2.25Cr1Mo钢中磷的平衡及应力引起的非平衡晶界偏聚
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溶质元素(杂质或合金元素)在晶界上的偏聚对工程材料的力学行为有着深刻的影响,多年来一直是冶金工作者和材料学工作者感兴趣的问题。溶质原子的晶界偏聚可分为平衡晶界偏聚和非平衡晶界偏聚。对平衡偏聚的研究起步比较早,理论趋于成熟,但对非平衡偏聚的研究目前还存在很多空白和未知的领域,尤其是应力作用引起的非平衡晶界偏聚。以前研究的晶界偏聚行为主要是无应力状态下的,但材料在服役过程中通常要受到应力的作用。因此,研究应力引起的非平衡晶界偏聚对工程实践具有更重要的意义。
     Cr-Mo低合金结构钢由于其优异的高温力学性能而广泛应用于电力、核能及石油化学工业。然而,当材料在高温高压环境中服役时,P、S、Sn和Sb等杂质元素将在晶界偏聚,使晶界脆化,导致材料的断裂韧性降低,韧-脆转变温度升高。晶界脆化降低了材料的服役性能,使其更容易发生突然的脆性断裂,引起严重的事故。P是钢中一种典型的晶界致脆元素,研究钢中P在高温高压条件下的偏聚行为不仅可以用来指导工程实践,还可以完善晶界偏聚理论。鉴于2.25Cr1Mo钢是最广泛使用的Cr-Mo低合金结构钢之一,本文研究了该钢中P的平衡晶界偏聚和应力引起的非平衡晶界偏聚。
     对于平衡晶界偏聚,将试样经过980℃淬火和650℃回火后,在480、520和560℃分别时效不同的时间,然后用俄歇电子能谱仪测量P和Mo的晶界浓度。利用Seah模型对不同条件下的P和Mo的晶界浓度进行分析,得到P和Mo的偏聚自由能分别为38和17kJ/mol;P-Mo相互作用系数很小,它们之间的相互作用很弱。
     探讨了P晶界浓度与韧-脆转变温度之间的关系。将不同时效条件下的试样进行冲击试验并用扫描电子显微镜对断口表面进行观察,通过断口形貌分析得到韧-脆转变温度(断口形貌转变温度)。通过比较不同条件下的韧-脆转变温度与P晶界浓度数据发现,韧-脆转变温度与P晶界浓度之间存在一个线性关系。利用该线性关系,结合平衡晶界偏聚动力学模型,建立了一个温度-时间脆化图。利用该图,可以预测任意温度下经过任意时间后的韧-脆转变温度。探讨了P晶界偏聚对沿晶断裂的影响,发现P晶界偏聚促进沿晶断裂,并且随着冲击试验温度的降低,断口依次呈现韧性断裂、沿晶断裂和解理断裂。
     对于应力引起的非平衡晶界偏聚,将试样经过980℃淬火和650℃回火后,在520℃无应力时效1000h使晶界浓度达到热力学平衡,然后在40、200和350MPa拉应力下分别时效不同的时间,用俄歇电子能谱仪测量P晶界浓度,得到P偏聚动力学。40MPa拉应力引起的偏聚动力学有一个偏聚峰;350MPa拉应力引起的偏聚动力学有两个偏聚峰;200MPa拉应力引起的偏聚动力学有两个偏聚峰和一个贫化谷。同时测量了这些条件下的蠕变曲线,40MPa拉应力下几乎不发生蠕变,200和350MPa拉应力下发生了蠕变,且350MPa拉应力下的蠕变更加明显。综合分析后认为在应力时效过程中,弹性变形和蠕变变形共同影响P的偏聚动力学。
     通过考虑空位流和复合体流,建立了一个低应力引起的非平衡晶界偏聚动力学模型。利用该模型,可以预测不同条件(应力、温度、晶粒尺寸、空位迁移能和复合体的迁移能等)下的偏聚动力学。模拟了40 MPa拉应力下的P偏聚动力学,结果与实验符合良好。
     本工作的完成促进了晶界偏聚和晶界脆化现象的认识,进一步完善了晶界偏聚理论,对工程实践具有重要的指导意义。
Solute (impurity or alloying elements) segregation at grain boundaries has an important effect on the mechanical behavior of engineering materials. It has been an interesting topic to metallurgists and material engineers. Solute segregation at grain boundaries may be clarified into equilibrium segregation and non-equilibrium segregation. Studies of equilibrium grain boundary segregation have started long before, and its theory has approached almost perfect. However, there are many things unknown about the non-equilibrium grain boundary segregation, especially the stress-induced non-equilibrium segregation. The segregation behaviors studied before were mainly in a non-stress state. However, the materials in service are usually subject to an applied stress, and thus the research into stress-induced non-equilibrium grain boundary segregation is more important in engineering practice.
