分等级三维金属氧化物纳米结构和竹节状碳纳米管的制备和表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由低维纳米结构作为构筑单元组装而成的分等级三维纳米结构是当前纳米结构和纳米材料研究领域的热点。探索分等级三维纳米结构新的合成方法,深入研究分等级三维纳米结构的物理化学性质,对于进一步理解纳米结构的自组装行为和开发纳米结构的应用价值具有重要意义。新奇形貌碳纳米管因其独特的结构和形貌,在诸多应用方面表现出了潜在的价值,制备具有优势性和高比例的新奇形貌碳纳米管将促进对其物理化学性质和应用性能的深入研究。
     本论文采用新的易于实现、环境友好的合成方法,制备了一系列分等级三维金属氧化物纳米结构,诸如球状α-Fe_2O_3、球状TiO_2、中空TiO_2、核桃状CeO_2,以及竹节状碳纳米管。利用X射线衍射(XRD)、透射电子显微镜(TEM)、场发射扫描电子显微镜(FESEM)、高分辨透射电子显微镜(HRTEM)、选区电子衍射(SAED)、Raman光谱、氮气吸附分析、热重分析(TG)、示差扫描量热分析(DSC)、紫外—可见漫反射光谱(UV-Vis DRS)、紫外—可见吸收光谱(UV-Vis)、光致发光(PL)光谱和多功能物理性质测量系统(PPMS)等表征手段对产物的结构、形貌、磁性质、光学性质以及光催化活性进行了系统研究。
     采用聚丙烯酰胺(PAM)作为辅助物质结合微波加热回流以及焙烧处理制备了分等级球状α-Fe_2O_3纳米结构。这种分等级球状α-Fe_2O_3纳米结构由纳米粒子作为构筑单元组装而成,具有介孔结构,在300K下剩磁为0.08947 emu g~(-1),矫顽力为2 301.5 Oe。PAM在分等级球状α-Fe_2O_3纳米结构形成中起到重要作用。
     采用PAM作为辅助物质,以TiCl_3为钛源,通过水热反应以及焙烧处理制备了由纳米粒子组装而成的分等级球状TiO_2纳米结构。这种分等级球状TiO_2纳米结构以锐钛矿相为主,同时含有部分金红石相,具有介孔结构,并且UV-Vis DRS吸收带边产生了红移。紫外光照射下降解甲基橙水溶液的探针反应表明这种分等级球状TiO_2纳米结构具有较好的光催化活性。对PAM在制备分等级球状TiO_2纳米结构过程中的作用进行了讨论。
     采用无模板合成策略,以TiCl_3作为Ti源,H_2O_2作为氧化剂,KBF_4作为矿化剂,通过水热反应简便制备了分等级中空TiO_2纳米结构。这种TiO_2纳米结构为锐钛矿相,由纳米粒子作为构筑单元组装而成,具有介孔结构。对比实验表明这种分等级中空TiO_2纳米结构通过奥斯瓦尔德熟化过程形成。H_2O_2和KBF_4的协同效应在分等级中空TiO_2纳米结构的形成过程中发挥着重要作用。在紫外光下甲基橙水溶液降解反应中这种分等级中空TiO_2纳米结构具有较好的光催化活性。
     采用β-环糊精辅助水热反应制备了具有纯粹六方晶相的分等级核桃状介晶CeOHCO_3纳米结构,这种分等级核桃状CeOHCO_3纳米结构由纳米粒子作为构筑单元组装而成,具有单分散特征和单晶性质。在形成过程中,CeOHCO_3纳米结构经历了独特的晶相转变和形貌转变。β-环糊精在这种CeOHCO_3纳米结构形成过程中起到重要作用。这种六方相CeOHCO_3纳米结构表现出了明显的光致发光特性。分等级核桃状介晶CeOHCO_3纳米结构热分解后得到了保持了单分散核桃状形貌特征和单晶性质的介晶CeO_2纳米结构。这种CeO_2纳米结构具有介孔结构,在紫外光区域存在强烈的吸收,并且有明显的红移。
     在常压下以乙醇作为碳源,采用化学气相沉积方法,在Cu/Al_2O_3催化剂上制备了竹节状碳纳米管。明显不同于通常得到的竹节状碳纳米管和传统碳纳米管混杂的情形,本论文得到的碳纳米管具有优势性、高比例的竹节状形貌。对比实验表明,800℃是制备较高质量竹节状碳纳米管的最佳温度,Cu/Al_2O_3催化剂和乙醇的组合对于竹节状碳纳米管的生长具有关键作用。对竹节状形貌形成的原因也进行了讨论。
Currently,the study on hierarchical three-dimensional nanostructures assembled by low-dimensional nanostructures as building units is a hot area in research of nanostructures and nanomaterials.To explore new synthesis methods and research on physico-chemical properties of hierarchical three-dimensional nanostructures is of great significance for better understanding of their self-assembly behavior.Carbon nanotubes(CNTs) with novel morphology represent potential values in many application areas because of their particular structures and morphology.Fabrication of dominant and high proportion CNTs with novel morphology may promote further research of their physico-chemical properties and application performance.
     The preparations of a series of hierarchical three-dimensional metal oxide nanostructures such asα-Fe_2O_3 spheres,TiO_2 spheres,hollow TiO_2 and walnut-like CeO_2 and bamboo-like carbon nanotubes have been achieved adopting new,facile, and environmentally friendly methods.The structure,morphology,magnetic,optical properties and photocatalytic activity of the products are systematically characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM),field emission scanning electron microscopy(FESEM),high resolution transmission electron microscopy(HRTEM),selected area electron diffraction(SAED),Raman spectroscopy,nitrogen sorption analysis,thermogravimetry(TG),differential scanning calorimetry(DSC),UV-Vis diffuse relectance spectroscopy(UV-Vis DRS), UV-Vis absorption spectroscopy(UV-Vis),photoluminescence(PL) spectroscopy and physical property measurement system(PPMS).
     The hierarchical sphericalα-Fe_2O_3 nanostructures have been prepared by polyacrylamide(PAM)-assisted microwave heating reflux as well as calcination process.The hierarchical sphericalα-Fe_2O_3 nanostructures are assembled by nanoparticles,exhibit mesoporous structures,display a remanent magnetization of 0.08947 emu g~(-1) and a coercivity of 2 301.5 Oe in 300 K.PAM plays an important role in the formation of the hierarchical sphericalα-Fe_2O_3 nanostructures.
     The hierarchical spherical TiO_2,nanostructures assembled by nanoparticles as building units have been prepared via PAM-assisted hydrothermal route using TiCl_3 as Ti source.The hierarchical spherical TiO_2 nanostructures remain with dominant anatase phase and partial rutile phase,exhibit mesoporous structures and display red shift in UV-Vis DRS.The hierarchical spherical TiO_2 nanostructures have preferable photocatalytic activity in the photodegradation of methyl orange(MO) in aqueous solution under UV light.The role of PAM in the prepration of the hierarchical spherical TiO_2 nanostructures was discussed.
     The hierarchical hollow TiO_2 nanostructures have been prepared via a facile hydrothermal route using TiCl_3 as Ti source,H_2O_2 as oxidation agent and KBF_4 as mineralizer through template-free synthesis strategy.The hierarchical hollow TiO_2 nanostructures are assembled by nanoparticles,possess anatase phase and mesoporous structure.Control experiments show that the hierarchical hollow TiO_2 nanostructures formed in accordance with the Oswald ripening.Synergy of H_2O_2 and KBF_4 in the formation of the hierarchical hollow TiO_2 nanostructures plays an important role.The hierarchical hollow TiO_2 nanostructures exhibit better photocatalytic activity in the photodegradation of MO in aqueous solution under UV light.
     The hierarchical walnut-like mesocrystal CeOHCO_3 nanostructures with hexagonal phase have been prepared via a hydrothermal route usingβ-cyclodextrin as assistant agent.The hierarchical walnut-like CeOHCO_3 nanostructures are assembled by nanoparticles as building units,exhibit monodisperse characteristic and single-crystalline nature.In the formation process,unique crystal phase and morphology transitions of CeOHCO_3 nanostructures occurred.β-cyclodextrin plays an important role in the formation of the hierarchical walnut-like CeOHCO_3 nanostructures.The CeOHCO_3 nanostructures with hexagonal phase show an evident PL property.The mesocrystal CeO_2 nanostructures with unchanged monodisperse walnut-like morphology and single-crystalline nature are obtained after thermal conversion of the hierarchical walnut-like mesocrystal CeOHCO_3 nanostructures.The CeO_2 nanostructures display mesoporous structure,strong absorption phenomenon in UV light region with clear red shift.
     The CNTs with dominant bamboo-like morphology were obtained by chemical vapor deposition over Cu/Al_2O_3 catalyst using ethanol as carbon source under atmospheric pressure.The majority bamboo-like structure obviously differs from the past situation in which generally a mixture of bamboo-like and conventional straight CNTs was obtained.Control experiments show that 800℃is the optimum temperature for the growth of bamboo-like CNTs with higher quality.The combination of Cu/Al_2O_3 catalyst and ethanol played a critical role in the growth of bamboo-like CNTs.The possible causes of the formation of bamboo-like morphology were also discussed.
引文
[1]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001.
    [2]张志焜,崔作林.纳米技术与纳米材料.北京:国防工业出版社,2000.
    [3]刘吉平.郝向阳.纳米科学与技术.北京:科学出版社,2002.
    [4]陈敬中.刘剑洪.纳米材料科学导论.北京:高等教育出版社,2006.
    [5]汪信,刘孝恒.纳米材料化学.北京:化学工业出版社,2006,
    [6]阎守胜,甘子钊.介观物理.北京:北京大学出版社,1995.
    [7]刘吉平.无机纳米材料.北京:科学出版社,2003.
    [8]施利毅.纳米材料.上海:华东理工大学出版社,2007.
    [9]Zhang Q,Yao W T,Chen X Y,Zhu L W,Fu Y B,Zhang G B,Sheng L S,Yu S H.Nearly Monodisperse Tungstate MWO_4 Microspheres(M = Pb,Ca):Surfactant-Assisted Solution Synthesis and Optical Properties.Cryst.Growth Des.,2007,7(8):1423 - 1431
    [10]Yang J,Li C X,Quan Z W,Zhang C M,Yang P P,Li Y Y,Yu C C,Lin J.Self-Assembled 3D Flowerlike Lu_2O_3 and Lu_2O_3:Ln~(3+)(Ln = Eu,Tb,Dy,Pr,Sm,Er,Ho,Tin)Microarchitectures:Ethylene Glycol-Mediated Hydrothermal Synthesis and Luminescent Properties.J.Phys.Chem.C,2008,112(33):12777 - 12785
    [11]Ni Y H,Li J,Zhang L,Yang S,Wei X W.Urchin-Like Co_2P Nanocrystals:Synthesis,Characterization,Influencing Factors and Photocatalytic Degradation Property.Mater.Res.Bull..2009,44(5):1166 - 1172
    [12]Zhao J Z,Tao Z L,Liang J,Chen J.Facile Synthesis of Nanoporous γ-MnO_2 Structures and Their Application in Rechargeable Li-Ion Batteries.Cryst.Growth Des.,2008,8(8):2799 -2805
    [13]http://gtkc.cug.edu.cn/dixuebiaobenku/kuangwu/liuhuawu/jpg_w0024ap.htm
    [14]C(o|¨)lfen H,Antonietti M.Mesocrystals:Inorganic Superstructures Made by Highly Parallel Crystallization and Controlled Alignment.Angew.Chem.Int.Ed.,2005,44(35):5576-5591
    [15]Yuan Z Y,Su B L.Insights into Hierarchically Meso-Macroporous Structured Materials.J.Mater.Chem..2006,16(7):663 - 677
    [16]Castleman A W,Khanna S N.Clusters,Superatoms,and Building Blocks of New Materials.J.Phys.Chem.C,2009,113(7):2664 - 2675
    [17]Chen F,Zhou R J,Yang L G,Liu N,Wang M,Chen H Z.Large-Scale and Shape-Controlled Syntheses of Three-Dimensional CdS Nanocrystals with Flowerlike Structure.J.Phys.Chem.C,2008,112(4):1001 - 1007
    [18]Chen G Y,Deng B,Cai G B,Zhang T K,Dong W F,Zhang W X,Xu A W.The Fractal Splitting Growth of Sb_2S_3 and Sb_2Se_3 Hierarchical Nanostructures.J.Phys.Chem.C,2008,112(3):672-679
    [19]Gao S Y,Yang S X,Shu J,Zhang S X,Li Z D,Jiang K.Green Fabrication of Hierarchical CuO Hollow Micro/Nanostructures and Enhanced Performance as Electrode Materials for Lithium-Ion Batteries. J. Phys. Chem. C, 2008, 112 (49): 19324 - 19328
    [20] Liu Lu, Liu H J, Kou H Z, Wang Y Q, Zhou Z, Ren M M, Ge M, He X W. Morphology Control of β-In_2S_3 from Chrysanthemum-Like Microspheres to Hollow Microspheres: Synthesis and Electrochemical Properties. Cryst. Growth Des., 2009, 9 (1): 113-117
    [21] Yoshimura M, Byrappa K. Hydrothermal Processing of Materials: Past, Present and Future. J. Mater. Sci., 2008, 43 (7): 2085-2103
    [22] Demazeau G. Solvothermal Reactions: an Original Route for the Synthesis of Novel Materials. J. Mater. Sci., 2008, 43 (7): 2104 - 2114
    [23] Gedanken A. Using Sonochemistry for the Fabrication of Nanomaterials. Ultrason. Sonochem., 2004, 11 (2): 47 - 55
    [24] Polshettiwar V, Nadagouda M N, Varma R S. Microwave-Assisted Chemistry: a Rapid and Sustainable Route to Synthesis of Organics and Nanomaterials. Australian J. Chem., 2009, 62(1): 16-26
    [25] Lopez-Quintela M A. Synthesis of Nanomaterials in Microemulsions: Formation Mechanisms and Growth Control. Curr. Opin. Colloid Interface Sci., 2003, 8 (2): 137-144
    [26] Zhang X Y, Zhang L D, Chen W, Meng G W, Zheng M J, Zhao L X. Electrochemical Fabrication of Highly Ordered Semiconductor and Metallic Nanowire Arrays. Chem. Mater., 2001, 13 (8): 2511-2515
    [27] Xia Y S, Zhu C Q. Aqueous Synthe sis of Luminescent Magic Sized CdSe Nanoclusters.Mater. Lett., 2008, 62 (14): 2103 - 2105
    [28] Grzybowski B A, Wilmer C E, Kim J, Browne K P, Bishop K J M. Self-Assembly: from Crystals to Cells. Soft Matter, 2009, 5 (6): 1110 - 1128
    [29] Srivastava S, Kotov N A. Nanoparticle Assembly for 1D and 2D Ordered Structures. Soft Matter, 2009, 5(6): 1146 - 1156
    [30] Zhu K K, Wang D H, Liu J. Self-Assembled Materials for Catalysis. Nano Res., 2009, 2(1): 1 -29
    [31] Huczko A. Template-Based Synthesis of Nanomaterials. Appl. Phys. A, 2000, 70 (4): 365 - 376
    [32] Rycenga M, Camargo P H C, Xia Y N. Template-Assisted Self-Assembly: a Versatile Approach to Complex Micro- and Nanostructures. Soft Matter, 2009, 5 (6): 1129 - 1136
    [33] Du N, Zhang H, Chen J E, Sun J Y, Chen B D, Yang D R. Metal Oxide and Sulfide Hollow Spheres: Layer-by-Layer Synthesis and Their Application in Lithium-Ion Battery. J. Phys. Chem. B, 2008, 112 (47): 14836 - 14842
    [34] Lin C N, Huang M H. Formation of Hollow Gallium Nitride Spheres via Silica Sphere Templates. J. Phys. Chem. C, 2009, 113 (3): 925 - 929
    [35] Fang B Z, Kim M, Yu J S. Hollow Core/Mesoporous Shell Carbon as a Highly Efficient Catalyst Support in Direct Formic Acid Fuel Cell. Appl. Catal. B, 2008, 84 (1 - 2): 100 -105
    [36] Fang B Z, Kim J H, Kim M, Kim M, Yu J S. Hierarchical Nanostructured Hollow Spherical Carbon with Mesoporous Shell as a Unique Cathode Catalyst Support in Proton Exchange Membrane Fuel Cell. Phys. Chem. Chem. Phys., 2009, 11 (9): 1380 - 1387
    [37] Fang B Z, Kim J H, Lee C, Yu J S. Hollow Macroporous Core/Mesoporous Shell Carbon with a Tailored Structure as a Cathode Electrocatalyst Support for Proton Exchange Membrane Fuel Cells. J. Phys. Chem. C, 2008, 112 (2): 639 - 645
    [38] Nakamura T, Yamada Y, Yano K. Monodispersed Nanoporous Starburst Carbon Spheres and Their Three-Dimensionally Ordered Arrays. Microporous Mesoporous Mater., 2009, 117 (1- 2): 478 - 485
    [39] Son D, Wolosiuk A, Braun P V. Double Direct Templated Hollow ZnS Microspheres Formed on Chemically Modified Silica Colloids. Chem. Mater., 2009, 21 (4): 628 - 634
    [40] Wang Y Q, Wang G Z, Wang H Q, Cai W P, Zhang L D. One-Pot Synthesis of Nanotube-Based Hierarchical Copper Silicate Hollow Spheres. Chem. Commun., 2008, (48): 6555-6557
    [41] Song C Y, Yu W J, Zhao B, Zhang H L, Tang C J, Sun K Q, Wu X C, Dong L, Chen Y. Efficient Fabrication and Photocatalytic Properties of TiO_2 Hollow Spheres. Catal. Commun., 2009, 10 (5): 650-654
    [42] Kim T H, Lee K H, Kwon Y K. Monodisperse Hollow Titania Nanospheres Prepared Using a Cationic Colloidal Template. J. Colloid Interface Sci., 2006, 304 (2): 370 - 377
    [43] Kondo Y, Yoshikawa H, Awaga K, Murayama M, Mori T, Sunada K, Bandow S, Iijima S. Preparation, Photocatalytic Activities, and Dye-Sensitized Solar-Cell Performance of Submicron-Scale TiO_2 Hollow Spheres. Langmuir, 2008, 24 (2): 547 - 550
    [44] Deng Z W, Chen M, Gu G X, Wu L M. A Facile Method to Fabricate ZnO Hollow Spheres and Their Photocatalytic Property. J. Phys. Chem. B, 2008, 112 (1): 16 - 22
    [45] Zhang L J, D'Acunzi M, Kappl M, Auernhammer G K, Vollmer D, van Kats C M, van Blaaderen A. Hollow Silica Spheres: Synthesis and Mechanical Properties. Langmuir, 2009, 25 (5): 2711-2717
    [46] Agrawal M, Pich A, Gupta S, Zafeiropoulos N E, Simon P, Stamm M. Synthesis of Novel Tantalum Oxide Sub-micrometer Hollow Spheres with Tailored Shell Thickness. Langmuir, 2008,24(3): 1013-1018
    [47] Song X F, Gao L. Synthesis, Characterization, and Optical Properties of Well-Defined N-Doped, Hollow Silica/Titania Hybrid Microspheres. Langmuir, 2007, 23 (23): 11850 -11856
    [48] Ma H, Ji W Q. Zhao J Z, Liang J, Chen J. Preparation. Characterization and Catalytic NaBH_4 Hydrolysis of Co-B Hollow Spheres. J. Alloys Compounds. 2009, 474 (1 - 2): 584 - 589
    [49] Sun X M, Li Y D. Colloidal Carbon Spheres and Their Core/Shell Structures with Noble-Metal Nanoparticles. Angew. Chem. Int. Ed., 2004, 43 (5): 597 - 601
    [50] Sun X M, Li Y D. Ga_2O_3 and GaN Semiconductor Hollow Spheres. Angew. Chem. Int. Ed., 2004, 43 (29): 3827 -3831
    [51] Li X L, Lou T J, Sun X M, Li Y D. Highly Sensitive WO_3 Hollow-Sphere Gas Sensors. Inorg. Chem., 2004, 43 (17): 5442 - 5449
    [52] Sun X M. Liu J F, Li Y D. Use of Carbonaceous Polysaccharide Microspheres as Templates for Fabricating Metal Oxide Hollow Spheres. Chem. Eur. J., 2006, 12 (7): 2039 - 2047
    [53] Shen W H, Zhu Y F, Dong X P, Gu J L, Shi J L. A New Strategy to Synthesize TiO_2-Hollow Spheres Using Carbon Spheres as Template. Chem. Lett., 2005, 34 (6): 840 - 841
    [54] Qian H S, Lin G F, Zhang Y X, Gunawan P, Xu R. A New Approach to Synthesize Uniform Metal Oxide Hollow Nanospheres via Controlled Precipitation. Nanotechnology, 2007, 18 (35): 355602
    [55] Jagadeesan D, Mansoori U, Mandal P, Sundaresan A, Eswaramoorthy M. Hollow Spheres to Nanocups: Tuning the Morphology and Magnetic Properties of Single-Crystalline α-Fe_2O_3 Nanostructures. Angew. Chem. Int. Ed., 2008, 47 (40): 7685 - 7688
    [56] Yu J G, Yu X X, Huang B B, Zhang X Y, Dai Y. Hydrothermal Synthesis and Visible-Light Photocatalytic Activity of Novel Cage-Like Ferric Oxide Hollow Spheres. Cryst. Growth Des., 2009, 9 (3): 1474-1480
    [57] Guo Z, Liu J Y, Jia Y. Chen X, Meng F L, Li M Q, Liu J H. Template Synthesis, Organic Gas-Sensing and Optical Properties of Hollow and Porous In_2O_3 Nanospheres. Nanotechnology, 2008, 19 (34): 345704
    [58] Zhang J, Wang S R, Xu M J, Wang Y, Xia H J, Zhang S M, Guo X Z, Wu S H. Polypyrrole-Coated SnO_2 Hollow Spheres and Their Application for Ammonia Sensor. J. Phys. Chem. C, 2009, 113 (5): 1662 - 1665
    [59] Guo C Y, Hu P, Yu L J, Yuan F L. Synthesis and Characterization of ZrO_2 Hollow Spheres. Mater. Lett., 2009, 63 (12): 1013 - 1015
    [60] Jia G, Yang M, Song Y H. You H P, Zhang H J. General and Facile Method to Prepare Uniform Y_2O_3:Eu Hollow Microspheres. Cryst. Growth Des., 2009, 9 (1): 301 - 307
    [61] Shang M, Wang W Z, Xu H L. New Bi_2WO_6 Nanocages with High Visible-Light-Driven Photocatalytic Activities Prepared in Refluxing EG. Cryst. Growth Des., 2009, 9 (2): 991 - 996
    [62] Li Z M, Lai X Y, Wang H, Mao D, Xing C J, Wang D. General Synthesis of Homogeneous Hollow Core-Shell Ferrite Microspheres. J. Phys. Chem. C. 2009, 113 (7): 2792 - 2797
    [63] Titirici M M, Antonietti M, Thomas A. A Generalized Synthesis of Metal Oxide Hollow Spheres Using a Hydrothermal Approach. Chem. Mater., 2006, 18 (16): 3808 - 3812
    [64] Demir-Cakan R, Hu Y S, Antonietti M, Maier J, Titirici M M. Facile One-Pot Synthesis of Mesoporous SnO_2 Microspheres via Nanoparticles Assembly and Lithium Storage Properties. Chem. Mater., 2008. 20 (4): 1227 - 1229
    [65] Yang H X, Qian J F, Chen Z X, Ai X P, Cao Y L. Multilayered Nanocrystalline SnO_2 Hollow Microspheres Synthesized by Chemically Induced Self-Assembly in the Hydrothermal Environment. J. Phys. Chem. C, 2007, 111 (38): 14067 -14071
    [66] Lou X W, Deng D, Lee J Y, Archer L A. Preparation of SnO_2/Carbon Composite Hollow Spheres and Their Lithium Storage Properties. Chem. Mater., 2008, 20 (20): 6562 - 6566
    [67] Deng D, Lee J Y. Hollow Core-Shell Mesospheres of Crystalline SnO_2 Nanoparticle Aggregates for High Capacity Li~+ Ion Storage. Chem. Mater., 2008, 20 (5): 1841 -1846
    [68] Teng F, Xu T G, Liang S H, Buergen G, Yao W Q, Zhu Y F. Synthesis of Hollow Mn_3O_4-in-Co_3O_4 Magnetic Microspheres and Its Chemiluminescence and Catalytic Properties. Catal. Commun., 2008, 9 (6): 1119 - 1124
    [69] Zhao W W, Liu Y, Li H L, Zhang X G. Preparation and Characterization of Hollow Co_3O_4 Spheres. Mater. Lett., 2008, 62 (4 - 5): 772 - 774
    [70] Cakan R D, Titirici M M, Antonietti M, Cui G L, Maier J, Hu Y S. Hydrothermal Carbon Spheres Containing Silicon Nanoparticles: Synthesis and Lithium Storage Performance. Chem. Commun., 2008, (32): 3759 - 3761
    [71] Zhou Y X, Zhang Q, Gong J Y, Yu S H. Surfactant-Assisted Hydrothermal Synthesis and Magnetic Properties of Urchin-like MnWO_4 Microspheres. J. Phys. Chem. C, 2008, 112 (35): 13383-13389
    [72] Luo Y S. Zhang W D, Dai X J, Yang Y, Fu S Y. Facile Synthesis and Luminescent Properties of Novel Flowerlike BaMoO_4 Nanostructures by a Simple Hydrothermal Route. J. Phys. Chem. C, 2009, 113 (12): 4856 - 4861
    [73] Cong H P, Yu S H. Shape Control of Cobalt Carbonate Particles by a Hydrothermal Process in a Mixed Solvent: An Efficient Precursor to Nanoporous Cobalt Oxide Architectures and Their Sensing Property. Cryst. Growth Des., 2009, 9 (1): 210- 217
    [74] Ni Y H, Wu G G, Zhang X L, Cao X F, Hu G Z, Tao A L, Yang Z S, Wei X W. Hydrothermal Preparation, Characterization and Property Research of Flowerlike ZnO Nanocrystals Built up by Nanoflakes. Mater. Res. Bull., 2008, 43 (11): 2919 - 2928
    [75] Ota J, Roy P, Srivastava S K, Nayak B B, Saxena A K. Morphology Evolution of Sb_2S_3 under Hydrothermai Conditions: Flowerlike Structure to Nanorods. Cryst. Growth Des., 2008, 8 (6): 2019-2023
    [76] Zhu H. Wang X L, Wang Z J, Yang C, Yang F, Yang X R. Self-Assembled 3D Microflowery In(OH)_3 Architecture and Its Conversion to In_2O_3. J. Phys. Chem. C, 2008, 112 (39): 15285-15292
    [77] Zhang Y J, Yao Q, Zhang Y, Cui T Y, Li D, Liu W, Lawrence W. Zhang Z D. Solvothermal Synthesis of Magnetic Chains Self-Assembled by Flowerlike Cobalt Submicrospheres. Cryst. Growth Des., 2008. 8 (9): 3206 - 3212
    [78] Zhu H T, Wang J X, Xu G Y. Fast Synthesis of Cu_2O Hollow Microspheres and Their Application in DNA Biosensor of Hepatitis B Virus. Cryst. Growth Des.. 2009, 9 (1): 633 -638
    [79] Wang D B, Song C X, Zhao Y H, Yang M L. Synthesis and Characterization of Monodisperse Iron Oxides Microspheres. J. Phys. Chem. C, 2008, 112 (33): 12710-12715
    [80] Zhou X F, Hu Z L, Chen Y, Shang H Y. Microscale Sphere Assembly of ZnO Nanotubes. Mater. Res. Bull., 2008, 43 (10): 2790 - 2798
    [81] Luo Y Y, Duan G T, Ye M, Zhang Y X. Li G H. Poly(ethylene glycol)-Mediated Synthesis of Hollow ZnS Microspheres. J. Phys. Chem. C. 2008, 112 (7): 2349 - 2352
    [82] Xu Y Y, Chen D R, Jiao X L, Xue K Y. Nanosized Cu_2O/PEG400 Composite Hollow Spheres with Mesoporous Shells. J. Phys. Chem. C. 2007, 111 (44): 16284 - 16289
    [83] Cao F, Shi W D, Zhao L J, Song S Y, Yang J H, Lei Y Q, Zhang H J. Hydrothermal Synthesis and High Photocatalytic Activity of 3D Wurtzite ZnSe Hierarchical Nanostructures. J. Phys. Chem. C, 2008, 112 (44): 17095 - 17101
    
