Bis(2,2 prime-bipyridyl-4,4 prime-dicarboxylate)rutheniu m(Ⅱ) charge-transfer sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes [J]. Journal of the American Chemical Society,1993,115(14):6382-6390.
    [155]Xue J, Uchida S,Rand B P, et al.4.2% efficient organic photovoltaic cells with low series resistances [J].Applied Physics Letters,2004,84(16):3013-3015.
    [156]Kudo K, Moriizumi T. Photoelectric P-N-junction cells using organic-dyes [J]. Japanese Journal of Applied Physics,1981,20(7):L553-L556.
    [157]Lee C K, Chiang A S T, Tsay C S M. Porous ceramic materials:fabrication, chracterization, applications [M].Switzerland; Trans Tech Publications.1996:21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700