索网式可展开天线的形态分析与优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
索网式可展开天线由于包含柔性索网结构而具有重量轻、空间收纳率高等优点,该类天线目前已被广泛应用于雷达、侦查、对地观测、深空探测等领域。本文在西安电子科技大学展开天线课题组已有研究工作的基础上,对索梁组合结构的形态计算方法、索网式可展开天线的形态优化设计以及索网式可展开天线的整体结构优化设计等方面进行了深入的研究。
     为提高索梁组合结构形态计算的效率,提出了索梁组合结构的结构划分方法。该方法将索梁组合结构划分为两大部分,一是内部索网结构,二是由边界索网和与其相连的框架梁单元组成的结构。基于非线性有限元法,本文对两部分结构间的预张力平衡关系进行了理论推导,提出了划分准则和划分条件。
     对自身为纯索网结构且具有指定形状和拓扑形式的内部索网结构,以索单元预张力分布均匀为目标,结合平衡矩阵分析法对其进行形态优化计算,可得到索网体系的最优预张力分布。
     对边界索网—梁结构,将平衡矩阵分析法与非线性有限元法结合使用,对梁单元变形影响下的边界索网进行预张力补偿,得到能够与内部索网预张力形成平衡力系的边界索网预张力。由于边界索网—梁结构比原整体结构形式简单,故对其进行的非线性有限元迭代计算的计算规模比较小、求解复杂程度也比较低。
     结合上面的索网形态计算方法,提出了一种可使索网式可展开天线索网体系具有理想形态的天线整体优化方法。该方法以结构重量最轻为优化目标,以天线节点位移精度为约束条件,并结合前面提出的索梁组合结构形态迭代计算方法来对索网式可展开天线进行结构优化计算。由于优化中加入了可以使天线索网体系满足预设形态要求的预张力迭代计算,故由优化得到的天线结构可以在具有最优结构设计参数的同时,还能够保有预设的理想索网形态。
     为验证上述理论方法及所编制设计软件的正确性,实际研制了2m口径索网式可展开天线模型,并进行了相关实验研究,取得了满意的结果。此外,将理论方法与软件分别应用于某17米口径正馈可展开天线与某10m口径偏馈可展开天线原理样机的工程实践中,不仅验证了方法的正确性和有效性,且指导了样机的研制工作。
Cable-mesh deployable antenna with flexible cablenet system is utilized widely inradar, reconnaissance, earth observation and deep space exploration for its light weightand small stowed volume. Based on existing results achieved by deployable antennaresearch team of Xidian University, the problems like cable pretension design forcable-beam structure, optimum design for pretension and structure of cable-meshdeployable antenna are discussed in this paper.
     A structural division method that can help to improve efficiency of pretensiondesign for cable-beam structure is proposed. In this method, a cable-beam structure isdivided into inner cablenet structure and edge cablenet-beam structure. The pretensionequilibrium conditions of these two parts are studied by non-linear finite elementmethod, and based on this, division condition and division principle of the structuraldivision method is deduced in theory.
     Because inner cablenet is a pure cablenet structure with given shape and topology,balance matrix analysis method is used to help obtain the best pretension distribution ofinner cablenet with the uniformity as objective.
     For edge cablenet-beam structure, with obtaining equilibrium force of innercablenet’s pretension as goal, non-linear finite element method combined with balancematrix analysis method is used for pretension compensation iterative adjustment of edgecablenet that is affected by beam’s displacement. Because edge cablenet-beam structurehas less cable elements than overall structure, its non-linear finite element iterativecalculations are easier to be implemented, and its stiffness matrix is easier to be workout also.
     In order to obtain optimal antenna structure with ideal cable system shape andpreset pretension distributions, an iterative optimum structural design method based oncablenet system iterative adjustment method described above is proposed here. Themathematical model of optimization selects minimum weight of structure as objective,and antenna’s shape accuracy as constraint. By combining cablenet system iterativeadjustment method to solve above mathematical model, the shape accuracy of antennacablenet system and beam can meet the constraint requirements at the same time, andthe antenna structure with both optimal weight and ideal cablenet system shape can alsobe obtained at last.
