空间薄膜阵面预应力及结构特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间薄膜具有轻质、抗振性好等优点,可用于研制深空探索太阳帆、薄膜天线等航天器。
     空间薄膜阵面刚度主要决定于边缘几何线型和预应力。预应力分析是薄膜结构分析基础,预应力导入效应及其影响分析是薄膜结构预应力研究重要内容。本文针对大型空间薄膜阵面研究对象,开展薄膜阵面预应力分析、刚度影响因素、振动模态试验、褶皱分析等研究。本文以39066mm? 9894mm空间薄膜阵面结构为数值分析对象,对该结构各部分及整体进行模态分析,研究阵面结构合理方案,研究空间薄膜阵面结构模态及结构特征分析。
     为了指导工程实践,研究了薄膜阵面结构刚度影响因素。分别考虑薄膜阵面面密度、预应力影响。在面密度分别为150 g/m2、200 g/m2、200 g/m2时,预应力分别为18 psi、25 psi、50 psi,其对应基频增大23.1%、22.2%、18.9%;在相同预应力而对应三种面密度,基频降低11.5%、9.1%、14.8%。可见预应力变化比面密度变化对基频有更大影响。在对该空间薄膜阵面刚度数值模拟之后,需要薄膜结构模态试验验证。采用25 ?m Mylar薄膜,设计制作了边缘为圆曲线、矢跨比为210,平面尺寸为325 ? 445mm的阵面模型,应用航天805所研制张力机构实现膜面张力加载,采用激光测振分析仪进行了模态试验辨识,并与数值模拟结果对比。试验结果表明,试验膜面振型与数值模拟结果基本吻合,但对应频率有较大差异。以空间薄膜阵面结构预应力膜面为对象,研究大型薄膜阵面褶皱行为特征,分析了阵面几何、预应力、初始缺陷、非均匀节点张力等对薄膜褶皱的影响。
     论文最后对本文的研究成果进行了总结,并指出了今后的研究方向。
The space planar film reflect-array that can be used for space solar sail for exploration and radar antenna, is gaining more and more research attention for its remarkable characteristics as light in weight, well in vibration resistance.
     Space film reflect-array stiffness depends mainly on the shape of edge and value of pre-stress. Structural analysis of film is based on the analysis of pre-stress, the key area of analysis of film structural pre-stress is effect and influence factors of film structural with pre-stress imported. This paper, based on a specific film reflect-array structure as the object of investigation, analyzes several aspects including structural pre-stress of film reflect-array, the film reflect-array structural influence factors, film reflect-array wrinkling, numerical simulation and verification of film vibration test.
     Space film reflect-array, whose outline dimension is 39066mm? 9894mm,is used as the numerical object, whose structural characteristics and modals are analyzed by breaking up the film reflect-array structure. Moreover, the whole structural model is also analyzed, and the reasonable structural type of the film reflect-array is as well as considered.
     In order to guide practice of engineering,the effect factors of overall structural rigidity of the pre-stress of film reflect-array is considered. Structural modals of film reflect-array are calculated when the aerial density of film reflect-array is individually 150 g/m2,200g/m2,200 g/m2 and pre-stress of film reflect-array is 18psi,25psi,50psi,the frequencies of film reflect-array increase by 23.1%,22.2%,18.9%.When pre-stress of film reflect-array is the same ,the three aerial densities decrease by 11.5%,9.1%,14.8%.It can be seen that there are greater influences variation of pre-stress of film reflect-array than variation of the aerial density of film reflect-array. After the stiffness of the space film reflect-array be calculated, experimental verification of film structural modal is required. The circular curve film reflect-array, which is made from 25?m Mylar and whose outline dimension is 325?445mm, at edge rise-span ratio 210 is designed, and mechanism of tension which was developed by Shanghai Aerospace System Engineering Institute is used to load the film reflect-array, however, laser vibrometer is used to identify modals. Modals are compared to the results of numerical simulation. The result of test shows that the shapes between experimental modal and numerical simulation are consistent,but there are difference frequencies value among the corresponding modals. Space film reflect-array is used as the numerical object, and the
     behavior characteristic of large film reflect-array is considered, and analyzes several effect factors on producing wrinkle including geometry of film reflect-array、pre-stress of film reflect-array、initial defect、the node of non-uniform tension.