     Due to their excellent high-temperature mechanical properties, Cr-Mo low alloy structural steels are widely used in the power and petrochemical industries. Nevertheless, when the materials serve in a high temperature and pressure environment, impurities, such as phosphorus, sulfur, tin and antimony, would segregate to the grain boundary, making it embrittled. The fracture toughness of the materials is lowered, and the ductile-to-brittle transition temperature (DBTT) is increased. Grain boundary embrittlement deteriorates the service performance, making the materials fracture intergranularly, which may cause disasters. Since phosphorus is a typical grain boundary embrittling element in steel, investigation into the grain boundary segregation of phosphorus in a high temperature and pressure condition can not only guide the engineering practice, but also improve the grain boundary segregation theory. Owing to the fact that 2.25Cr1Mo steel is one of the most widely used Cr-Mo steels, equilibrium and stress-induced non-equilibrium grain boundary segregations of phosphorus in this steel were examined.
     For equilibrium grain boundary segregation, the samples were quenched at 980oC, tempered at 650oC, and subsequently aged at 480, 520 and 560oC for different times, followed by Auger electron spectroscopy measurements of phosphorus and molybdenum grain boundary concentrations. With the use of Seah’s model, the thermodynamics of phosphorus and molybdenum were analyzed. The free energies of segregation of phosphorus and molybdenum were approximately 38 and 17 kJ/mol, respectively, and the interaction between them was very weak in segregation.
     The relationship between grain boundary concentration of phosphorus and DBTT was explored. The samples in different ageing conditions were impact fractured and the resulting fracture surfaces were analysed using scanning electron microscopy. The DBTT was obtained, characterized by fracture appearance transition temperature. It was found that there is a linear relationship between DBTT and phosphorus boundary concentration. By use of this relationship in conjunction with the kinetic model of equilibrium grain boundary segregation, a temperature-time embrittlement diagram was established. From the diagram, the DBTT of the sample aged for any time at any temperature can be predicted. The effect of phosphorus boundary segregation on intergranular fracture was explored, indicating that phosphorus boundary segregation facilitated the intergranular fracture and the fracture modes were ductile fracture, intergranular fracture and cleavage fracture when the test temperature goes from high to low levels.
     For stress-induced non-equilibrium grain boundary segregation, after quenching at 980oC and tempering at 650oC, the samples were aged for 1000h at 520oC without stress to enable the boundary concentration to reach themal equilibrium. Subsequently, the samples were stress aged for different periods of time and the stress levels were 40, 200 and 350 MPa, respectively. The phosphorus boundary concentration was measured using Auger electron spectroscopy so as to obtain the segregation kinetics. For the 40 MPa stress ageing, there was one segregation peak over its equilibrium segregation level. For the 350 MPa stress ageing, there were two segregation peaks over the equilibrium segregation level. For the 200 MPa stress ageing, there were two segregation peaks over the equilibrium level, and between them there was a depletion trough below the equilibrium level. It was proposed that elastic deformation and creep deformation could both affect the phosphorus segregation kinetics during stress ageing.
     Based on the fluxes of vacancies and complexes, a kinetic model of stress induced non-equilibrium grain boundary segregation was established. The segregation kinetics of phosphorus during stress ageing were predicted under different conditions such as stress, temperature, grain size, and migration energies of vacancies and complexes. The phosphorus segregation kinetics under 40 MPa tensile stress was simulated, and model predictions were well consistent with the experimental results.
     The outcomes of the present work may promote understanding of grain boundary segregation and embrittlement, and improve the segregation theory. Accodingly, it is of importance to engineering practice.