    [84] Wang X J, Wan F Q, Liu J, Gao Y J, Jiang K. Synthesis and Characterization of Cu_3P Hollow Spheres by a Facile Soft-Template Process. J. Alloys Compounds, 2009, 474 (1 - 2): 233-236
    
    [85] Du J, Yang M, Cha S N, Rhen D, Kang M, Kang D J. Indium Hydroxide and Indium Oxide Nanospheres, Nanoflowers, Microcubes, and Nanorods: Synthesis and Optical Properties. Cryst. Growth Des., 2008, 8 (7): 2312-2317
    [86] Xu L F, Chen Q W, Xu D S. Hierarchical ZnO Nanostructures Obtained by Electrodeposition. J. Phys. Chem. C. 2007, 111 (31): 11560 - 11565
    [87] Zhao W, Song X Y, Chen G Z, Tian G R, Sun S X. Hydrothermal Synthesis of PbWO_4 Uniform Hierarchical Microspheres. Mater. Lett., 2009, 63 (2): 285 - 288
    [88] Gao C L, Liang Y Y, Han M, Xu Z, Zhu J M. Hierarchical Construction of Composite Hollow Structures of Co@CoO and Their Magnetic Behavior. J. Phys. Chem. C, 2008, 112 (25): 9272 - 9277
    