     In the final part of this paper, the research is summarized, and the future developing direction is pointed out.
引文
[1] Natori, M. C., Higuchi, K., Sekine, K. Advanced concepts of inflatable rigidized structures for space applications [C]. The 35th AIAA/ASME/AHS/ASC, Structure, Structure Dynamics, and Materials Conference. Washington, DC: USA. 1994.
    [2] Carreras, R. A., Mark, D. K. Deployable near-net-shaped membrane optics, High-Resolution Wave-front Control: Methods, Devices, and Applications [C]. Proceedings of SPIE. Washington, DC: USA. 1999.
    [3] Naboulsi, S. Investigation of geometric imperfection in inflatable aerospace structures [J]. Journal of Aerospace Engineering, 2004, 17(3): 98-105
    [4]王长国,杜星文,万志敏.空间充气天线反射器受冲击气体质量损失分析[J].哈尔滨工业大学学报, 2006, 38(4): 507-509.
    [5]徐彦,关富玲,管瑜.充气可展天线精度分析和形面调整[J].空间科学学报, 2006, 26(4): 292-297.
    [6] Freeland, R. E., Bilyeu, G. In-step inflatable antenna experiment [C]. The world Space Congress and the 43rd Congress of the International Astronautic Federation, 3-5, Rue Mario-Nikis, 75015 Parus, 1992, LAF- 92-0301.
    [7] Calladine, C. R. Theory of Shell Structures [M]. Cambridge University Press, Cambridge, England. 1983.
    [8] Greschik, G., Mikulas, M. M. Design Study of a Square Sail Architecture [C]. In Proc. 42ndAIAA/ASME/ASCE/AHS/ASC Structures Dynamics, and Material Conference and Exhibit. Seattle, WA, USA. 16-19 April 2001, AIAA-2001-1259.
    [9] Lai, C. Y. Analysis and Design of a Deployable Membrane Reflector [D]. PhD dissertation, University of Cambridge. 2001.
    [10] Steigmann, D. J., Pipkin, A. C. Finite Deformations of Wrinkled Membranes [J]. Quar. Jour. Mech. Appl. Math., 1989, 42:427-440.
    [11] Stein, M., Hedgepeth, J. M. Analysis of Partly Wrinkled Membranes [R]. 1961, NASA TN D-813.
    [12] Mansfield, E. H. Load Transfer via a Wrinkled Membrane [J]. Proc. Roy.Soc. Lond. A., 1970, 316:269-289.
    [13]陈务军,张淑杰.<空间可展结构体系与分析导论>.北京:中国宇航出版社,2006.3.
    [14] Onate, E., Kroplin, B. H. Textile composites and inflatable structures [C]. Pro. 2nd Int. Conf. on Textile Composites and Inflatable Structures in Stuttgart, Germany, 2005, 10.
    [15] Cadogan, D., Garhne, M., Mikulas, M. Inflatable space structures: a new paradigm for space structure design [J]. 14th International Astronautical Congress, IAF-98-I.1.02, 1998.
    [16] Lopez, B. C., Lou, M. C., Huang, J., et al. Development of an inflatable SAR engineering model [J]. AIAA, 2001-1618, 2001.
    [17] Sandy, C. R. Next generation space telescope-inflatable sunshield development [J]. IEEE,2000.
    [18]李云良,谭惠丰,王晓华.矩形薄膜和充气管的屈曲及后屈曲行为分析[J].航空学报, 2008, 29(4): 886-887.
    [19] Cheng, C., Lui, X. The effect of large rotation on post-buckling of annular plates [J]. Acta. Mech. Solida Sinca. 1992, 5(3): 277-284.
    [20]李作为,杨庆山,刘瑞霞.薄膜结构褶皱研究述评[J].中国安全科学学报. 2004, 14(7): 16-21.
    [21] Rimrott, F. P. J., Cvercko.M.. Wrinkling in Thin Plates due to In-plane Body Forces [M]. In: Inelastic Behaviour of Plates and Shells, pages19-48. (Edited by L.Bevilacqua, R. Feijoo and R. Valid), Springer-Verlag.