     The present method and design software is applied to the development of a2m cable-mesh deployable antenna model, and the results of model experiments show thatthe present method is valid and correct. Also, the method and software is used toinstruct the development of a17m axi-symmetric reflector antenna experimentalprototype and a10m offset parabolic reflector antenna experimental prototype, and thepractical application results are satisfying as well.
引文
[1] A. Das, M. W. Obal. Revolutionary satellite structural systems technology: avision for the future[C]. IEEE Aerospace Conference, Snowmass at Aspen,USA, Mar.21-28,1998:57-67.
    [2]刘荣强,田大可,邓宗全.空间可展开天线结构的研究现状与展望[J].机械设计,2010,27(9):1-9.
    [3] F. W. Williams, J. R. Banerjee, S. R. Harris, et al. Refined design ofselfexpanding stayed column for use in space[J]. Computers and Structures,1983,16(1-4):353-360.
    [4] R. E. Freeland. Validation of a unique concept for a low-cost, lightweightspace-deployable antenna structure[J], Acta Astronautica,1995,35(9-11):565-572.
    [5] J. Mikulas, T. J. Collins, J. M. Hedgepeth. Preliminary design considerations for10-40meter-diameter precision truss reflectors[J]. Journal of Spacecraft andRockets,1991,28(4):439-447.
    [6] A. Miyasaka, M. Homma, A. Tsujigata, et al. Design and ground verification oflarge deployable reflector[C].42nd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics, and Materials Conference and Exhibit, Seattle, WA, USA,Apr.16-19,2001: AIAA2001-1480.
    [7] H. Baier, L. Datashvili, Z. Gogava, et al. Building blocks of large deployableprecision membrane reflectors[C].42nd AIAA/ASME/ASCE/AHS/ASCStructures, Structural Dynamics, and Materials Conference and Exhibit, Seattle,WA, USA, Apr.16-19,2001: AIAA2001-1478.
    [8] M. C. Natori, T. Takano, T. Noda, et al. Ground adjustment procedure of adeployable high accuracy mesh antenna for space VLBI mission[C].39thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and MaterialsConference and Exhibit and AIAA/ASME/AHS Adaptive Structures Forum, LongBeach, CA, USA, Apr.20-23,1998: AIAA98-1923.
    [9] O. Soykasap, A. M. Watt, S. Pellegrino. New deployable reflector concept[C].45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, andMaterials Conference, Palm Springs, CA, USA, Apr.19-22,2004: AIAA2004-1574.
    [10] M. Misawa. Stiffness design of deployable satellite antennas in deployedconfiguration[J]. Journal Spacecraft and Rockets,1998,35(3):380-386.
    [11] C. A. Rogers, W. L. Stutzman, T. G. Campbell, et al. Technology assessment anddevelopment of large deployable antennas[J]. Journal of Aerospace Engineering,1993,6(1):34-55.
    [12] M. C. Natori, H. Hirabayashi, N. Okuizumi, et al. A structure concept of highprecision mesh antenna for space VLBI observation[C].43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,Denver, Colorado, USA, Apr.22-25,2002: AIAA2002-1359.
    [13]段宝岩.柔性天线结构分析、优化与精密控制[M].北京:科学出版社,2005.
    [14] Akira Meguroa, Kyoji Shintate, Motofumi Usui, et al. In-orbit deploymentcharacteristics of large deployable antenna reflector onboard Engineering TestSatellite VIII[J]. Acta Astronautica,2009,65:1306-1316.
    [15] Mark W. Thomson. Astromesh deployable reflectors for ku-and ka-bandcommercial satellites[C].20th AIAA International Communication SatelliteSystems Conference and Exhibit, Montreal, Quebec, Canada, May.12-15,2002:AIAA2002-2032.
    [16] S. D. Guest, S. Pellegrino. A new concept for solid surface deployable antennas[J].Acta Astronautica,1996,38(2):103-113.
    [17] Gunnar Tibert. Depolyable tensegrity structure for space applications[D]. RoyalInstitute of Technology Department of Mechanics,2002.
    [18] David Lichodziejewski, Dr. Robin Cravey, Glenn Hopkins. Inflatably deployedmembrane waveguide array antenna for space[C].44th AIAA/ASME/ASCE/AHSStructures, Structural Dynamics, and Materials Conference, Norfolk, Virginia,USA, Apr.7-10,2003: AIAA2003-1649.