    [89] Du D J, Cao M H. Ligand-Assisted Hydrothermal Synthesis of Hollow Fe_2O_3 Urchin-Like Microstructures and Their Magnetic Properties. J. Phys. Chem. C, 2008, 112 (29): 10754 -10758
    
    [90] Shen Z R, Wang J G, Sun P C, Ding D T, Chen T H. Fabrication of Lanthanide Oxide Microspheres and Hollow Spheres by Thermolysis of Pre-Molding Lanthanide Coordination Compounds. Chem. Commun., 2009, (13): 1742 - 1744
    
    [91] Wu Q Z, Chen X, Zhang P, Han Y C, Chen X M, Yan Y H, Li S P. Amino Acid-Assisted Synthesis of ZnO Hierarchical Architectures and Their Novel Photocatalytic Activities. Cryst. Growth Des., 2009, 8 (8): 3010-3018
    
    [92] Mitchell S L, Guzman J. Synthesis and Characterization of Nanocrystalline and Mesostructured CeO_2: Influence of the Amino Acid Template. Mater. Chem. Phys.. 2009, 114(1): 462-466
    
    [93] Lei Y Q, Song S Y, Fan W Q, Xing Y, Zhang H J. Facile Synthesis and Assemblies of Flowerlike SnS_2 and In -Doped SnS_2: Hierarchical Structures and Their Enhanced Photocatalytic Property. J. Phys. Chem. C, 2009, 113 (4): 1280 - 1285
    
    [94] Liu S J. Gong J Y, Hu B, Yu S H. Mesocrystals of Rutile TiO_2: Mesoscale Transformation, Crystallization, and Growth by a Biologic Molecules-Assisted Hydrothermal Process. Cryst. Growth Des., 2009, 9(1): 203 -209
    [95] Zhao P T, Zeng Q M, Huang K X. Fabrication of p-NiS Hollow Sphere Consisting of Nanoflakes via a Hydrothermal Process. Mater. Lett., 2009, 63 (2): 313-315
    [96] Chen L Y, Zhang Z D. Biomolecule-Assisted Synthesis of In(OH)_3 Hollow Spherical Nanostructures Constructed with Well-Aligned Nanocubes and Their Conversion into C-In_2O_3. J. Phys. Chem. C, 2008, 112 (48): 18798 - 18803
    
