PTFE建筑膜材的蠕变及耐候性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜结构是20世纪中叶发展起来的一种新型张力结构形式。膜材作为膜结构的主要承力构件,直接影响到膜结构的安全性和耐久性。由于我国的膜结构发展历史较短,以往人们对膜材的研究大多集中在其强度指标上,目的是满足一般工程设计的需求。随着膜结构建筑的广泛应用,以及一些大型复杂膜结构的建造,膜材以及膜结构的耐久性研究逐渐受到人们的关注。但是由于膜材的耐久性研究费用高、周期长,因此相关工作开展的尚不够充分。本文以建筑用PTFE膜材为例,开展了较为系统的蠕变试验和自然暴露试验研究,建立了膜材的蠕变本构模型,给出了考虑环境因素的膜材强度随时间衰减曲线,为进一步研究膜结构的耐久性提供了宝贵的数据资料。
     论文工作主要包括以下三方面:
     (1)PTFE膜材的蠕变本构模型研究。基于复合材料的粘弹性理论,探讨了PTFE膜材的蠕变特性和蠕变机理,指出蠕变是普弹变形、高弹变形以及粘流变形三部分叠加的结果。通过对一维应力及多维应力蠕变理论模型、常用的蠕变经验模型和材料的粘弹性力学模型进行探讨,提出了PTFE膜材的蠕变本构模型——改进的时间硬化模型,为后续的PTFE膜材蠕变特性研究提供了理论指导。
     (2)PTFE膜材的蠕变特性试验研究。设计并完成了3种不同应力水平下PTFE膜材的蠕变试验,蠕变试验时间为24小时,获得了PTFE膜材经向和纬向试件的蠕变应变—时间曲线。采用改进的时间硬化模型作为PTFE膜材的蠕变本构模型,根据膜材经向和纬向试件在不同应力水平下的蠕变试验曲线确定了本构模型中的参数。研究结果表明,改进时间硬化模型能够较好的描述PTFE膜材的蠕变特性;PTFE膜材的抗蠕变性能较好,且经向抗蠕变性能优于纬向。
     (3)PTFE膜材在寒冷地区的耐候性能研究。开展了PTFE膜材在哈尔滨地区的长期自然暴露试验研究,获得了暴露1年、2年和4年的膜材试样,通过测试试样的拉伸强度和撕裂强度,拟合出PTFE膜材的经向和纬向强度随时间变化曲线。基于拟合曲线可以对PTFE膜材在使用若干年后的力学性能进行预测,为膜结构的耐久性设计提供了依据。
Membrane structure is a new type of tensile structure form developed since the middle of the 20th century. Fabric membrane material is the main load -bearing component in membrane structure, which directly influences the safety and durability of membrane structure. To meet the needs of the general engineering design, researches focusing on the strength indexes of coated fabrics have been carried out, for its short developing history in China.
     As the extensive application of membrane structures and the construction of some large scale and complicated membrane structures, durability of membrane structures and membrane materials is gradually concerned. However, researches on durability need high cost and a longer time, hence related works are not carried out fully. Therefore, this paper carries out comparatively systematic experimental researches on the creep and weather-ability characteristics of PTFE coated fabric, establishes the creep constitutive model of PTFE coated fabric, meanwhile curves describing the strength decrease with time of PTFE coated fabric considering environmental effects are given, offering valuable datas for futher researches on durability of membrane structures.
     The main researches of this paper are summarized in three parts:
     (1) Creep constitutive model research of PTFE coated fabric. Based on the viscoelasticity theory of composites, creep characteristics and mechanism of PTFE membrane material is discused, pointing out that creep is composed of general elastic deformation, high elastic deformation and viscous flow deformation. Meanwhile, one-dimensional and multi-dimensional stress creep model, creep experience model, and viscoelasticity creep model are also studied. At last, the creep constitutive model of PTFE coated fabric—modified time hardening model is proposed, providing theoretical guidance for researches on the creep property of PTFE coated fabric.
     (2) Experimental research on the creep property of PTFE coated fabric. Creep experiment of PTFE coated fabric under three different stress levels lasting for 24 hours is designed and accomplished, creep strain-time curves of of PTFE coated fabric warp and weft specimens are obtained. Modified time hardening model are used as creep constitutive model of PTFE coated fabric, and parameters of modified time hardening model are determined through creep strain-time curves of of PTFE coated fabric warp and weft specimens. The research results indicates that modified time hardening model can well describe the property of PTFE coated fabric, PTFE coated fabric is of good creep resistance, and warp specimens are better than weft specimens.