    [19]关富玲,李刚,夏劲松,等.充气可展空间结构[C].卫星结构与机构技术进展研讨会会议论文集,总装备部卫星技术专业组,西安,2003年9月.
    [20]王援朝.充气天线结构技术概述[J].电讯技术,2003,43(2):6-11.
    [21] C. G. Cassapakis, A. W. Love, A. L. Palisoc. Inflatable space antennas-a briefoverview[C].1998IEEE Aerospace conference, Snowmass at Aspen, USA, Mar.21-28,1998,3:453-459.
    [22] Eastwood Im, Mark Thomson, Houfei Fang, et al. Prospects of large deployablereflector antennas for a new generation of geostationary Doppler weather radarsatellites[C]. AIAA SPACE2007Conference and Exposition, Long Beach,California, USA, Sept.18-20,2007: AIAA2007-9917.
    [23] J. Huang. The development of inflatable array antennas[J]. IEEE Antennas andPropagation Magazine,2001,43(4):44-50.
    [24] J. Huang, M. Luo, A. Feria, et al. An inflatable L-band microstrip SAR array[C].1998IEEE Antennas and Propagation Society International Symposium, Atlanta,USA, Jun.21-26,1998,4:2100-2103.
    [25]刘明治,高桂芳.空间可展开天线结构的研究进展[J].宇航学报,2003,24(1):82-87.
    [26] Surya P. Chodimella, James D. Moore, Jennie Otto, et al. Design evaluation of alarge aperture deployable antenna[C].47th AIAA/ASME/ASCE/AHS/ASCStructures, Structural Dynamics, and Materials Conference, Newport, RhodeIsland, USA, May.1-4,2006: AIAA2006-1603.
    [27]关富玲,杨玉龙,赵孟良.星载可展开网状天线的网面成形与防缠绕设计[J].工程设计学报,2006,13(4):271-276.
    [28]田大可,刘荣强,邓宗全,等.多模块构架式空间可展开天线背架的几何建模[J].西安交通大学学报,2011,45(1):111-116.
    [29]邓宗全,田大可,刘荣强,等.构架式空间可展开天线结构优化参数预测模型[J].哈尔滨工业大学学报,2011,43(11):39-43.
    [30]罗鹰.大型星载可展开天线的动力优化设计与工程结构的系统优化设计[D].西安电子科技大学博士学位论文,2004.
    [31]狄杰建.索网式可展开天线结构的反射面精度优化调整技术研究[D].西安电子科技大学博士学位论文,2005.
    [32]杨东武.星载大型可展开索网天线结构设计与型面调整[D].西安电子科技大学博士学位论文,2010.
    [33]李琴琴.大型索网结构网面形状优化设计[D].西安电子科技大学硕士学位论文,2008.
    [34]李彬.网状反射面可展开天线的结构优化设计研究[D].西安电子科技大学硕士学位论文,2010.
    [35]杨瑞.索网式可展开天线的反射面找形及精度调整技术研究[D].西安电子科技大学硕士学位论文,2010.
    [36]周懋花.周边桁架网状反射面可展开天线形态[D].西安电子科技大学硕士学位论文,2008.
    [37] C. R. Calladine. Buckminster Fuller’s “tensegrity” structures and Clerk Maxwell’srulers for the construction of stiff frames[J]. International Journal of Solids andStructures,1978,14(2):161-172.
    [38] S. Pellegrino, C. R. Calladine. Matrix analysis of statically and kinematicallyindeterminate frameworks[J]. International Journal of Solids and Structures,1986,22,409-428.
    [39] C. R. Calladine, S. Pellegrino. First-order infinitesimal mechanisms[J].International Journal of Solids and Structures,1991,27(4):505-515.
    [40] S. Pellegrino. Analysis of pre-stressed mechanisms[J]. International Journal ofSolids and Structures,1990,26(12):1329-1350.
    [41] S. Pellegrino. Structure computations with the singular value decomposition of theequilibrium matrix[J]. International Journal of Solids and Structures,1993,30(21):3025-3035.