    [22] Wong, Y. W., Pellegrino, S. Computation of Wrinkle Amplitudes in Thin Membrane [C]. In Proc. 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structures Dynamics, and Material Conference and Exhibit. Denver, CO, USA. 22-25 April 2002, AIAA-2002-1369.
    [23] Steigmann, D. J., Pipkin, A. C. Finite Deformations of Wrinkled Membranes [J]. Quar. Jour. Mech. Appl. Math., 1989, 42:427-440.
    [24] Hongli Ding, Bingen Yang. The modeling and numerical analysis of wrinkled membranes [J]. Int. J. Numer. Meth. Engng. 2003, 58:1785-1801. Steigmann, D. J., Pipkin, A. C. Wrinkling of Pressurized Membranes [J]. ASME J. Appl. Mech., 1989, 56:624-628.
    [25] Steigmann, D. J., Pipkin, A. C. Wrinkling of Pressurized Membranes [J]. ASME J. Appl. Mech., 1989, 56:624-628.
    [26] Stein, M., Hedgepeth, J. M. Analysis of Partly Wrinkled Membranes [R]. 1961, NASA TN D-813.
    [27] Mansfield, E. H. Load Transfer via a Wrinkled Membrane [J]. Proc. Roy.Soc. Lond. A., 1970, 316:269-289.
    [28] Pipkin, A. C. The Relaxed Energy Density for Isotropic Elastic Membrane [J]. IMA Journal of Applied Mathematics. 1986, 36:85-99.
    [29] Pipkin, A. C. Relaxed enemy densities for lame deformations of membranes [J]. IMA J. Appl. Math. 1994, 52: 297-308.
    [30] Miller, R. K., Hedgepeth, J. M. Finite Element Analysis of Partly Wrinkled Membranes [J]. Computers and Structures, 1985, 20(13): 631-639.
    [31] Adler, A. L., Mikulas, M. M. Static and Dynamic Analysis of Partially Wrinkled Membrane Structures [C]. In Proc. 41st AIAA/ASME/ASCE/AHS/ASC Structures, Structures Dynamics, and Material Conference and Exhibit. Atlanta, GA. 3-6 April 2000, AIAA-2000-1810.
    [32] Johnston, J. D. Finite Element Analysis of Wrinkled Membrane Structures for Sunshield Applications [C]. In Proc.43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structures Dynamics, and Material Conference and Exhibit. Denver, CO, USA. 22-25 April 2002, AIAA-2002-1369.
    [33] Mseikeh, C. H. Wrinkling of Membranes, Plates, and Shells [D]. PhD dissertation, McGill University, 1997.
    [34] S.Kukathasan,S.Pellegrino, S. Nonlinear Vibration of Wrinkled Membranes [C]. In Proc. 44thAIAA/ASME/ASCE/AHS/ASC Structures, Structures Dynamics, and Material Conference and Exhibit. Norfolk, VA, USA.7-10 April 2003, AIAA-2003-1745.
    [35] Wong, Y. W., Pellegrino, S. Wrinkled membranes part I: experiments [J]. Journal of Mechanics of Materials and Structures, 2006, 1(1): 1-23.
    [36] Wong, Y. W., Pellegrino, S. Wrinkled membranes part II: analytical models [J]. Journal of Mechanics of Materials and Structures, 2006, 1(1): 24-60.
    [37] Wong, Y. W., Pellegrino, S. Wrinkled membranes part III: numerical simulations [J]. Journal of Mechanics of Materials and Structures. 2006, 1(1):61-93.
    [38] Leifer, J., Belvin, W. K. Prediction of Wrinkle Amplitudes in Thin Film Membrane via Finite Element Modeling [C]. In Proc. 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structures Dynamics, and Material Conference and Exhibit. Norfolk, VA, USA. 7-10 April 2003, AIAA-2003-1982.
    [39] Biship, J. A. Shape correction of initially flat membranes by a genetic algorithm [C]. The 39th AIAA/ASME/AHS /ASC, Structure, Structure Dynamics, and Materials Conference. Washington, DC: AIAA. Long Beach, CA. USA. 1998: 98-1984.
    [40] Cornwell, P. J., Bendiksen, O. O. Localization of vibrations in large space reflectors [J]. AIAA Journal, 1989, 27(2): 219-226.