     (3) Weatherability of PTFE coated fabric in cold region. Long term outdoor exposure experiment on PTFE coated fabric is carried out, specimens after 1 year’s, 2 years’and 4 years’outdoor exposure have been obtained and of which the tensile and tear strength have been tested, curves describing the strength variation with time of PTFE coated fabric warp and weft specimens are fitted then. Based on these curves, the mechanical properties of PTFE coated fabric after a number of years are predicted, providing the basis for durability design of membrane structure.
引文
1陈务军.膜结构工程设计[M].北京:中国建筑工业出版社,2005
    2克劳斯-迈克尔·科赫著,卢昀等译.膜结构建筑[M].大连:大连理工大学出版社, 2007
    3杜文风,张慧.空间结构[M].北京:中国电力出版社,2008
    4高新京等.膜结构工程技术与应用[M].北京:机械工业出版社,2010
    5王臣.建筑膜材力学特性分析及试验研究[D].哈尔滨:哈尔滨工业大学,2002
    6张之秋,杨文芳等.建筑膜材的发展及应用现状[J].新型建筑材料,2008,35(5):78-81
    7钟莉莉.膜结构的灵魂——膜材料[J].工业建筑,1999,29(11): 4-7
    8刘家喜.薄膜结构形态分析与整体力学特性的研究[D].成都:西南交通大学,2004
    9胥传喜等.ETFE薄膜的材料性能及其工程应用综述[J].钢结构,2003,18(6):1-4
    10宋雄彬.新型建筑材料——膜材[J].广东建材,2006, (10): 24-26
    11赵晓娣,顾振亚.国内外防污自洁建筑膜材的进展[J].纺织导报,2006,(5):40-42
    12周振兴.膜结构的设计施工现状与应用前景[J].山西建筑,2007,33(28): 81-82
    13倪佳女.PVC膜材力学性能试验研究[D].上海:同济大学,2009
    14沈世钊.膜结构——发展迅速的新型空间结构[J].1999,32(2): 11-15
    15蓝天.当代膜结构发展概述[J].世界建筑,2000,(9):17-20
    16那向谦.张拉膜结构体系的应用与发展[J].世界建筑,1996,(9):66-69
    17勒内·模特罗著,刘迎春译.张拉整体[M].北京:中国建筑工业出版社,2007
    18熊天齐.可展结构理论分析与研究[D].上海:同济大学,2006
    19徐彦,关富玲.充气可展天线精度分析和形面调整[J].空间科学学报2006,26(4):292-297
    20余乐等.膜结构在我国发展的综合探讨[J].四川建筑,2008,28(5):111-114
    21焦红,王松岩.膜建筑的起源、发展与展望[J].工业建筑,2006,36(z1):52-57
    22 Freeland等. Large inflatable deployable antenna flight experiment results[J]. Acta astronautica, 41(4-10): 267-277
    23林颖儒.上海八万人体育场马鞍型大悬挑钢管空间屋盖结构设计简介[J].空间结构,1996(1):47-48
    24李阳,张其林.建筑用膜材性能及其试验研究[C].第五届全国现代结构工程学术研讨会论文集,中国天津,2005
    25倪佳女,李阳等.建筑膜材的力学性能试验研究[J].施工技术,2008, 37(7):34-38
    26吴明儿,刘建明等.ETFE薄膜单向拉伸性能[J].建筑材料学报, 2008,11(2):241-247
    27 JIS A-93. Technical standard for special membrane structure[D].
    28吴明儿,慕仝等. ETFE薄膜循环拉伸试验及徐变试验[J].建筑材料学报,2008,11(6):690-694
    29徐其功,韩大建.张拉膜结构裁剪时收缩补偿值的若干探讨[J].华南理工大学学报(自然科学版),2003,31(8): 67-70
    30李阳.建筑膜材料和膜结构的力学性能研究与应用[D].上海:同济大学,2007
    31朱迅,王明寅等.纤维增强聚合物基复合材料的蠕变力学研究进展[J].纤维复合材料,2004, (3):51-53
    32卫东等.建筑膜材的材性试验研究[J].空间结构,2002,8(1):37-43
    33 Hans J. Schock . On The Structural Behavior and Material Characteristics of PTFE-Coated Glass-Fiber Fabrics[J]. Journal of Industrial Textiles, 1991,4(20):277-288
    34 P. Mailler, G.Nemoz. Long Term Behavior Characterization of Coated Fabrics for Architecture Membrane under Biaxial Loading[J]. Journal of Industrial Textiles, 1997,26(4):323-333
    35 Feiyi Pang等.Creep response of woven-fibre composites and the effect of stitching Composites Science and Technology, 1997,57(1):91-98