引文
1 D. McLean. Grain Boundaries in Metals. Oxford University Press, 1957
    2 M. Guttmann. Equilibrium Segregation in a Ternary Solution: A Model for Temper Embrittlement. Surface Science. 1975, 53(1): 213~227
    3 K. T. Aust, R. E. Hanneman, P. Niessen, J. H. Westbrook. Solute Induced Hardening Near Grain Boundaries in Zone Refined Metals. Acta Metallurgica. 1968, 16(3): 291~302
    4 T. R. Anthony. Solute Segregation in Vacancy Gradients Generated by Sintering and Temperature Changes. Acta Metallurgica. 1969,17(5): 603~609
    5 T. M. Williams. Segregation and Effects of Boron in an Austenitic Stainless Steel. Metal Science J. 1972, 6(1): 68~69
    6 T. M. Williams, A. M. Stoneham, D. R. Harries. Segregation of Boron to Grain Boundaries in Solution-Treated Type 316 Austenitic Stainless Steel. Metal Science. 1976, 10(1): 14~19
    7 R. G. Faulkner. Non-Equilibrium Grain-Boundary Segregation in Austenitic Alloys. Journal of Materials Science. 1981, 16(2): 373~383
    8 T. D. Xu. The Critical Time and Critical Cooling Rate of Non-Equilibrium Grain-Boundary Segregation. Journal of Materials Science Letters. 1988, 7(3): 241~242
    9 T. D. Xu. Non-Equilibrium Grain-Boundary Segregation Kinetics. Journal of Materials Science. 1987, 22(1): 337~345
    10 T. D. Xu, S. H. Song. A Kinetic Model of Non-Equilibrium Grain-Boundary Segregation. Acta Metallurgica. 1989, 37(9): 2499~2506
    11 T. D. Xu. Non-Equilibrium Cosegregation to Grain Boundaries. Script Materialia. 1997, 37(11): 1643~1650
    12 S. H. Song, T. D. Xu. Combined Equilibrium and Non-Equilibrium Segregation Mechanism of Temper Embrittlement. Journal of Materials Science. 1994, 29(1): 61~66
    13 S. H. Song, R. G. Faulkner, P. E. J. Flewitt. Effect of Boron on Phosphorus-Induced Temper Embrittlement. Journal of Materials Science.1999, 34(22): 5549~5556
    14 S. H. Song, R. G. Faulkner, P. E. J. Flewitt. Combined Equilibrium and Non-Equilibrium Segregation Treatment of Temper Embrittlement in Low Alloy Steels. Materials Science and Technology. 2001, 17(5): 523~528
    15 R. G. Faulkner, S. H. Song, P. E. J. Flewitt. Determination of Impurity-Point Defect Binding Energies in Alloys. Materials Science and Technology. 1996, 12(11): 904~910
    16 S. H. Song, L. Q. Weng. Diffusion of Vacancy-Solute Complexes in Alloys. Materials Science and Technology. 2005, 21(3): 305~310
    17 S. H. Song, T. D. Xu, Z. X. Yuan. Determination of Critical Time and Critical Cooling Rate of Non-Equilibrium Grain-Boundary Segregation. Acta Metallurgica. 1989, 37(1): 319~323
    18 T. D. Xu, B. Y. Cheng. Kinetics of Non-Equilibrium Grain-Boundary Segregation. Progress in Materials Science. 2004, 49(2): 109~208
    19徐庭栋.非平衡晶界偏聚动力学和晶间脆性断裂.科学出版社, 2006
    20 T. Shinoda, T. Nakamura. The Effects of Applied Stress on the Intergranular Phosphorus Segregation in a Chromiun Steel. Acta Matallurgica. 1981, 29(9): 1631~1636
    21 R. D. K. Misra. Issues Concerning the Effects of Applied Tensile Stress on Intergranular Segregation in a Low Alloy Steel. Acta Materialia, 1996, 44(3): 885~890
    22 T. D. Xu. A Model for Intergranular Segregation/Dilution Induced by Applied Stress. Journal of Materials Science. 2000, 35(22): 5621~5628
    23 T. D. Xu. Grain-Boundary Anelastic Relaxation and Non-Equilibrium Dilution Induced by Compressive Stress and Its Kinetic Simulation. Philosophical Magazine. 2007, 87(10): 1581~1599
    24 T. D. Xu. Creating and Destroying Vacancies in Solids and Non-Equilibrium Grain-Boundary Segregation. Philosophical Magazine. 2003, 83(7): 889~899
    25 A. D. Marwick. Segregation in Irradiated Alloys: The Inverse Kirkendall Effect and the Effect of Constitution on Void Swelling. Journal of Physics F: Metal Physics. 1978, 8: 1849~1861
    26 P. R. Okamoto, L. E. Rehn. Radiation-Induced Segregation in Binary and Ternary Alloys. Journal of Nuclear Materials. 1979, 83(1): 2~23
    27 R. G. Faulkner, S. H. Song, P. E. J. Flewitt. A Model Describing Neutron Irradiation-Induced Segregation to Grain Boundaries in Dilute Alloys. Metallurgical and Materials Transactions A. 1996, 27(11): 1543~1940
    28 R. G. Faulkner, Shenhua Song, P. E. J. Flewitt, M. Victoria, P. Marmy. Grain Boundary Segregation under Neutron Irradiation in Dilute Alloys. Journal of Nuclear Materials. 1998, 255(2-3): 189~209
    29 S. H. Song, Q. Zhang, L. Q. Weng. Deformation-Induced Non-Equilibrium Grain Boundary Segregation in Dilute Alloys. Materials Science and Engineering A. 2008, 473(1-2): 226~232
    30 M. Militzer, W. P. Sun, J. J. Jonas. Modelling the Effect of Deformation-Induced Vacancies on Segregation and Precipitation. Acta Metallurgica et Materialia. 1994, 42(1): 133~141
    31李永红.工业用钢2.25Cr1Mo性能分析.机械研究与应用. 2006, 4(19):42~45.