    [42] E. N. Kuznetsov. Statistical-kinematic analysis and limit equilibrium of systemswith unilateral constraints[J]. International Journal of Solids and Structures,1979,15(6):761-767.
    [43] E. N. Kuznetsov. Underconstrained structural systems[J]. International Journal ofSolids and Structures,1988,24(2):153-163.
    [44] N. Vassart, R. Laporte, R. Motro. Determination of mechanism’s order forkinematically and statically indetermined systems[J]. International Journal ofSolids and Structures,2000,37(10):3807-3839.
    [45]刘郁馨.伪可变体系的几何构造分析[J].计算结构力学及其应用,1994,11(1):50-62.
    [46]刘郁馨,吕志涛.伪可变复杂系统的计算机识别方法[J].计算结构力学及其应用,1995,12(3):267-275.
    [47]曹喜.张拉整体索穹顶结构的设计理论与实验研究[D].天津大学博士学位论文,1997.
    [48]罗尧治.索杆张力结构几何稳定性分析[J].浙江大学学报(理学版),2000,27(6):608-61l.
    [49]罗尧治.索杆张力结构的数值分析理论研究[D].浙江大学博士学位论文,2000.
    [50]袁行飞,董石麟.索穹顶结构几何稳定性分析[J].空间结构,1999,5(1):3-9.
    [51]袁行飞.索穹顶结构的理论分析和实验研究[D].浙江大学博士学位论文,2000.
    [52] S. Pellegrino. A class of tensegrity domes[J]. International Journal of SpaceStructures,1992,7(2):127-142.
    [53] Xingfei Yuan, Lianmeng Chen, Shilin Dong. Prestress design of cable domes withnew forms[J]. International Journal of Solids and Structures,2007,44(9):2773-2782.
    [54]罗尧治,董石麟.索杆张力结构初始预应力分布计算[J].建筑结构学报,2000,21(5):59-64.
    [55]张志宏,张明山,董石麟.平衡矩阵理论的探讨及—索杆梁杂交空间结构的静力和稳定性分析[J].工程力学,2005,22(6):7-14.
    [56] H. J. Schek. The force density method for form finding and computation ofgeneral networks[J]. Computer Methods in Applied Mechanics and Engineering,1974,3(1):115-134.
    [57] Bernard Maurin, Rene Motro. The surface stress density method as a form-findingtool for tensile membranes[J]. Engineering Structures,1998,20(8):712-719.
    [58] Klaus Linkwitz. About formfinding of double-curved structures[J]. EngineeringStructures,1999,21(8):709-718.
    [59] N. Vassart, R. Motro. Multiparametered Formfinding Method: Application toTensegrity Systems[J]. International Journal of Space Structures,1999,14(2):147-154.
    [60] J. Y. Zhang, M. Ohsaki. Adaptive force density method for form-finding problemof tensegrity structures[J]. International Journal of Solids and Structures,2006,43(18-19):5658-5673.
    [61]陈志华,王小盾,刘锡良.张拉整体结构的力密度法找形分析[J].建筑结构学报,1999,20(5):29-35.
    [62]廖理,关富玲.索膜结构力密度法找形的一种离散方法[J].空间结构,2003,9(3):46-49.
    [63]任涛,陈务军,付功义.索杆张力结构初始预应力分布计算方法研究[J].工程力学,2008,25(5):137-141.
    [64]向新岸,赵阳,董石麟.张拉结构找形的多坐标系力密度法[J].工程力学,2010,27(12):64-71.
    [65]蔺军.大跨度葵花型空间索桁张力结构的理论分析和实验研究[D].浙江大学博士学位论文,2005.
    [66]汤荣伟.索穹顶结构成形理论及结构优化[D].同济大学博士学位论文,2005.
    [67] Gunnar Tibert. Numerical analysis of cable roof structures[D]. Royal Institute ofTechnology,1999.
    [68]杨东武,保宏.非对称索网抛物面天线力平衡特性及预拉力设计[J].机械工程学报,2009,45(8):308-312
    [69]李刚,关富玲.环形桁架展开天线索网的预拉力优化技术及工程应用[J].固体力学学报,2006,27(S):174-179.