    [97] Gao S Y, Yang S X, Shu J. Zhang S X, Li Z D, Jiang K. Green Fabrication of Hierarchical CuO Hollow Micro/Nanostructures and Enhanced Performance as Electrode Materials for Lithium-Ion Batteries. J. Phys. Chem. C, 2008, 112 (49): 19324 - 19328
    [98] Li B X, Xie Y, Xue Y. Controllable Synthesis of CuS Nanostructures from Self-Assembled Precursors with Biomolecule Assistance. J. Phys. Chem. C, 2007, 111 (33): 12181 - 12187
    [99] Xu L, Jiang L P, Zhu J J. Sonochemical Synthesis and Photocatalysis of Porous Cu_2O Nanospheres with Controllable Structures. Nanotechnology, 2009, 20 (4): 045605
    [100] Wei W, Ma G H, Hu G, Yu D, Mcleish T. Su Z G, Shen Z Y. Preparation of Hierarchical Hollow CaCO_3 Particles and the Application as Anticancer Drug Carrier. J. Am. Chem. Soc, 2008, 130(47): 15808-15810
    [101] Zhou H. Fan T X, Han T, Li X F, Ding J, Zhang D, Guo Q X, Ogawa H. Bacteria-Based Controlled Assembly of Metal Chalcogenide Hollow Nanostructures with Enhanced Light-Harvesting and Photocatalytic Properties. Nanotechnology, 2009, 20 (8): 085603
    [102] Nomura T, Morimoto Y, Tokumoto H, Konishi Y. Fabrication of Silica Hollow Particles Using Escherichia Coli as a Template. Mater. Lett., 2008, 62 (21 - 22): 3727 - 3729
    [103] Zhou H, Fan T X, Zhang D. Hydrothermal Synthesis of ZnO Hollow Spheres Using Spherobacterium as Biotemplates. Microporous Mesoporous Mater., 2007, 100 (1 - 3): 322-327
    [104] Bai B, Wang P P, Wu L, Yang L, Chen Z H. A Novel Yeast Bio-Template Route to Synthesize Cr_2O_3 Hollow Microspheres. Mater. Chem. Phys., 2009, 114 (1): 26 - 29
    [105] Gao S Y, Zhang H J, Wang X M, Deng R P. Sun D H, Zheng G L. ZnO-Based Hollow Microspheres: Biopolymer-Assisted Assemblies from ZnO Nanorods. J. Phys. Chem. B, 2006, 110(32): 15847-15852
    [106] Yu C Y, Jia L H, Yin B C, Zhang X Z. Cheng S X, Zhuo R X. Fabrication of Nanospheres and Vesicles as Drug Carriers by Self-Assembly of Alginate. J. Phys. Chem. C, 2008, 112 (43): 16774-16778
    [107] Lu W W, Gao S Y, Wang J J. One-Pot Synthesis of Ag/ZnO Self-Assembled 3D Hollow Microspheres with Enhanced Photocatalytic Performance. J. Phys. Chem. C, 2008, 112 (43): 16792- 16800
    [108] Zeng H C. Synthetic Architecture of Interior Space for Inorganic Nanostructures. J. Mater. Chem.. 2006, 16 (7): 649-662
    [109] Ho S Y, Wong A S W, Ho G W. Controllable Porosity of Monodispersed Tin Oxide Nanospheres via an Additive-Free Chemical Route. Cryst. Growth Des., 2009. 9 (2): 732 -736
    [110] Zhou L, Wang W Z, Xu H L, Sun S M. Template-Free Fabrication of CdMoO_4 Hollow Spheres and Their Morphology-Dependent Photocatalytic Property. Cryst. Growth Des., 2008. 8 (10): 3595-3601
    [111] Bai H X, Zhang L X, Zhang Y C. Simple Synthesis of Urchin-Like In_2S_3 and In_2O_3 Nanostructures. Mater. Lett., 2009, 63 (9 - 10): 823 - 825
    [112] Li G C, Chao K, Zhang C Q, Zhang Q S, Peng H R. Chen K Z. Synthesis of Urchin-Like VO_2 Nanostructures Composed of Radially Aligned Nanobelts and Their Disassembly. Inorg. Chem.. 2009, 48 (3): 1168 - 1172
    [113] Shang X F, Lu W C, Yue B H, Zhang L M, Ni J P, Lv Y, Feng Y L. Synthesis of Three-Dimensional Hierarchical Dendrites of NdOHCO_3 via a Facile Hydrothermal Method. Cryst. Growth Des., 2009, 9 (3): 1415-1420
    [114] Xu K J, Ding W P. Controlled Synthesis of Spherical CuS Hierarchical Structures. Mater. Lett., 2008, 62 (29): 4437 - 4439
    [115] Chen Z X, Li D Z, Zhang W J, Shao Y, Chen T W, Sun M, Fu X Z. Photocatalytic Degradation of Dyes by ZnIn_2S_4 Microspheres under Visible Light Irradiation. J. Phys. Chem. C, 2009. 113(11): 4433 - 4440
    [116] Ma D K, Huang S M, Chen W X, Hu S W, Shi F F, Fan K L. Self-Assembled Three-Dimensional Hierarchical Umbilicate Bi_2WO_6 Microspheres from Nanoplates: Controlled Synthesis, Photocatalytic Activities, and Wettability. J. Phys. Chem. C, 2009, 113 (11): 4369-4374
    [117] Ni J P, Lu W C, Zhang L M, Yue B H, Shang X F, Lv Y. Low-Temperature Synthesis of Monodisperse 3D Manganese Oxide Nanoflowers and Their Pseudocapacitance Properties. J. Phys. Chem. C, 2009, 113 (1): 54 - 60
    [118] Song S Y, Zhang Y, Feng J, Xing Y, Lei Y Q, Fan W Q, Zhang H J. Self-Assembled Growth of AgIn(MoO_4)_2 Submicroplates into Hierarchical Structures and Their Near-Infrared Luminescent Properties. Cryst. Growth Des., 2009, 9 (2): 848 - 852
    [119] Amano F, Nogami K, Ohtani B. Visible Light-Responsive Bismuth Tungstate Photocatalysts: Effects of Hierarchical Architecture on Photocatalytic Activity. J. Phys. Chem. C, 2009, 113 (4): 1536- 1542
    [120] Xu M W, Kong L B, Zhou W J, Li H L. Hydrothermal Synthesis and Pseudocapacitance Properties of a-MnO_2 Hollow Spheres and Hollow Urchins. J. Phys. Chem. C, 2007, 111 (51): 19141 -19147
    [121] Jiang L, Zhong Y J, Li G C. A Simple H_2O_2-Assisted Route to Hollow TiO_2 Structures with Different Crystal Structures and Morphologies. Mater. Res. Bull., 2009, 44 (5): 999 - 1002
    [122] Hu P, Yu L J, Zuo A H, Guo C Y, Yuan F L. Fabrication of Monodisperse Magnetite Hollow Spheres. J. Phys. Chem. C, 2009, 113 (3): 900 - 906
    [123] Gao J N, Li Q S, Zhao H B, Li L S, Liu C L, Gong Q H, Qi L M. One-Pot Synthesis of Uniform Cu_2O and CuS Hollow Spheres and Their Optical Limiting Properties. Chem. Mater., 2008. 20 (19): 6263 - 6269
    [124] Tiemann M. Porous Metal Oxides as Gas Sensors. Chem. Eur. J., 2007, 13 (30): 8376 -8388
    [125] van de Krol R, Liang Y Q, Schoonman J. Solar Hydrogen Production with Nanostructured Metal Oxides. J. Mater. Chem., 2008, 18 (20): 2311 - 2320
    [126] Rao Y X, Antonelli D M. Mesoporous Transition Metal Oxides: Characterization and Applications in Heterogeneous Catalysis. J. Mater. Chem., 2009, 19 (14): 1937 - 1944
    [127] Zhang S G, Zeng H C. Self-Assembled Hollow Spheres of β-Ni(OH)_2 and Their Derived Nanomaterials. Chem. Mater., 2009, 21 (5): 871 - 883
    [128] Rolison D R, Long J W, Lytle J C, Fischer A E. Rhodes C P, McEvoy T M, Bourg M E. Lubers A M.Multifunctional 3D Nanoarchitectures for Energy Storage and Conversion Chem.Soc.Rev.,2009,38(1):226 - 252
    [129]Jacobson M Z.Review of Solutions to Global Warming,Air Pollution,and Energy Security.Energy Environ.Sci.,2009,2(2):148 - 173
    [130]朱宏伟,吴德海,徐才录.碳纳米管.北京:机械工业出版社,2003.
    [131]成会明.纳米碳管:制备、结构、物性及应用.北京:化学工业出版社,2002.
    [132]麦亚潘.碳纳米管:科学与应用.刘忠范等译.北京:科学出版社,2007.
    [133]Shanmugam S,Gedanken A.Generation of Hydrophilic,Bamboo-Shaped Multiwalled Carbon Nanotubes by Solid-State Pyrolysis and Its Electrochemical Studies.J.Phys.Chem.B,2006,110(5):2037 - 2044
    [134]Shanmugam S,Gedanken A.Electrochemical Properties of Bamboo-Shaped Multiwalled Carbon Nanotubes Generated by Solid State Pyrolysis.Electrochem.Commun.,2006,8(7):1099-1105
    [135]Devaux X,Tsareva S Y,Kovalenko A N,Zharikov E V,McRae E.Formation Mechanism and Morphology of Large Branched Carbon Nano-Structures.Carbon,2009,47(5):1244 -1250
    [136]Li Z L,Larsson J A,Larsson P,Ahuja R,Tobin J M,O'Byrne J,Morris M A,Attard G,Holmes J D.Copper/Molybdenum Nanocomposite Particles as Catalysts for the Growth of Bamboo-Structured Carbon Nanotubes.J.Phys.Chem.C,2008,112(32):12201 - 12206
    [137]Lv R T,Zou L,Gui X C,Kang F Y,Zhu Y Q,Zhu H W,Wei J Q,Gu J L,Wang K L,Wu D H.High-Yield Bamboo-Shaped Carbon Nanotubes from Cresol for Electrochemical Application.Chem.Commun.,2008,(17):2046 - 2048
    [138]Landois P,Peigney A,Laurent C,Frin L,Datas L,Flahaut E.CCVD Synthesis of Carbon Nanotubes with W/Co-MgO Catalysts.Carbon,2009.47(3):789 - 794
    [139]Zhou W W,Han Z Y,Wang J Y,Zhang y.Jin Z,Sun X,Zhang Y W,Yan C H,Li Y.Copper Catalyzing Growth of Single-Walled Carbon Nanotubes on Substrates.Nano Lett.,2006,6(12):2987 - 2990
    [140]Takagi D,Homma Y,Hibino H,Suzuki S,Kobayashi Y.Single-Walled Carbon Nanotube Growth from Highly Activated Metal Nanoparticles.Nano Lett.,2006,6(12):2642 - 2645
    [141]Liu B L,Ren W C,Gao L B,Li S S,Pei S F,Liu C,Jiang C B,Cheng H M.Metal-Catalyst-Free Growth of Single-Walled Carbon Nanotubes.J.Am.Chem.Soc..2009.131(6):2082 - 2083
    [142]Huang S M,Cai Q R,Chen J Y,Qian Y,Zhang L J.Metal-Catalyst-Free Growth of Single-Walled Carbon Nanotubes on Substrates.J.Am.Chem.Soc.,2009,131(6):2094 ~2095
    [1]Femandez-Garcia M,Martinez-Arias A.Hanson J C,Rodriguez J A.Nanostructured Oxides in Chemistry:Characterization and Properties.Chem.Rev.,2004,104(9):4063 - 4104
    [2]Burda C,Chen X B,Narayanan R,El-Sayed M A.Chemistry and Properties of Nanocrystals of Different Shapes.Chem.Rev.,2005.105(4):1025 - 1102
    [3]Wang Z L.Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies.J.Phys.Chem.B,2000,104(6):1153 - 1175
    [4]Chou T R Zhang Q F,Fryxell G E.Cao G Z.Hierarchically Structured ZnO Film for Dye-Sensitized Solar Cells with Enhanced Energy Conversion Efficiency.Adv.Mater.,2007,19(18):2588 -2592
    [5]Huo L H,Li W.Lu L H,Cui H N,Xi S Q,Wang J,Zhao B.Shen Y C,Lu Z H.Preparation,Structure,and Properties of Three-Dimensional Ordered α-Fe_2O_3 Nanoparticulate Film.Chem.Mater..2000,12(3):790 - 794
    [6]Jing Z H,Wu S,Zhang S M,Huang W R Hydrothermal Fabrication of Various Morphological α-Fe_2O_3 Nanoparticles Modified by Surfactants.Mater.Res.Bull.,2004,39(13):2057 - 2064