    32孙长辉,王红.钢的两类国回火脆性综述.矿山机械. 2003, 7: 75~78
    33郑修麟,乔生儒,秦熊浦.材料的力学性能.西北工业大学出版社, 2002: 46~50
    34刘瑞良. 2.25Cr1Mo钢中P的平衡晶界偏聚及其对钢的韧脆转变温度的影响.哈尔滨工业大学硕士学位论文. 2006: 3
    35潘金生,仝健民,田民波.材料科学基础.清华大学出版社, 2006
    36 N. S. Cheruvu, HB. B. SethH. The Influences of Impurity Content, Tensile Strength, and Grain Size on In-Service Temper Embrittlement of CrMoV Steels. Metallurgical and Materials Transactions A. 1989, 20(11): 2345~2354
    37 R. Viswanathan. Temper Embrittlement in a Ni-Cr Steel Containing Phosphorus as Impurity. Metallurgical and Materials Transactions B. 1971, 2: 3
    38 M. P. Seah. Grain Boundary Segregation and the T-t Dependence of Temper Brittleness. Acta Metallurgica. 1977, 25(3): 345~357
    39付贵勤,朱苗勇.磷元素在钢中的晶界偏聚.鞍钢技术. 2006, 3: 5~9
    40 X. L. He, Y. Y. Chu, J. J. Jonas. The Grain Boundary Segregation of Boron during Isothermal Holding. Acta Metallurgica. 1989, 37(11): 2905~2916
    41 S. Gay, A. Fraczkiewicz, M. Biscondi. Mechanisms of the Intergranular Segregation of Boron in (B2) FeAl Alloys. Materials Science Forum. 1999,294-296: 453~456
    42 V. Vorlicek, P. E. J. Flewitt. Cooling Induced Segregation of Impurity Elements to Grain Boundaries in Fe-3wt%Ni Alloys, 2.25wt%Cr-1wt%Mo Steel and Submerged ARC Weld Metal. Acta Metallurgica et Materialia. 1994, 42(10): 3309~3320
    43 P. Sevc, J. Janovec, M. Lucas, H. J. Grabke. Kinetics of Phosphorus Segregation in 2.7Cr-0.7Mo-0.3V Steels with Different Phosphorus Contents. Steel Research. 1995, 66(12): 537~542
    44 C. L. Briant, H. C. Feng, C. J. McMahon Jr. Embrittlement of a 5 Pct Nickel High Strength Steel by Impurities and Their Effects on Hydrogen-Induced Cracking. Metallurgical and Materials Transactions A. 1978, 9(5): 625~633
    45 R. D. K. Misra, T. V. Balasubramanian. Co-Operative and Site-Competitive Interaction Processes at the Grain Boundaries of a Ni-Cr-Mo-V Steel. Acta Metallurgica. 1989, 37(5): 1475~1483
    46 Z. L. Zhang, T. D. Xu, Q. Y. Lin, Z. S. Yu. A New Interpretation of Temper Embrittlement Dynamics by Non-Equilibrium Segregation of Phosphor in Steels. Journal of Materials Science. 2001, 36(8): 2055~2059
    47 Q. F. Li, S. L. Yang, L. Li, L. Zheng, T. D. Xu. Experimental Study on Non-Equilibrium Grain-Boundary Segregation Kinetics of Phosphorus in an Industrial Steel. Scripta Materialia. 2002, 47(6): 389~392
    48 R. G. Ding, T. S. Rong, J. F. Knott. Phosphorus Segregation in 2.25Cr-1Mo steel. Materials Science and Technology. 2005, 21(1): 85~92
    49 J. Kameda, T. E. Bloomer. Kinetics of Grain-Boundary Segregation and Desegregation of Sulfur and Phosphorus during Post-Irradiation Annealing. Acta Materialia. 1999, 47(3): 893~903
    50 T. D. Xu, S. H. Song, H. Z. Shi, Z. X. Yuan, W. Gust. The Diffusion Coefficient of Vacancy-Boron Complexes during the Segregation of Boron Atoms to Grain Boundaries. Materials Science Forum. 1992, 94~96: 519~524
    51 H. Ohtani, H. C. Feng, C. J. McMahon, R. A. Mulford. Temper Embrittlement of Ni-Cr Steel by Antimony I. Embrittlement at Low Carbon Concentration. Metallurgical and Materials Transactions A. 1976, 7(1): 87~101
    52 H. Ohtani, H. C. Feng, C. J. McMahon. Temper Embrittlement of Ni-CrSteel by Antimony: II. Effects of Addition of Titanium. Metallurgical and Materials Transactions A. 1976, 7(7): 1123~1131
    53 T. Shinoda, T. Nakamura. A Model for the Applied Stress Effects on the Intergranular Phosphorus Segregation in Ferrous Materials. Acta Metallurgica. 1981, 29(9): 1637~1644