    [41] Everstine, G. C., Henderson, F. M. Coupled finite element/boundary element approach for fluid-structure interaction [J]. Journal of Acoustic Society of America, 1989, 87(5):1938-1947.
    [42] Fowler, J., Lagerquist, N., and Leve, H. Effect of air mass on modal tests [C]. In Proceedings of 5th International Modal Analysis Conferences.1987, 1078-1083.
    [43] Junger, M. C. Normal modes of submerged plates and shells [C]. In symposium on fluid-solid interaction, ASME, 1967, 79-11
    [44] Lai, C. Y., You, Z., and Pellegrino, S. Shape of deployable membrane reflectors [J]. Journal of Aerospace Engineering, 1998, 11(3): 73-80
    [45] Lai, C. Y., You, Z., and Pellegrino, S. Shape and stress analysis of crts reflectors [R]. Tech. Rep. CUED/ D-STRUCT/TR 170, University of Cambridge, 1997.
    [46] Wong, Y.W., Pellegrino, S. Prediction of Wrinkle Amplitude in Square Solar Sails [C]. In Proc. 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structures Dynamics, and Material Conference and Exhibit. Norfolk, VA, USA. 7-10 April 2003, AIAA-2003-1982.
    [47] Liu, X., Jenkins, C. H. Fine Scale Analysis of Wrinkled Membranes [J]. International Journal of Computational Engineering Science, 2000, 1(2): 281-298.
    [48]全亮.膜结构的褶皱分析理论与数值模拟[D].哈尔滨:哈尔滨工业大学硕士学位论文, 2006.
    [49]谭锋.张拉薄膜结构的褶皱和动力分析[D].北京:北京交通大学博士学位论文, 2007.
    [50] Junger M C. Normal modes of submerged plates and shells [C]. In symposium on fluid-solid interaction, ASME, 1967, 79-11.
    [51] Mansfield, E. H. Tension Field Theory, a New Approach which Shows its Duality with Inextensional Theory [C]. In Proc. XII Int. Cong. Appl. 1968, 305-320.
    [52]李作为,杨庆山,刘瑞霞.薄膜结构褶皱研究述评[J].中国安全科学学报. 2004, 14(7):16-21.
    [53] Hongli Ding, Bingen Yang. The modeling and numerical analysis of wrinkled membranes [J]. Int. J. Numer. Meth. Engineering. 2003, 58:1785-1801.
    [54] Pagitz, M., Xu, Y., Pellegrino, S. Stability of lobed balloons [J]. Advances in Space Research, 2006, 37: 2059-2069.
    [55] Miller, R. K., Hedgepeth, J. M. Finite Element Analysis of Partly Wrinkled Membranes [J]. Computers and Structures, 1985, 20(13): 631-639.
    [56] Jenkins, C. H., Leonard, J.W. Nonlinear dynamic response of membranes: state of the art [J]. Applied Mechanics Reviews (ASME). 1991, 44: 319-328.
    [57] Mseikeh, C. H. Wrinkling of Membranes, Plates, and Shells [D]. PhD dissertation, McGill University, 1997.
    [58] Tessler, A., Sleight, D. W., and Wang, J.T. Nonlinear Shell Modeling of Thin Membrane with Emphasis on Simulation Wrinkling [C]. In Proc. 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structures Dynamics, and Material Conference and Exhibit. Norfolk, VA, USA. 7-10 April 2003, AIAA-2003-1931.
    [59] Mansfield, E. H. Load Transfer via a Wrinkled Membrane [J]. Proc. Roy.Soc. Lond. A., 1970, 316:269-289.
    [60] Calladine, C. R. Theory of Shell Structures [M]. Cambridge University Press, Cambridge, England. 1983.
    [61] Lai, C. Y. Analysis and Design of a Deployable Membrane Reflector [D]. PhD dissertation, University of Cambridge. 2001.
    [62] Steigmann, D. J., Pipkin, A. C. Finite Deformations of Wrinkled Membranes [J]. Quar. Jour. Mech. Appl. Math., 1989, 42:427-440.
    [63] Wagner, H. Flat sheet metal girders with a very thin metal web, Parts I II III [J]. NACA Tech, Memoranda,1929,20:200-314.