    [7]Wu C Z,Yin R Zhu X,OuYang C Z,Xie Y.Synthesis of Hematite(α-Fe_2O_3) Nanorods:Diameter-Size and Shape Effects on Their Applications in Magnetism,Lithium Ion Battery,and Gas Sensors.J.Phys.Chem.B,2006,110(36):17806 - 17812
    [8]Wu J J,Lee Y L,Chiang H H,Wong D K P.Growth and Magnetic Properties of Oriented α-Fe_2O_3 Nanorods.J.Phys.Chem.B,2006,110(37):18108 - 18111
    [9]Zeng S Y,Tang K B,Li T W.Controlled Synthesis of α-Fe_2O_3 Nanorods and Its Size-Dependent Optical Absorption,Electrochemical,and Magnetic Properties.J.Colloid.Interface Sci.,2007,312(2):513 - 521
    [10]Tang B,Wang G L,Zhuo L H,Ge J C,Cui L J.Facile Route to α-FeOOH and α-Fe_2O_3Nanorods and Magnetic Property of α-Fe_2O_3 Nanorods.Inorg.Chem.,2006,45(13):5196 -5200
    [11]Liu L,Kou H Z,Mo W L,Liu H J,Wang Y Q.Surfactant-Assisted Synthesis of α-Fe_2O_3Nanotubes and Nanorods with Shape-Dependent Magnetic Properties.J.Phys.Chem.B,2006,110(31):15218 - 15223
    [12]Chen J,Xu L N,Li W Y,Gou X L.α-Fe_2O_3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications.Adv.Mater.,2005,17(5):582-586
    [13]Yu C C,Dong X P,Guo L M,Li J T,Qin F,Zhang L X,Shi J L,Yan D S.Template-Free Preparation of Mesoporous Fe_2O_3 and Its Application as Absorbents.J.Phys.Chem.C,2008,112(35):13378 - 13382
    [14]Hu X L,Yu J C,Gong J M.Fast Production of Self-Assembled Hierarchical α-Fe_2O_3Nanoarchitectures.J.Phys.Chem.C,2007,111(30):11180 - 11185
    [15]Li S Z,Zhang H,Wu J B,Ma X Y,Yang D R.Shape-Control Fabrication and Characterization of the Airplane-like FeO(OH) and Fe_2O_3 Nanostructures.Cryst.Growth.Des.,2006,6(2):351 -353
    [16]钭启升,张辉,邬剑波,杨德仁.氧化铁和羟基氧化铁纳米结构的水热法制备及其表征.无机材料学报.2007,22(2):213-218
    [17]Zhu L P,Xiao H M,Liu X M,Fu S Y.Template-Free Synthesis and Characterization of Novel 3D Urchin-Like α-Fe_2O_3 Superstructures.J.Mater.Chem.,2006,16(19):1794 -1797
    [18]Zhu L P,Xiao H M,Fu S Y.Template-Free Synthesis of Monodispersed and Single-Crystalline Cantaloupe-Like Fe_2O_3 Superstructures.Cryst.Growth.Des..2007.7(2):177- 182
    [19]Zeng S Y.Tang K B,Li T W.Liang Z H,Wang D,Wang Y K,Qi Y X,Zhou W.W.Facile Route for the Fabrication of Porous Hematite Nanoflowers:Its Synthesis,Growth Mechanism.Application in the Lithium Ion Battery,and Magnetic and Photocatalytic Properties.J.Phys.Chem.C,2008,112(13):4836 - 4843
    [20]Cao S W,Zhu Y J.Hierarchically Nanostructured α-Fe_2O_3 Hollow Spheres:Preparation, Growth Mechanism,Photocatalytic Property,and Application in Water Treatment.J.Phys.Chem.C,2008,112(16):6253 -6257
    [21]Wang J H,Ma Y W,Wang D L,Gao Z S,Zhou Y G,Song T.Templating Synthesis of Waxberried Hematite Hollow Spheres.Mater.Lett.,2009,63(2):209 - 211
    [22]Zhang X J,Li Q L.Microwave Assisted Hydrothermal Synthesis and Magnetic Property of Hematite Nanorods.Mater.Lett.,2008,62(6 - 7):988 - 990
    [23]Hu H L,Yu J C,Gong J M,Li Q,Li G S.α-Fe_2O_3 Nanorings Prepared by a Microwave-Assisted Hydrothermal Process and Their Sensing Properties.Adv.Mater.,2007,19(17):2324 - 2329
    [24]Leofanti G,Padovan M,Tozzola G,Venturelli B.Surface Area and Pore Texture of Catalysts.Catal.Today,1998,41(1- 3):207 - 219
    [25]Wang X,Yuan F L,Hu P,Yu L J,Bai L Y.Self-Assembled Growth of Hollow Spheres with Octahedron-like Co Nanocrystals via One-Pot Solution Fabrication.J.Phys.Chem.C,2008,112(24):8773 - 8778
    [26]严瑞瑄.水溶性高分子.北京:化学工业出版社,1998.
    [27]Hu J S,Ren L L,Guo Y G,Liang H P,Cao A M,Wan L J,Bai C Li.Mass Production and High Photocatalytic Activity of ZnS Nanoporous Nanoparticles.Angew.Chem.Int.Ed.,2005,44(8):1269 - 1273
    [1]Lu F,Cai W R Zhang Y G.ZnO Hierarchical Micro/Nanoarchitectures:Solvothermal Synthesis and Structurally Enhanced Photocatalytic Performance.Adv.Funct.Mater.,2008,18(7):1047-1056
    [2]Chou T P,Zhang Q F,Fryxell G E,Cao G Z.Hierarchically Structured ZnO Film for Dye-Sensitized Solar Cells with Enhanced Energy Conversion Efficiency.Adv.Mater.,2007,19(18):2588 - 2592
    [3]Zeng S Y,Tang K B,Li T W,Liang Z H,Wang D,Wang Y K,Qi Y X,Zhou W W.Facile Route for the Fabrication of Porous Hematite Nanoflowers:Its Synthesis,Growth Mechanism,Application in the Lithium Ion Battery,and Magnetic and Photocatalytic Properties.J.Phys.Chem.C,2008,112(13):4836 -4843
    [4]Chen X B,Mao S S.Titanium Dioxide Nanomaterials:Synthesis,Properties,Modifications,and Applications.Chem.Rev.,2007,107(7):2891 -2959
    [5]Wang P,Wang D J,Li H Y,Xie T F,Wang H Z,Du Z L.A Facile Solution-Phase Synthesis of High Quality Water-Soluble Anatase TiO_2 Nanocrystals.J.Colloid Interface Sci.,2007,314(1):337 -340
    [6]Gao Y F.Luo H J,Mizusugi S,Nagai M.Surfactant-free Synthesis of Anatase TiO_2Nanorods in an Aqueous Peroxotitanate Solution.Cryst.Growth Des.,2008,8(6):1804 -1807
    [7]郝彦忠,王利刚.TiO_2纳米线的制备及其光电性能研究.无机化学学报,2007,23(12):2039 - 2043
    [8]Richter C,Wu Z,Panaitescu E,Willey R J,Menon L.Ultra-High-Aspect-Ratio Titania Nanotubes.Adv.Mater.,2007,19(7):946 - 948
    [9]叶琳,段月琴.袁志好.聚苯乙烯球模板法制备二氧化钛纳米环.无机化学学报,2007.23(4):717-720
    [10]Li G S,Yu J C,Zhu J,Cao Y.Hierarchical Mesoporous Grape-Like Titania with Superior Recyclability and Photoactivity.Microporous Mesoporous Mater.,2007,106(1 - 3):278 -283
    [11]Wang Y W,Zhang L Z,Deng K J,Chert X Y,Zou Z G.Low Temperature Synthesis and Photocatalytic Activity of Rutile TiO_2 Nanorod Superstructures.J.Phys.Chem.C,2007,111(6):2709 - 2714
    [12]Han Y.Li G C,Zhang Z K.Synthesis and Optical Properties of Rutile TiO_2 Microspheres Composed of Radially Aligned Nanorods.J.Cryst.Growth,2006,295(1):50 - 53
    [13]张一兵.封心建,江雷.水热法合成由纳米棒组装而成的TiO_2微米球.中国科学B辑:化学.2007,37(2):124-126
    [14]Pal M,Serrano J G,Santiago P,Pal U.Size-Controlled Synthesis of Spherical TiO_2Nanoparticles:Morphology,Crystallization,and Phase Transition.J.Phys.Chem.C,2007,111(1):96- 102
    [15]Isley S L,Penn R L.Titanium Dioxide Nanoparticles:Effect of Sol-Gel pH on Phase Composition,Particle Size,and Particle Growth Mechanism.J.Phys.Chem.C,2008,112(12):4469 - 4474
    [16]Shen W H,Zhu Y F,Dong X P,Gu G L,Shi J L.A New Strategy to Synthesize TiO_2-Hollow Spheres Using Carbon Spheres as Template.Chem.Lett.,2005,34(6):840 - 841
    [17]Li J G,Ishigaki T,Sun X D.Anatase.Brookite,and Rutile Nanocrystals via Redox Reactions under Mild Hydrothermal Conditions:Phase-Selective Synthesis and Physicochemical Properties.J.Phys.Chem.C,2007,111(13):4969 -4976
    [18]Hu J S,Ren L L,Guo Y G,Liang H P,Cao A M,Wan Li J,Bai C L.Mass Production and High Photocatalytic Activity of ZnS Nanoporous Nanoparticles.Angew.Chem.Int.Ed.,2005,44(8):1269 - 1273
    [19]Li J G,Yang X J,Ishigaki T.Urea Coordinated Titanium Trichloride Ti~Ⅲ[OC(NH)_2]_6Cl_3:A Single Molecular Precursor Yielding Highly Visible Light Responsive TiO_2 Nanocrystallites. J.Phys.Chem.B,2006,110(30):14611 - 14618
    [20]Testino A,Bellobono I R,Buscaglia V,Canevali C,D'Arienzo M,Polizzi S,Scotti R,Morazzoni F.Optimizing the Photocatalytic Properties of Hydrothermal TiO_2 by the Control of Phase Composition and Particle Morphology.A Systematic Approach.J.Am.Chem.Soc.,2007,129(12):3564 - 3575
    [21]Woan K,Pyrgiotakis G,Sigmund W.Photocatalytic Carbon-Nanotube-TiO_2 Composites.Adv.Mater.,2009,21(21):2233 -2239
    [22]Bashir S,McCabe R W,Boxall C,Leaver M S,Mobbs D.Synthesis of α- and β-FeOOH Iron Oxide Nanoparticles in Non-Ionic Surfactant Medium.J.Nanopart.Res.,2009,11(3):701 -706
    [1]李和兴,朱建.特定结构光催化剂的制备及其构效关系.催化学报,2008,29(1):91-98
    [2]Raveendran R Eswaramoorthy M,Bindu U,Chatterjee M,Hakuta Y,Kawanami H,Mizukami F.Template-Free Formation of Meso-Structured Anatase TiO_2 with Spherical Morphology.J.Phys.Chem.C,2008,112(50):20007 -20011
    [3]Xu J H,Dai W L,Li J X,Cao y,Li H X,Fan K N.Novel Core-Shell Structured Mesoporous Titania Microspheres:Preparation,Characterization and Excellent Photocatalytic Activity in Phenol Abatement.J.Photochem.Photobiol.A,2008,195(2 - 3):284 - 294
    [4]Wu G S,Wang J P,Thomas D F,Chen A C.Synthesis of F-Doped Flower-Like TiO_2Nanostructures with High Photoelectrochemical Activity.Langmuir,2008,24(7):3503 -3509
    [5]Ye M M,Chen Z L,Wang W S,Zhen L,Shen J M.Template-Free Hydrothermal Preparation of Mesoporous TiO_2 Microspheres on a Large Scale.Chem.Lett.,2008,37(9):938 - 939
    [6]Masuda Y,Kato K.Nanocrystal Assembled TiO_2 Particles Prepared from Aqueous Solution.Cryst.Growth Des.,2008,8(9):3213 -3218
    [7]Li H X,Bian Z F,Zhu J,Zhang D Q,Li G S,Huo Y N,Li H,Lu Y F.Mesoporous Titania Spheres with Tunable Chamber Stucture and Enhanced Photocatalytic Activity.J.Am.Chem.Soc.,2007,129(27):8406 - 8407
    [8]Li X X,Xiong Y J,Li Z Q,Xie Y.Large-Scale Fabrication of TiO_2 Hierarchical Hollow Spheres.Inorg.Chem.,2006,45(9):3493 - 3495
    [9]Li X X,Xiong Y J,Zou L F,Wang M T,Xie Y.Polymer-Induced Generation of Anatase TiO_2Hollow Nanostructures.Microporous Mesoporous Mater.,2008,112(1 - 3):641 - 646
    [10]Zhang Y F,Feng X H,Liu H,Wang C C,Liu J Z,Wei Y.Self-Assembly TiO_2 Hierarchical Hollow Microspheres with Rutile Nanorods by Template-Free Hydrothermal Method.Chem.Lett.,2008,37(12):1264-1265
    [11]Yang H G,Zeng H C.Preparation of Hollow Anatase TiO_2 Nanospheres via Ostwald Ripening.J.Phys.Chem.B,2004,108(11):3492 -3495
    [12]Ho W K,Yu J C,Lee S C.Synthesis of Hierarchical Nanoporous F-doped TiO_2 Spheres with Visible Light Photocatalytic Activity.Chem.Commun.,2006,(10):1115 - 1117