    54 D. Bika, J. A. Pfaendtner, M. Menyhard, C. J. McMahon Jr. Sulfur-Induced Dynamic Embrittlement in a Low-Alloy Steel. Acta Metallurgica et Materialia. 1995, 43(5): 1895~1908
    55 D. Bika, C. J. McMahon Jr. A Model for Dynamic Embrittlement. Acta Metallurgica et Materialia. 1995, 43(5): 1909~1916
    56 M. F. Ashby, D. R. H. Jones. Engineering Materials, vol. 1---An Introduction to Their Properties and Applications, 2nd edn, Butterworth Heinemann, Oxford, 1996
    57 J. R. Lee, Y. M. Chiang. Pressure-Thermodynamic Study of Bi Segregation at ZnO Grain Boundaries. Materials Science Forum. 1996, 207-209: 129~132
    58 E. D. Hondros, M. P. Seah. Interfacial and Surface Microchemistry. Physical Metallurgy; hird, revised and enlarged edition, Elsevier Science Publication, BV. 1983, 894~895
    59 T. D. Xu. Kinetics Equations of Non-Equilibrium Grain Boundary Segregation Induced by Applied Tensile Stress. Materials Science and Technology. 2003, 19(3): 388~392
    60 F. Christien, R. Le Gall, G. Saindrenan. Phosphorus Grain Boundary Segregation in Steel 17-4PH. Scripta Materialia. 2003, 48(1): 11~16
    61 D. D. Shen, Z. X.Yuan, J. Liu, S. H. Song, L. Q. Wen. Phosphorus Grain Boundary Segregation in a P-Doped 2.25Cr1Mo Steel. Acta Metallurgica Sinica. (English Letters). 2004, 17(5): 639~644
    62 D. D. Shen, S. H. Song, Z. X. Yuan, L. Q. Weng. Effect of Solute Grain Boundary Segregation and Hardness on the Ductile-to-Brittle Transition for a Cr-Mo Low Alloy Steel. Materials Science and Engineering A. 2005, 394(1-2): 53~59
    63 M. Mackenbrock, H. J. Grabke. Grain Boundary Segregation and Diffusion of Phosphorus in 12Cr-Mo-V Steel. Materials Science and Technology. 1992, 8(6): 541~545
    64 J. Janovec, D. Grman, J. Perhacova, P. Lejcek, J. Patscheider and P. Sevc. Thermodynamics of Phosphorus Grain Boundary Segregation in Polycrystalline Low-Alloy Steels. Surface and Interface Analysis. 2000, 30(1): 354~358
    65 P. Lejcek, S. Hofmann. Prediction of Enthalpy and Entropy of Grain Boundary Segregation. Surface and Interface Analysis. 2002, 33(3): 203~210
    66 P. Sevc, J. Janovec, P. Lejcek, P. Zahumensky, J. Blach. Thermodynamics of Phosphorus Grain Boundary Segregation in 17Cr12Ni Austenitic Steel. Scripta Materialia. 2002, 46(1): 7~12
    67 T. Matsuyama, H. Hosokawa, H. Suto. Tracer Diffusion of P in Iron and Iron Alloys. Transactions of the Japan Institute of Metals. 1983, 24(8): 589~594
    68 H. J. Grabke, K. Hennesen, R. Moller, W. Wei. Effects of Manganese on the Grain Boundary Segregation, Bulk and Grain Boundary Diffusivity of P in Ferrite. Scripta Metallurgica. 1987, 21(10): 1329~1334
    69 J. Perhacova, A.Vyrostkova, P.Sevc, J. Janovec, H. J. Grabke. Phosphorus Segregation in CrMoV Low-Alloy Steels. Surface Science. 2000, 454~456: 642~646
    70 P. L. Gruzin, V. V. Mural. Mechanism of the Effect of Molybdenum on the Reversible Temper Brittleness of Steel. Metal Science and Heat Treatment. 1969, 11(3): 240~242
    71 Y. Ueshima, S. Mizoguchi, T. Matsumiya, H. Kajioka. Analysis of Solute Distribution in Dendrites of Carbon Steel withδ/γTransformation during Solidification. Metallurgical and Materials Transactions B. 1986, 17(4): 845~859
    72 R. W. K. Honeycombe. Steels: Microstructure and Properties. Edward Arnold, London. 1980
    73 G. Luckman, R. A. Didio, W. R. Graham. Phosphorus Interdiffusivity inα-Fe Binary and Alloy Systems. Metallurgical and Materials Transactions A. 1981, 12(2): 253~259