    [64] Dean, W. R. The elastic stability of an annular plate [J]. Proc Roy Soc Lond A. 1924, 106: 268-284.
    [65] Suzuki, T., Ogawa, T., Motoyui, S., et al. Investigation on wrinkling problem of membrane structure [C]. Proc. of IASS-MSU Symposium on Domes from Antiquity to the Present. Istanbul. 1988, 695-702.
    [66] Cheng, C., Lui, X. Buckling and post-buckling of annular plates in shearing, part I: buckling [J]. Comput. Meth. Appl. Mech. Eng. 1991, 92(2):157-172.
    [67] Cheng, C., Lui, X. Buckling and post-buckling of annular plates in shearing, part I: post-buckling [J]. Comput. Meth. Appl. Mech. Eng. 1991, 92(2):173-191.
    [68] Cheng, C., Lui, X. The effect of large rotation on post-buckling of annular plates [J]. Acta. Mech. Solid mechanics. 1992, 5(3): 277-284.
    [69] Tomoshi Miyamura. Wrinkling on stretched circular membrane under in-plane torsion: Bifurcation analyses and experiments [J]. Engineering Structures. 2000, 22(11): 1407-1425.
    [70]钱若军,杨联屏.张力结构的分析、设计、施工[M].南京:东南大学出版社, 2003.
    [71] Wong, Y. W., Pellegrino, S. Computation of Wrinkle Amplitudes in Thin Membrane [C]. InProc. 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structures Dynamics, and Material Conference and Exhibit. Denver, CO, USA. 22-25 April 2002, AIAA-2002-1369.
    [72] Johnston, J. D. Finite Element Analysis of Wrinkled Membrane Structures for Sunshield Applications [C]. In Proc.43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structures Dynamics, and Material Conference and Exhibit. Denver, CO, USA. 22-25 April 2002, AIAA-2002-1369.
    [73] S.Kukathasan,S.Pellegrino, Nonlinear Vibration of Wrinkled Membranes [C]. In Proc. 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structures Dynamics, and Material Conference and Exhibit. Norfolk, VA, USA.7-10 April 2003, AIAA-2003-1745.
    [74] Wong, Y. W., Pellegrino, S. Wrinkled membranes part I: experiments [J]. Journal of Mechanics of Materials and Structures, 2006, 1(1): 1-23.
    [75] Wong, Y. W., Pellegrino, S. Wrinkled membranes part II: analytical models [J]. Journal of Mechanics of Materials and Structures, 2006, 1(1): 24-60.
    [76] Wong, Y. W., Pellegrino, S. Wrinkled membranes part III: numerical simulations [J]. Journal of Mechanics of Materials and Structures. 2006, 1(1):61-93.
    [77] Rimrott, F. P. J., Cvercko, M. Wrinkling in Thin Plates due to In-plane Body Forces [M]. In: Inelastic Behaviour of Plates and Shells, pages19-48. (Edited by L.Bevilacqua, R. Feijoo and R. Valid), Springer-Verlag.
    [78] Pipkin, A. C. The Relaxed Energy Density for Isotropic Elastic Membrane [J]. IMA Journal of Applied Mathematics. 1986, 36:85-99.
    [79] Pipkin, A.C. Relaxed enemy densities for lame deformations of membranes [J]. IMA J.Apply.Math. 1994, 52: 297—308.
    [80] Steigmann, D.J., Pipkin, A.C. Wrinkling of Pressurized Membranes [J]. ASME J. Appl. Mech., 1989, 56:624-628.
    [81] Leifer, J., Belvin, W. K. Prediction of Wrinkle Amplitudes in Thin Film Membrane via Finite Element Modeling [C]. In Proc. 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structures Dynamics, and Material Conference and Exhibit. Norfolk, VA, USA. 7-10 April 2003, AIAA-2003-1982.
    [82]李云良,谭惠丰,王晓华.矩形薄膜和充气管的屈曲及后屈曲行为分析[J].航空学报, 2008, 29(4): 886-887.
    [83]李云良,王长国,谭惠丰.褶皱对薄膜振动特性的影响分析[J].力学与实践, 2007, 29(6): 17-22.
    [84]李云良,田振辉,谭惠丰.基于张力场理论的薄膜褶皱研究评述[J].力学与实践, 2008, 30(4): 8-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700