    [13]Zhou J K,Lv L,Yu J Q,Li H L,Guo P Z,Sun H,Zhao X S.Synthesis of Self-Organized Polycrystalline F-doped TiO_2 Hollow Microspheres and Their Photocatalytic Activity under Visible Light.J.Phys.Chem.C,2008,112(14):5316 - 5321
    [14]Pan J H,Zhang X W,Du A J H,Sun D D,Leckie J O.Self-Etching Reconstruction of Hierarchically Mesoporous F-TiO_2 Hollow Microspherical Photocatalyst for Concurrent Membrane Water Purifications.J.Am.Chem.Soc.,2008,130(34):11256 - 11257
    [15]Liu Z Y,Sun D D,Guo P,Leckie J O.One-Step Fabrication and High Photocatalytic Activity of Porous TiO_2 Hollow Aggregates by Using a Low-Temperature Hydrothermal Method Without Templates.Chem.Eur.J.,2007,13(6):1851 - 1855
    [16]施尔畏,陈之战,元如林,郑燕青.水热结晶学.北京:科学出版社,2004.
    [17]Wang M,Huang Q L,Zhong H X,Chen X T,Xue Z L,You X Z.Formation of YF_3Nanocrystals and Their Self-Assembly into Hollow Peanut-Like Structures.Cryst.Growth Des.,2007,7(10):2106 - 2111
    [18]Li J G,Yang X J,Ishigaki T.Urea Coordinated Titanium Trichloride Ti~Ⅲ[OC(NH)_2]_6Cl_3:A Single Molecular Precursor Yielding Highly Visible Light Responsive TiO_2 Nanocrystallites.J.Phys.Chem.B,2006,110(30):14611 - 14618
    [19]Wang Y W,Zhang L Z,Deng K J,Chen X Y,Zou Z G.Low Temperature Synthesis and Photocatalytic Activity of Rutile TiO_2 Nanorod Superstructures.J.Phys.Chem.C,2007,111(6):2709 - 2714
    [1]Igarashi A,Ichikawa N,Sato S,Takahashi R,Sodesawa T.Dehydration of Butanediols over CeO_2 Catalysts with Different Particle Sizes.Appl.Catal.A,2006,300(1):50 - 57
    [2]Masui T,Yamamoto M,Sakata T,Mori H,Adachi G.Synthesis of BN-Coated CeO_2 Fine Powder as a New UV Blocking Material.J.Mater.Chem.,2000,10(2):353 - 357
    [3]Kharton V V,Figueiredo F M,Navarro L,Naumovich E N,Kovalevsky A V,Yaremchenko A A,Viskup A P,Carneiro A,Marques F M B,Frade J R.Ceria-Based Materials for Solid Oxide Fuel Cells.J.Mater.Sci.,2001,36(5):1105 - 1117
    [4]Izu N,Shin W,Murayama N,Kanzaki S.Resistive Oxygen Gas Sensors Based on CeO_2 Fine Powder Prepared Using Mist Pyrolysis. Sens. Actuators B, 2002, 87 (1): 95 - 98
    [5] Corma A, Atienzar P, Garcia H, Chane-Ching J Y. Hierarchically Mesostructured Doped CeO_2 with Potential for Solar-Cell Use. Nat. Mater., 2004, 3 (6): 394 - 397
    [6] Mai H X, Sun L D, Zhang Y W, Si R, Feng W, Zhang H P, Liu H C, Yan C H. Shape-Selective Synthesis and Oxygen Storage Behavior of Ceria Nanopolyhedra, Nanorods, and Nanocubes. J. Phys. Chem. B, 2005, 109 (51): 24380 - 24385
    [7] Ji P, Zhang J L, Chen F, Anpo M. Ordered Mesoporous CeO_2 Synthesized by Nanocasting from Cubic Ia3d Mesoporous MCM-48 Silica: Formation, Characterization and Photocatalytic Activity. J. Phys. Chem. C, 2008, 112 (46): 17809 -17813
    [8] Zhou H P, Zhang Y W, Mai H X, Sun X, Liu Q, Song W G, Yan C H. Spontaneous Organization of Uniform CeO_2 Nanoflowers by 3D Oriented Attachment in Hot Surfactant Solutions Monitored with an in Situ Electrical Conductance Technique. Chem. Eur. J., 2008, 14 (11): 3380-3390
    [9] Zhang J, Ju X, Wu Z Y, Liu T, Hu T D, Xie Y N. Structural Characteristics of Cerium Oxide Nanocrystals Prepared by the Microemulsion Method. Chem. Mater., 2001, 13 (11): 4192 -4197
    [10] Zhou X D, Huebner W, Anderson H U. Processing of Nanometer-Scale CeO_2 Particles. Chem. Mater., 2003, 15 (2): 378 -382
    [11] Sathyamurthy S, Leonard K J, Dabestani R T, Paranthaman M P. Reverse Micellar Synthesis of Cerium Oxide Nanoparticles. Nanotechnology, 2005, 16 (9): 1960 - 1964
    [12] Liu Y L, He S T, Uehara M, Maeda H. Wet Chemical Preparation of Well-dispersed Colloidal Cerium Oxide Nanocrystals. Chem. Lett., 2007, 36 (6): 764 - 765
    [13] Hu C G , Zhang Z W , Liu H , Gao P X , Wang Z L. Direct Synthesis and Structure Characterization of Ultrafine CeO_2 Nanoparticles. Nanotechnology, 2006, 17 (24): 5983 -5987
    [14] Maensiri S, Masingboon C, Laokul P, Jareonboon W, Promarak V, Anderson P L, Seraphin S. Egg White Synthesis and Photoluminescence of Platelike Clusters of CeO_2 Nanoparticles. Cryst. Growth. Des., 2007, 7 (5): 950 - 955
    [15] Du N, Zhang H, Chen B D, Ma X Y, Yang D R. Ligand-Free Self-Assembly of Ceria Nanocrystals into Nanorods by Oriented Attachment at Low Temperature. J. Phys. Chem. C, 2007, 111(34): 12677-12680
    [16] Zhang D S, Fu H X, Shi L Y, Pan C S, Li Q, Chu Y L, Yu W J. Synthesis of CeO_2 Nanorods via Ultrasonication Assisted by Polyethylene Glycol. Inorg. Chem., 2007, 46 (7): 2446 -2451
    [17] Sun C W, Li H, Zhang H R, Wang Z X, Chen L Q. Controlled Synthesis of CeO_2 Nanorods by a Solvothermal Method. Nanotechnology, 2005, 16 (9): 1454 - 1463
    [18] Ahniyaz A, Sakamoto Y, Bergstrom L. Tuning the Aspect Ratio of Ceria Nanorods and Nanodumbbells by a Face-Specific Growth and Dissolution Process. Cryst. Growth Des., 2008,8(6): 1798-1800
    [19] Tang B, Zhuo L H, Ge J C, Wang G L, Shi Z Q, Niu J Y. A Surfactant-Free Route to Single-Crystalline CeO_2 Nanowires. Chem. Commun., 2005, (28): 3565 - 3567
    [20] Tang C C, Bando Y, Liu B D, Golberg D. Cerium Oxide Nanotubes Prepared from Cerium Hydroxide Nanotubes. Adv. Mater., 2005, 17 (24): 3005 - 3009
    [21] Yu K L, Ruan G L, Ben Y H, Zou J J. Convenient Synthesis of CeO_2 nanotubes. Mater. Sci. Eng. B, 2007, 139 (2 - 3): 197 - 200
    [22] Zhang D S, Fu H X, Shi L Y, Fang J H, Li Q. Carbon Nanotube Assisted Synthesis of CeO_2 Nanotubes. J. Solid State Chem., 2007, 180 (2): 654 - 660
    [23] Yu R B, Yan L, Zheng P, Chen J, Xing X R. Controlled Synthesis of CeO_2 Flower-Like and Well-Aligned Nanorod Hierarchical Architectures by a Phosphate-Assisted Hydrothermal Route. J. Phys. Chem. C, 2008, 112 (50): 19896 - 19900
    [24] Li Z X, Li L L, Yuan Q, Feng W, Xu J, Sun L D, Song W G, Yan C H. Sustainable and Facile Route to Nearly Monodisperse Spherical Aggregates of CeO_2 Nanocrystals with Ionic Liquids and Their Catalytic Activities for CO Oxidation. J. Phys. Chem. C, 2008, 112 (47): 18405-18411
    [25] Chen G Z, Xu C X, Song X Y, Xu S L, Ding Y, Sun S X. Template-Free Synthesis of Single-Crystalline-Like CeO_2 Hollow Nanocubes. Cryst. Growth Des., 2008, 8 (12): 4449 -4453
    [26] Sun C W, Sun J, Xiao G L, Zhang H R, Qiu X P, Li H, Chen L Q. Mesoscale Organization of Nearly Monodisperse Flowerlike Ceria Microspheres. J. Phys. Chem. B, 2006, 110 (27): 13445-13452
    [27] Zhang G J. Shen Z R, Liu M, Guo C H, Sun P C, Yuan Z Y, Li B H, Ding D T, Chen T H. Synthesis and Characterization of Mesoporous Ceria with Hierarchical Nanoarchitecture Controlled by Amino Acids. J. Phys. Chem. B, 2006, 110 (51): 25782-25790
    [28] Zhou F, Zhao X M, Xu H, Yuan C G CeO_2 Spherical Crystallites: Synthesis, Formation Mechanism, Size Control, and Electrochemical Property Study. J. Phys. Chem. C, 2007. 111 (4): 1651-1657
    [29] Chen S F, Yu S H, Yu B, Ren L, Yao W T, Colfen H. Solvent Effect on Mineral Modification: Selective Synthesis of Cerium Compounds by a Facile Solution Route. Chem. Eur. J., 2004, 10 (12): 3050-3058
    [30] Han Z H. Guo N, Tang K B, Yu S H, Zhao H Q, Qian Y T. Hydrothermal Crystal Growth and Characterization of Cerium Hydroxycarbonates. J. Cryst. Growth, 2000, 219 (3): 315-318
    [31] Qi R J , Zhu Y J , Cheng G F, Huang Y H. Sonochemical Synthesis of Single-Crystalline CeOHCO_3 Rods and Their Thermal Conversion to CeO_2 Rods. Nanotechnology, 2005, 16 (11): 2502-2506
    [32] Wang S F, Gu F, Li C Z, Cao H M. Shape-Controlled Synthesis of CeOHCO_3 and CeO_2 Microstructures. J. Cryst. Growth, 2007, 307 (2): 386 - 394
    [33] Guo Z Y, Du F L, Li G C, Cui Z L. Synthesis of Single-Crystalline CeCO_3OH with Shuttle Morphology and Their Thermal Conversion to CeO_2. Cryst. Growth Des., 2008, 8 (8): 2674-2677
    [34] Colfen H. Antonietti M. Mesocrystals: Inorganic Superstructures Made by Highly Parallel Crystallization and Controlled Alignment.Angew.Chem.Int.Ed.,2005,44(35):5576 -5591
    [35]童林荟.环糊精化学--基础与应用.北京:科学出版社,2001.
    [36]Sun X H,Zheng C M,Zhang F X,Li L D,Yang Y L,Wu G J,Guan N J.β-Cyclodextrin-Assisted Synthesis of Superparamagnetic Magnetite Nanoparticles from a Single Fe(Ⅲ) Precursor.J.Phys.Chem.C,2008,112(44):17148 - 17155
    [37]Xu L,Jiang L P,Zhu J J.Sonochemical Synthesis and Photocatalysis of Porous Cu_2O Nanospheres with Controllable Structures.Nanotechnology,2009,20(4):045605
    [38]F Huang,J F Banfield.Size-Dependent Phase Transformation Kinetics in Nanocrystalline ZnS.J.Am.Chem.Soc.,2005,127(12):4523 -4529
    [39]Kirboga S,(O|¨)ner M.Inhibition of Calcium Oxalate Crystallization by Graft Copolymers.Cryst.Growth Des.,2009,9(5):2159 - 2167
    [40]Chaianansutcharit S,Mekasuwandumrong O,Praserthdam P.Effect of Organic Solvents on Iron Oxide Nanoparticles by the Solvothermal Method.Cryst.Growth Des.,2006,6(1):40 -45
    [41]Zeng J,Xin M D,Li K W,Wang H,Yan H,Zhang W J.Transformation Process and Photocatalytic Activities of Hydrothermally Synthesized Zn_2SnO_4 Nanocrystals.J.Phys.Chem.C,2008,112(11):4159-4167
    [42]Zou B S,Xiao L Z,Li T J,Zhao J L,Lai Z Y,Gu S W.Absorption Redshift in TiO_2 Ultrafine Particles with Surfacial Dipole Layer.Appl.Phys.Lett.,1991,59(15):1826-1828
    [1] Iijima S. Helical Microtubules of Graphitic Carbon. Nature, 1991, 354 (6348): 56 - 58
    