    74 S. G. Druce, G. Gage, G. Jordan. Effect of Ageing on Properties of Pressure Vessel Steels. Acta Metallurgica. 1986, 34(4): 641~652
    75 Brandis, Brook. The Smithells Metals Reference Book. Butterworth- Heinemann. 1992
    76 A. Vatter, C. A. Hippsley, S. G. Druce. Review of Thermal Ageing Data and Its Application to Operating Reactor Pressure Vessels. International Journal of Pressure Vessels and Piping. 1993, 54(1-2): 31~48
    77 R. G. Faulkner. Combined Grain Boundary Equilibrium and Non-Equilibrium Segregation in Ferritic/Martensitic Steels. Acta Metallurgica. 1987, 35(12): 2905~2914
    78 T. D. Xu. The Critical Time in Temper Embrittlement Isotherms of Phosphorus in Steels. Journal of Materials Science. 1999, 34(3): 3177~3180
    79张灶利.多组元溶质晶界偏聚动力学.北京科技大学博士学位论文. 1997: 9
    80 S. H. Song, L. Q. Weng. An FEGSTEM Study of Grain Boundary Segregation of Phosphorus during Quenching in a 2.25Cr-1Mo Steel. Journal of Materials Science and Technology. 2005, 21(4): 445~450
    81 J. Kameda, A. J. Bevolo. Neutron Irradiation-Induced Intergranular Solute Segregation in Iron Base Alloys. Acta Metallurgica. 1989, 37(12): 3283~3296
    82 S. H. Song, R. G. Faulkner, P. E. J. Flewitt, P. Marmy, M. Victoria. Grain Boundary Phosphorus and Molybdenum Segregation under Irradiation and Thermal Conditions in a 2.25Cr1Mo Steel. 2000, 286(2): 230~235
    83 Z. Lu, R. G. Faulkner, N. Sakaguchi, H. Kinoshita, H. Takahashi, P. E. J. Flewitt. Control of Phosphorus Inter-Granular Segregation in Ferritic Steels. Journal of Nuclear Materials. 2004, 329-333(2): 1017~1021
    84 Y. Nishiyama, K. Onizawa, M. Suzuki, J. W. Anderegg, Y. Nagai, T. Toyama, M. Hasegawa, J. Kameda. Effects of Neutron-Irradiation-Induced Intergranular Phosphorus Segregation and Hardening on Embrittlement in Reactor Pressure Vessel Steels. Acta Materialia. 2008, 56(16): 4510~4521
    85林文松.微量溶质元素在金属晶界的偏聚.热处理. 2004, 19(2): 18~21
    86 Ph. Dumoulin, M. Guttmann, Ph. Maynier, P. Chevalier. Influence of Segregated Transition Metals on Intergranular Brittleness of Tempered Martensitic Steels. Metal Science. 1983, 17: 70~74
    87 M. Guttmann. The Role of Residuals and Alloying Elements in Temper Embrittlement. Philosophical Transactions of the Royal Society A. 1980,295(1413): 169~196
    88 J. Janovec, V. Vokal, J. Krestankova, P. Sevc, A. Vyrostkova. Thermodynamics of Phosphorus Grain Boundary Segregation in Low Alloy Steels. Kovove Materialy. 2003, 41(1): 18~35
    89 S. Suzuki, K. Abiko, H. Kimura. The Influence of Molybdenum on the Solubility of Phosphorus inα-Fe. Materials Science and Engineering. 1983, 60(3): L17~L21
    90 S. Suzuki, R. Hanada, H. Kimura. Interaction Between Molybdenum and Phosphorus in Solid Solutions and Its Effect on the Precipitation Process in Fe-Mo-P Alloys. Materials Science and Engineering. 1986, 80(1): 75~85
    91 M. Wada, S. Fukase, O. Nishikawa. Role of Carbides in the Grain Boundary Segregation of Phosphorus in a 2.25Cr-1Mo Steel. Scripta Metallurgica. 1982, 16(12): 1373~1378
    92 M. Menyhard, C. J. McMahon Jr. On the Effect of Molybdenum in the Embrittlement of Phosphorus-Doped Iron. Acta Metallurgica. 1989, 37(8): 2287~2295
    93 M. P. Seah. Adsorption-Induced Interface Decohesion. Acta Metallurgica. 1980, 28(7): 955~962
    94 W. T. Weng, A. J. Freeman, G. B. Olson. Influence of Alloying Additions on the Impurity Induced Grain Boundary Embrittlement. Solid State Communications. 2001, 119(10-11): 585~590