    [70] R. B. Haber, J. F. Abel. Initial equilibrium solution methods for cable-reinforcedmembranes part I-formulations[J]. Computer Methods in Applied Mechanics andEngineering.1982,30(3):263-284.
    [71] J. H. Argyris, T. Angelopoulos, B. Bichat. A general method for the shape findingof lightweight tension structures[J]. Computer Methods in Applied Mechanics andEngineering,1974,3(1):135-149.
    [72] D. P. Mondkar, G. H. Powell. Finite element analysis of non-linear static anddynamic response[J]. International Journal for Numerical Methods in Engineering,1977,11(3):499-520.
    [73] D. P. Mondkar, G. H. Powell. Evaluation of solution schemes for nonlinearstructures[J]. Computers and Structures,1978,9(3):223-236.
    [74] P. G. Smith, E. L. Wilson. Automatic design of shell structures[J]. Journal of theStructural Division,1971,97(1):191-201.
    [75]宋昌永.索网结构和薄膜结构形状确定分析[D].哈尔滨建筑大学博士学位论文,1992.
    [76]邵晓方.薄膜结构非线性分析、材料拉伸特性实验及风荷载研究[D].天津大学博士学位论文,1993.
    [77]向阳.薄膜结构的初始形态设计、风振响应分析及风洞实验研究[D].哈尔滨建筑大学博士学位论文,1998.
    [78]卫东.索穹顶结构的成型和受力性能研究[D].哈尔滨建筑大学硕士学位论文,1998.
    [79]沈世钊,徐崇宝,赵臣.悬索结构设计[M].北京:中国建筑工业出版社,1997.
    [80] H. J. Ernst. Der E-modul von Buckminster Seilen unter Berücksichtigung desDurchhanges[J]. Der Bauingenieur,1965,40(2):52-55.
    [81] K. Ahmadi-Kashani, A. J. Bell. The analysis of cables subject to uniformlydistributed loads[J]. Engineering Structures,1988,10(3):174-184.
    [82] K. J. Bathe. Finite element procedures[M]. New Jersey: Prentice-Hall,1996.
    [83]唐建民.柔性结构非线性分析的杆单元有限元法[J].中南工学院学报,1996,10(1):50-55.
    [84]狄杰建,段宝岩,仇原鹰,等.周边式桁架可展开天线的形面调整[J].宇航学报,2004,25(5):583-586.
    [85]袁行飞,董石麟.两节点曲线索单元非线性分析[J].工程力学,1999,16(4):59-64.
    [86] M. L. Gambhir, B. D. Batchelor. A finite element for3-D prestressed cablenets[J].International Journal for Numerical Methods in Engineering,1977,11(11):1699-1718.
    [87]唐建民,卓家寿.悬索结构大位移分析改进的两节点索单元模型[J].河海大学学报,1999,27(4):16-19.
    [88]唐建民,董明,钱若军.张拉结构非线性分析的五节点等参单元[J].计算力学学报,1997,14(1):108-113.
    [89] H. B. Jayaraman, W.C. Knudson. A curved element for the analysis of cablestructures[J]. Computers&Structures,1981,14(3-4):325-333.
    [90]杨孟刚,陈政清.基于UL列式的两节点悬链线索元非线性有限元分析[J].土木工程学报,2003,36(8):63-68.
    [91] A. H. Peyrot, A. M. Goulois. Analysis of flexible transmission lines[J]. Journal ofthe Structural Division,1978,104(5):763-779.
    [92]周臻.预应力空间网格结构的分析理论与优化设计研究[D].东南大学博士学位论文,2007.
    [93]杜敬利.超大型天线馈源索支撑系统与索网主动主反射面的力学分析与优化设计[D].西安电子科技大学博士学位论文,2006.
    [94]袁行飞.索穹顶结构截面和预应力优化设计[J].空间结构,2002,8(3):51-56.
    [95] M. Kawaguchia, I. Tatemichib, P. S. Chen. Optimum shapes of a cable domestructure[J]. Engineering Structures,1999,21(8):719-725.
    [96]李本悦.索杆张力结构的体系分析及截面和预应力优化[D].浙江大学硕士学位论文,2004.