    [2] Dai H J. Carbon Nanotubes: Synthesis, Integration, and Properties. Acc. Chem. Res., 2002, 35(12): 1035-1044
    [3] Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of Carbon Nanotubes. Chem. Rev., 2006, 106(3): 1105-1136
    
    [4] Li X, Chen W X, Zhao J, Xing W, Xu Z D. Microwave Polyol Synthesis of Pt/CNTs Catalysts: Effects of pH on Particle Size and Electrocatalytic Activity for Methanol Electrooxidization. Carbon, 2005, 43 (10): 2168 - 2174
    [5] Chen W X, Tu J P, Wang L Y, Gan H Y, Xu Z D, Zhang X B. Tribological Application of Carbon Nanotubes in a Metal-Based Composite Coating and Composites. Carbon, 2003, 41 (2): 215-222
    [6] Chen J L, Li Y D, Ma Y M, Qin Y N, Chang L. Formation of Bamboo-Shaped Carbon Filaments and Dependence of Their Morphology on Catalyst Composition and Reaction Conditions. Carbon, 2001, 39 (10): 1467 - 1475
    [7] Zhang X X, Li Z Q, Wen G H, Fung K K, Chen J L, Li Y D. Microstructure and Growth of Bamboo-Shaped Carbon Nanotubes. Chem. Phys. Lett., 2001, 333 (6): 509-514
    [8] He C N, Zhao N Q, Shi C S, Du X W, Li J J. Synthesis of Binary and Triple Carbon Nanotubes over Ni/Cu/Al_2O_3 Catalyst by Chemical Vapor Deposition. Mater. Lett., 2007, 61 (27): 4940 - 4943
    [9] Wu X C, Tao Y R, Lu Y N, Dong L, Hu Z. High-Pressure Pyrolysis of Melamine Route to Nitrogen-Doped Conical Hollow and Bamboo-Like Carbon Nanotubes. Diamond Relat. Mater., 2006, 15 (1): 164 - 170
    [10] Deng D, Lee J Y. One-Step Synthesis of Polycrystalline Carbon Nanofibers with Periodic Dome-Shaped Interiors and Their Reversible Lithium-Ion Storage Properties. Chem. Mater., 2007, 19 (17): 4198-4204
    