    95 D. Y. Lee, E. V. Barrera, J. P. Stark, H. L. Marcus. The Influence of Alloying Elements on Impurity Induced Grain Boundary Embrittlement. Metallurgical and Materials Transactions A. 1984, 15(7): 1415~1430
    96 E. D. Hondros, M. P. Seah. The Theory of Grain Boundary Segregation in Terms of Surface Adsorption Analogues. Metallurgical and Materials Transactions A. 1977, 8(9): 1363~1371
    97 J. Bernardini, C. Girardeaux, A. Rolland, D. L. Beke. Effect of Grain Boundary Segregation and Migration on Diffusion Profiles: Analysis and Experiments. Interface Science. 2003, 11(1): 33~40
    98 R. A. Mulford, C. J. McMahon. Temper Embrittlement of Ni-Cr Steel by Antimony: Effects of Ni and Cr. Metallurgical Transactions. 1976, (7): 1269~1274
    99 R. A. Mulford, C. J. Mcmahon, D. P. Pope, H. C. Feng. TemperEmbrittlement of Ni-Cr Steels by Phosphorus. Metallurgical and Materials Transactions A. 1976, 7(7): 1183~1195
    100 H. Ucisik, C. J. McMahon, H. C. Feng. The Influence of Intercritial Heat Treatment on the Temper Embrittlement Susceptibility of a P-Doped Ni-Cr Steel. Metallurgical and Materials Transactions A. 1978, 9(3): 321~329
    101 S. Takayama, T. Ogura, S. C. Fu, C. J. Mcmahon. The Calculation of Transition Temperature Changes in Steels due to Temper Embrittlement. Metallurgical and Materials Transactions A. 1980, 11(9): 1513~1530
    102 E. Davis, M. C. McDonald, P. W. Palmberg, G. E. Riach, R. E. Weber. Handbook of Auger Electron Spectroscopy, 2nd ed. Physical Electronics Division, Perkin-Elmer Corporation, Minnesota. 1976
    103 L. Peterson. Grain-Boundary Diffusion in Metals. International Metals Reviews. 1983, 28(2): 65~91
    104 P. Sevc, J. Janovec, M. Koutnik, A. Vyrostkova. Equilibrium Grain Boundary Segregation of Phosphorus in 2.6Cr-0.7Mo-0.3V Steels. Acta Metallurgica et Materialia. 1995, 43(1): 251~258
    105陈亚力,裘亚峥,刘诚.概率论与数理统计.科学出版社, 2008: 139~141
    106 M. G. Yang, K. M. Koliwad, G. E. McGuire. Auger Electron Spectroscopy of Cleanup-Related Contamination on Silicon Surfaces. Journal of the Electrochemical Society. 1975, 122(5): 675~678
    107 R. Sherman. Effect of Oxygen Exposure on Auger Spectra. Surface and Interface Analysis. 2004, 7(5): 232~234
    108 V. Ya. Dashevskii, K. V. Grigorovich. Oxygen Solubility in Binary Metallic Melts. Russian Metallurgy (Metally). 2007, 2007(8): 694~701
    109 H. Nitta, T. Yamamoto, R. Kanno, K. Takasawa, T. Iida, Y. Yamazaki, S. Ogu, Y. Iijima. Diffusion of Molybdenum inα-iron. Acta Materialia. 2002, 50(16): 4117~4125
    110 P. Sevc, J. Janovec, V. Katana. On Kinetics of Phosphorus Segregation in Cr-Mo-V Low Alloy Steel. 1994, 31(12): 1673~1678
    111 J. Perhacova, D. Grman, M. Svoboda, J. Patscheider, A. Vyrostkova, J. Janovec. Microstructural Aspects of Phosphorus Grain Boundary Segregation in Low Alloy Steels. Materials Letters. 2001, 47(1-2): 44~49
    112 H. Erhart, H. J. Grabke. Equilibrium Segregation of Phosphorus at Grain Boundaries of Fe-P, Fe-C-P, Fe-Cr-P, and Fe-Cr-C-P Alloys. Metal Science.1981, 15(9): 401~408
    113 M. Guttmann, Ph. Dumoulin, M. Wayman. The Thermodynamics of Interactive Co-Segregation of Phosphorus and Alloying Elements in Iron and Temper-Brittle Steels. Metallurgical and Materials Transactions A. 1982, 13(10): 1693~1711
    114 M. Enomoto, N. Maruyama, K. M. Wu, T. Tarui. Alloying Element Accumulation at Ferrite/Austenite Boundaries below the Time-Temperature-Transformation Diagram Bay in an Fe-C-Mo Alloy. Materials Science and Engineering A. 2003, 343(1-2): 151~157