    36 Kyoung Ju Kim,Woong-Ryeol Yu,Min Sun Kim. Anisotropic creep modeling of coated textile membrane using finite element analysis[J]. Composites Science and Technology,2008,68(7-8):1688-1696
    37刘杭锋,韩建等.紫外线对建筑膜材料拉伸性能的影响[J].浙江理工大学学报,2010,27(1):26-30
    38谭志乐.热、湿、光作用下膜结构材料耐老化性估计[D].上海:东华大学,2008
    39肇研,梁朝虎.聚合物基复合材料自然老化寿命预测方法[J].航空材料学报,2001,21(2):55-58
    40张亚娟,齐鲁华.复合材料老化方法研究进展[J].工程塑料应用,2002,30(1):39-41
    41 Machael S.Farlling、叶敏.评估屋顶薄膜材料耐久性的新的实验室方法[J].橡胶译丛,1989,(1):70-75
    42 Toyoda, Sakabe, Itoh, Konishi. Weatherability of membrane structure materials as determined by their exposure conditions[J].Sen'i Gakkaishi Y. 1994, vol. 50, No. 10, pages 484-488
    43小川华子,大久保笃,李宗晟.永久膜材和通用膜材的比较—SKYTOP PTFE膜材的耐候性与经年劣化考察[J] .建筑技术及设计, 2008, 166(7):81-83
    44 H.AbudulRazak,C.S.chua, H.Toyoda. Weatherability of coated fabrics as roofing material in tropical environment[J]. Building and Environment, 39, (2004):87-92
    45 W.F.Polfus. Weathering of industrial Fabrics(Accelerated and Natural)[J].Journal of Coated Fabrics,1977,7(22):58-62
    46 Ulrich Eichert. Residual Tensile and Tear Strength of Coated Industrial Fabrics Determined in Long-Time Tests in Natural Weather Conditions[J]. Journal of Industry Textiles,1994,(23):311-327
    47沈观林,胡更开.复合材料力学[M].北京:清华大学出版社,2006
    48杨挺青.粘弹性力学[M].华中理工大学出版社,1990
    49束德林.工程材料的力学性能[M].北京:机械工业出版社,2003
    50何曼君.高分子物理(修订版)[M].上海:复旦大学出版社,1999
    51穆霞英.蠕变力学[M].西安:西安交通大学出版社,1990
    52王胜伟.旋切胶合木(LVL)蠕变性能试验研究及数值模拟[D].哈尔滨工业大学,2007
    53张肖宁.实验粘弹原理[M].哈尔滨:哈尔滨船舶工程学院出版社,1990
    54徐朴,李桂梅.膜结构建筑和膜材料的发展[C].2010年建筑用纺织品发展论坛暨第六届膜结构技术交流会,上海,2010
    55张肖宁.实验粘弹原理[M].哈尔滨:哈尔滨船舶工程学院出版社,1990
    56 GB 11546-1989.塑料的拉伸蠕变测定方法[S]
    57柯受全,卢锡年,李桃萼.关于某些蠕变理论的实验验证[J].力学学报,1959, 3 (4): 356-363
    58 S.Soare, S.J.Bull等. Nanoindentation assessment of aluminium metallisation; the effect of creep and pile-up[J]. Surface and Coatings Technology, 2004, 177–178:497–503
    59唐维等.PBX部件机械加工过程中的夹持变形预测[J].含能材料, 2008,(6):703-707
    60方安平.Origin 8.0实用指南[M].北京:机械工业出版社,2009
    61 JIS A 1410. Recommended practice for out-door exposure of plastics building materials[S]
    62 GB/T 3681.塑料大气暴露试验方法[S]
    63 BS 3424. Methods of Test for Coated Fabrics[S]
    64 DIN 53354. Testing of Artificial Leather-Tensile Test[S]
    65 ASTM 4851. Standard Test Methods for Coated and Laminated Fabrics for Architectural Use[S]
    66 JIS L1096. Testing Method for Fabrics[S]
    67 ISO 1421. Fabrics Coated with Rubber or Plastics-Determination of Breaking Strength and Elongation at Break[S]
    68 DG/TJ08-2019-2007.膜结构检测技术规程[S].上海,2007
    69王亚琴.PTFE膜材力学性能试验研究[D].上海:同济大学,2009
    70 ISO 13934-1:1999. Textiles—Tensile properties of fabrics [S].
    71 CECS158:2004.膜结构技术规程[S].北京,2004
    72胥传喜.膜结构设计(9)膜结构的工程事故与质量通病防[J].工业建筑,2005,35(2):83-87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700