    [97]狄杰建,段宝岩,杨东武,等.索网式星载展开天线结构纵向调整索数及其初始张力的优化[J].机械工程学报,2005,41(11):153-157.
    [98] Ikuo Yamaguchi, Kastuya Okada, Mamoru Kimura, et al. A study on themechanism and structural behaviors of cable dome[C]. Proceedings of theInternational Colloquium on Space Structures for Sports Buildings, Beijing, China,Oct.27-30,1987:534-549.
    [99] D. Gasparini, P. Perdikaris, N. Kanj. Dynamic and static behavior of cable domemodel[J]. Journal of Structural Engineering,1989,115(2):363-381.
    [100]冯庆兴.大跨度环形空腹索桁结构体系的理论和实验研究[D].浙江大学博士学位论文,2003.
    [101]韦娟芳.卫星天线展开过程的零重力环境模拟设备[J].空间电子技术,2006,(2):29-32.
    [102]赵孟良.空间可展结构展开过程动力学理论分析、仿真及试验[D].浙江大学博士学位论文,2007.
    [103]关富玲,张惠峰.桁架式可展开天线反射面精度试验[J].南京理工大学学报(自然科学版),2009,33(3):325-329.
    [104] Kazuhisa Yamada, Yuji Tsutsumi, Makoto Yoshihara, et al. Integration and testingof large deployable reflector on ETS-VIII[C].21st International CommunicationsSatellite Systems Conference and Exhibit, Yokohama, Japan, Apr.15-19,2003:AIAA2003-2217.
    [105] A. Fischer, S. Pellegrino. Interaction between gravity compensation suspensionsystem and deployable structure[J]. Journal of Spacecraft and Rockets,2000,37(1):93-99.
    [106]张其林,张莉.预应力梁-索屋盖形状确定[C].第九届空间结构学术会议论文集,2000,387-394.
    [107]杨睿,董石麟,倪英戈.预应力张弦梁结构的形态-改进的逆迭代法[J].空间结构,2002,8(4):1-7.
    [108]罗鹰,段宝岩,杨东武,等.大型星载展开天线动力优化设计[J].空间科学学报,2004,24(3):203-210.
    [109] W. C. Knudson, A. C. Scordelis. Cable forces for desired shapes in cable-netstructures[C]. IASS Pacific Symposium-Part II. Tokyo and Kyoto, Japan, Oct.17-23,1971.
    [110] H. Ohyama, S. Kawamata. A problem of surface design for prestressed cablenets[C]. IASS Pacific Symposium-Part II. Tokyo and Kyoto, Japan, Oct.17-23,1971.
    [111]袁行飞,董石麟.索穹顶结构整体可行预应力概念及其应用[J].土木工程学报,2001,34(2):33-37.
    [112]邓华.拉索预应力空间网格结构的理论研究和优化设计[D].浙江大学博士学位论文,1997.
    [113]钱若军,杨联萍.张力结构的分析、设计与施工[M].南京:东南大学出版社,2003.
    [114] S. P. Timoshenko, D. H. Young. Theory of structures[M]. New York:McGraw-Hill,1965.
    [115]熊西文,施吉林,谢如彪.数值代数[M].武汉:华中工学院出版社,1986.
    [116]程云鹏,张凯院,徐仲.矩阵论(第3版)[M].西安:西北工业大学出版社,2006.
    [117]许以超.线性代数与矩阵论(第2版)[M].北京:高等教育出版社,2008.
    [118]彭声羽.线性方程组的正解[J].大学数学,2006,22(6):148-154.
    [119]杜敬利,段宝岩,保宏,等.基于最小二乘方法的索网反射面形状精度调整[J].工程力学,2008,25(1):203-208.
    [120]钱令希.工程结构优化设计[M].北京:水利电力出版社,1983.
    [121]程耿东.工程结构优化设计基础[M].北京:水利电力出版社,1983.
    [122]王光远,董明耀.结构优化设计[M].北京:高等教育出版社,1987.
    [123]段宝岩.天线结构分析、优化与测量[M].西安:西安电子科技大学出版社,1998.
    [124]朱伯芳,黎展眉,张璧城.结构优化设计原理与应用[M].北京:水利电力出版社,1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700