    115 M. A. Islam, J. F. Knott, P. Bowen. Kinetics of Phosphorus Segregation and Its Effect on Low Temperature Fracture Behaviour in 2.25Cr-1Mo Pressure Vessel Steel. Materials Science and Technology. 2005, 21(1): 76~84
    116 R. A. Mulford, C. J. McMahon, D. P. Pope, H. C. Feng. Temper Embrittlement of Ni-Cr Steel by Antimony: III. Effects of Ni and Cr. Metallurgical and Materials Transactions A. 1976,7(8): 1269~1274
    117 M. P. Seah. Practical Surface Analysis in: Auger and X-Ray Photoelectron Spectroscopy vol. 1, Wiley. 1990
    118 F. L. Carr, M. Goldman, L. D. Jaffe, D. C. Buffum. Isothermal Temper Embrittlement of SAE 3140 Steel. Transactions AIME. 1953, 197: 998
    119 R. D. K. Misra. Temperature-Time Dependence of Grain Boundary Segregation of Phosphorus in Interstitial-Free Steels. Journal of Materials Science Letters. 2002, 21(16): 1275~1279
    120 C. L. Briant. Grain Boundary Structure, Chemistry, and Failure. Materials Science and Technology. 2001, 17(11): 1317~1323
    121 G. O. Williams, V. Randle, J. R. Cowan, P. Spellward. The Role of Misorientation and Phosphorus Content on Grain Growth and Intergranular Fracture in Iron-Carbon-Phosphorus Alloys. Journal of Microscopy. 2004, 213(3): 321~327
    122 T. Ogura, C. J. McMahon Jr, H. C. Feng, V. Vitek. Structure-Dependent Intergranular Segregation of Phosphorus in Austenite in a Ni-Cr Steel. Acta Metallurgica. 1978, 26(9): 1317~1330
    123 V. J. Keast, A. L. Fontaine, J. D. Plessis. Variability in the Segregation of Bismuth between Grain Boundaries in Copper. Acta Materialia. 2007, 55(15): 5149~5155
    124 I. Kaur and W. Gust. Handbook of Grain and Interphase Boundary Diffusion Data vol. 2, Ziegler Press, Stuttgart. 1989
    125张俊善.材料的高温变形与断裂.科学出版社, 2007: 3~4
    126 T. Aust, S. J. Armijo, E. F. Koch, J. A. Westbrook. Intergranular Corrosion and Electron Microscopic Studies of Austenitic Steels. Transactions of American Society for Metals. 1967, 60(3): 360~372
    127 T. D. Xu. Kinetics of Non-Equilibrium Grain-Boundary Segregation Induced by Applied Tensile Stress and Its Computer Simulation. Scripta Materialia. 2002, 46(11): 759~763
    128 Kenneth A Jackson. Kinetic Processes: Crystal Growth, Diffusion, and Phase Transitions in Materials. (New York: John Wiley & Sons) 2004: 4~6, 28~34, 203~204
    129 C.基泰尔.固体物理导论.化学工业出版社. 2005: 96~97
    130沈巧珍,杜建明.冶金传输原理.冶金工业出版社. 2006
    131 H. Jiang, R. G. Faulkner. Modelling of Grain Boundary Segregation, Precipitation and Precipitate-Free Zone of High Strength Aluminium Alloys---I. The Model. Acta Materialia. 1996, 44(5): 1857~1864
    132 R. G. Faulkner. Radiation-Induced Grain Boundary Segregation in Nuclear Reactor Steels. Journal of Nuclear Materials. 1997, 251(11): 269~275
    133 H. Ceric. Numerical techniques in modern TCAD. Ph.D. thesis of Vienna University of Technology, 2004 (Available from: http://www.iue.tuwien.ac.at/phd/ceric/node26.html)
    134 R. G. Faulkner, N. C. Waite, E. A. Little, T. S. Morgan. Radiation-Induced Grain Boundary Segregation in Dilute Alloys. Materials Science and Engineering A. 1993, 171: 241~248
    135 T. D. Xu, L. Zheng. The Elastic Modulus in the Grain-Boundary Region of Polycrystalline Materials. Philosophical Magazine Letters. 2004, 84(4): 225~233
    136 S. Zhang, P. E. Li, J. Z. Jin. Combined Matrix/Boundary Precipitation Strengthening in Creep of Fe-15Cr-25Ni Alloys. Acta Metallurgica et Materialia. 1991, 39(12): 3063~3070

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700