    [11] Shanmugam S, Gedanken A. Generation of Hydrophilic, Bamboo-Shaped Multiwalled Carbon Nanotubes by Solid-State Pyrolysis and Its Electrochemical Studies. J. Phys. Chem. B, 2006, 110 (5): 2037-2044
    [12] Shanmugam S, Gedanken A. Electrochemical Properties of Bamboo-Shaped Multiwalled Carbon Nanotubes Generated by Solid State Pyrolysis. Electrochem. Commun., 2006, 8 (7): 1099-1105
    [13] Saito Y, Yoshikawa T. Bamboo-Shaped Carbon Tube Filled Partially with Nickel. J. Crystal. Growth., 1993, 134(1 -2): 154-156
    [14] Du J M, Kang D J. Synthesis of Carbon Nanostructures with Unique Morphologies via a Reduction-Catalysis Reaction Route. Mater. Res. Bull., 2006, 41 (10): 1785 - 1790
    [15] Wu J, Hamaoui B E, Li J, Zhi L, Kolb U, Mullen K. Solid-State Synthesis of "Bamboo-Like" and Straight Carbon Nanotubes by Thermolysis of Hexa-peri-hexabenzocoronene-Cobalt Complexes. Small, 2005, 1 (2): 210-212
    [16] Deck C P, Vecchio K. Prediction of Carbon Nanotube Growth Success by the Analysis of Carbon-Catalyst Binary Phase Diagrams. Carbon, 2006, 44 (2): 267 - 275
    [17] Takagi D, Homma Y, Hibino H, Suzuki S, Kobayashi Y. Single-Walled Carbon Nanotube Growth from Highly Activated Metal Nanoparticles. Nano Lett., 2006, 6 (12): 2642 - 2645
    [18] Ritschel M, Leonhardt A, Elefant D, Oswald S, Bulchner B. Rhenium-Catalyzed Growth Carbon Nanotubes. J. Phys. Chem. C, 2007, 111 (24): 8414-8417
    [19] Reyhani A, Mortazavi S Z, Akhavan O, Moshfegh A Z, Lahooti Sh. Effect of Ni, Pd and Ni-Pd Nano-Islands on Morphology and Structure of Multi-Wall Carbon Nanotubes. Appl. Surf. Sci., 2007, 253 (20): 8458 - 8462
    [20] Tao X Y, Zhang X B, Cheng J P, Liu F, Li Y, Van Tendeloo G. Controllable Synthesis of Novel One-Dimensional Carbon Nanomaterials on an Alkali-Element-Modified Cu Catalyst. Nanotechnology, 2006, 17 (1): 224 - 226
    [21] Lin J H, Chen C S, Ma H L, Hsu C Y, Chen H W. Synthesis of MWCNTs on CuSO_4/Al_2O_3 Using Chemical Vapor Deposition from Methane. Carbon, 2007, 45 (1): 223 - 225
    [22] Zhou W W, Han Z Y, Wang J Y, Zhang Y. Jin Z, Sun X, Zhang Y W, Yan C H, Li Y. Copper Catalyzing Growth of Single-Walled Carbon Nanotubes on Substrates. Nano Lett., 2006. 6 (12): 2987-2990
    [23] Zhang S J, Li L D, Xue B, Chen J X, Guan N J, Zhang F X. Selective Catalytic Reduction of Nitric Oxide with Propane over Ni-Al_2O_3: Effect of Ni Loading. React. Kinet. Catal. Lett., 2006, 89(1): 81-87
    
    [24] Dervishi E, Li Z, Biris A R, Lupu D, Trigwell S, Biris A S. Morphology of Multi-Walled Carbon Nanotubes Affected by the Thermal Stability of the Catalyst System. Chem. Mater., 2007, 19(2): 179-184
    
    [25] Mahanandia P, Vishwakarma P N, Nanda K K, Prasad V, Barai K, Mondal A K, Sarangi S, Dey G K, Subramanyam S V. Synthesis of Multi-Wall Carbon Nanotubes by Simple Pyrolysis. Solid State Commun., 2008, 145 (3): 143-148
    [26] Su L F, Wang J N, Yu F, Sheng Z M. Continuous Synthesis of Y-Junction Carbon Nanotubes by Catalytic CVD. Chem. Vap. Deposition, 2005, 11 (8 - 9): 351 - 354
    [27] Schaper A K, Hou H, Greiner A, Schneider R, Phillipp F. Copper Nanoparticles Encapsulated in Multi-Shell Carbon Cages. Appl. Phys. A, 2004, 78 (1): 73 - 77
    [28] Chang F W, Kuo W Y, Lee K C. Dehydrogenation of Ethanol over Copper Catalysts on Rice Husk Ash Prepared by Incipient Wetness Impregnation. Appl. Catal. A. 2003, 246 (2): 253 - 264
    [29] Huang L M, Cui X D, White B, O'Brien S P. Long and Oriented Single-Walled Carbon Nanotubes Grown by Ethanol Chemical Vapor Deposition. J. Phys. Chem. B, 2004, 108 (42): 16451 - 16456
    [30] Smith D K, Lee D C, Korgel B A. High Yield Multiwall Carbon Nanotube Synthesis in Supercritical Fluids. Chem. Mater., 2006, 18(14): 3356 - 3364
    [31] Zhao N Q, He C N, Ding J, Zou T C, Qiao Z J, Shi C S, Du X W, Li J J, Li Y D. Bamboo-Shaped Carbon Nanotubes Produced by Catalytic Decomposition of Methane over Nickel Nanoparticles Supported on Aluminum.J.Alloys.Compd.,2007,428(1 - 2):79-83
    [32]Dupuis A-C.The Catalyst in the CCVD of Carbon Nanotubes-a Review.Prog.Mater.Sci.,2005,50(8):929 - 961
    [33]Berner A,Fuks D,Ellis D E,Mundim K,Dorfman S.Formation of Nano-Crystalline Structure at the Interface in Cu-C Composite.Appl.Surf.Sci.,1999,144 - 145:677 - 681

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700