二尖瓣反流超声三维重建与定量评价方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二尖瓣病变是心脏疾病的常见病变,根据报道二尖瓣病变占风心病的85%,如二尖瓣关闭不全将导致反流出现,因此研究二尖瓣反流有十分重要的意义。在二十世纪八十年代,彩色多普勒血流技术成为了医生诊断二尖瓣反流最重要的工具,与别的方法相比,该技术操作方便、无副作用、成本低,因此很快成为诊断复杂二尖瓣反流和定量分析的研究方法。
    通过经食道超声心动图(TEE)和经胸超声心动图(TTE)可以判定二尖瓣反流机制、检出反流起源部位、评价反流程度及术后判定残余反流量,但无法准确测量反流量,不能对二尖瓣反流进行真实、客观有效的评价,对于复杂的二尖瓣偏心反流常会被严重低估,无法准确观察和测量,只能靠主观推断,存在较大的误差。此外,在临床上对心脏二尖瓣反流的测量没有金标准,因此,急需研究新的真实、客观有效的观察和定量评价方法。
    本论文在二维彩色多普勒血流图像基础上,利用超声图像三维重建方法,实现三维彩色多普勒超声心动图对二尖瓣反流速度的空间分布描述,可以立体观察反流的有无、位置、方向、反流束长度、面积、体积、空间传播和严重程度,可以对复杂的二尖瓣偏心反流进行较为准确的半定量评价,通过计算反流体积可以区分传统方法无法识别的反流级别,显示了定量评价二尖瓣偏心反流在临床上的应用潜力。
    首先,利用经胸超声心动图获取原始的二尖瓣中心反流图像,根据超声图像中Speckle噪声的特点,选择了数学形态学滤波器来进行滤波,该方法可以有效滤除超声图像中的Speckle噪声并同时保留细节信息。从滤波后的图像中提取
    
    
    出感兴趣区域后,将其在空间按原始图像获取角度重新组织,并利用三维直接匹配插值算法得到规则体数据,体绘制方法得到的结果有助于临床评价二尖瓣反流的严重程度,尤其是立体观察和确定反流束的位置、方向、长度、宽度、面积、流程、起止点和严重程度以及空间分布状态等,在医学上具有重要的价值。
    然后,利用多平面经食管的方法获取心脏的原始超声多普勒图像,并同步记录心电图。再经过滤波、插值实现了面绘制和体绘制两种体视化方法。通过对多普勒超声医学图像中图像叠加原理和Color Bar的分析,从多普勒血流图中分离出血流运动的速度信息和解剖结构信息,分别进行三维重建,并将重建结果进行三维融合显像,从而显示血流在心腔内的运动情况以及反流的有无、位置、时相、方向、反流束长度、面积等,得到了反流在不同角度的面积和体积变化趋势以及反流在不同时相的变化趋势,在不同的收缩期时相和不同的旋转角度的条件下,三维重建呈现的偏心性反流束均明显大于二维彩色多普勒所显示的偏心性反流束,可更准确地显示二尖瓣偏心性反流束的大小。
    最后,将实时三维超声图像与彩色多普勒相结合,重建立体的彩色血流图像,立体显示反流束的位置、时相、方向、长度、宽度、面积、体积、流程和严重程度,对反流进行了比较精确的定量。该方法在目前的文献中未见报道。
    本研究表明,彩色多普勒血流图像的三维重建方法与传统方法相比能够更准确评价二尖瓣偏心反流程度,对二尖瓣病变的正确诊断和有效治疗具有临床意义,在社会上具有实际应用价值。
Mitral valve disease is one of the frequent diseases of heart disease; the recent statistical reports proved that mitral valve pathological change take 85 percent of heart rheumatism. Mitral valve insufficiency causes the mitral regurgitation, so it has important signification that research the mitral valve regurgitation.
    In the eighties of the twentieth century the color Doppler flow imaging technology come forth, color Doppler flow imaging is the most important tools for doctor to diagnosis the mitral regurgitation. Compare with other tools, it’s facility, no side-effect and cheap. It also has shortages such as heavy speckle noise and low resolution. So it becomes the most important fields that diagnosis the complex mitral regurgitation and quantitative analysis from the color Doppler flow images.
    Transthoracic Echocardiography and Transesophageal Echocardiography (TTE and TEE) plays an important role in the assessment of the mitral regurgitation mechanism, origin position, regurgitation severity level and residual regurgitation amount after surgical operation, however, it’s difficult to exactly observe and measure the regurgitation from the two-dimensional real-time echocardiograph. It’s difficult to give the objective assessment of the mitral regurgitation,especially for
    
    
    the eccentric regurgitation and there is subjective assertion, underestimation and wider error band from the two-dimensional Doppler echocardiograph; Moreover, there is no golden standard of the clinic mitral regurgitation measurement; it’s needed to develop true objective observing and new quantitative assessment method.
    Based on the two-dimensional color Doppler image and the three-dimensional rconstruction method in this article, the technique of three-dimensional reconstruction and the color Doppler flow image is combined to implement the description of the mitral regurgitation velocity space distribution, which can be used in observing the position, direction and measuring the jet length, area, volume, space distribution and severity level of the mitral regurgitation, especially more accurate semi-quantitative assessment of the complex mitral eccentric regurgitation, compared to the traditional method, by calculating the volume of the mitral regurgitation, the regurgitation severity level specification could be given. The accurate assessment of mitral eccentric regurgitation is of great clinic significance.
    First, TTE method is used to acquire original mitral centric regurgitation echocardiography. According to the characteristic of speckle noise in ultrasound images, mathmitical morphological filter is used to suppress speckle and preserve the details in these images. Then the images are reorganized according to their corresponsive acquisition angle after the extraction of region of interest. A direct matching interpolation method is utilized to get regular volume data from discrete distribution of ultrasound information points. This volume data can be visualized with surface rendering and volume rendering algorithm, which can be used in observing the position, direction and measuring the jet length, area, volume, space distribution and severity level of the mitral regurgitation, the experiment result is of of great clinic significance.
    Then, Multiplane transesophageal rotational scanning method is used to acquire original Doppler echocardiography while echocardiogram is recorded synchronously. After filtering and interpolation, the surface rendering and volume rendering methods are performed. Through analyzing the color-bar information and the color Doppler flow image’s superposition principle, the grayscale mitral anatomical structure and
    
    
    color-coded regurgitation velocity parameter were seperated from color Doppler flow images, three-dimensional reconstruction of mitral structure and regurgitation velocity distribution was implemented separately, fusion visualization of the reconstructed regurgitation velocity distribution parameter with its corresponding 3D mitral anatomical structures was realized, whi
引文
高上凯 编著.医学成像系统.清华大学出版社.北京.2000
    Jani AB, Pelizzari CA, Chen TY, Roeske J, Hamilton RJ, Macdonald RL, Bova F, Hoffmann KR, Sweeney PA. Volume rendering quantification algorithm for reconstruction of CT volume-rendered structures: Part I. Cerebral arteriovenous malformations. IEEE Transactions on Medical Imaging. 2000. 19(1): 12~24
    袁建军, 田军. 超声心动图与临床应用. 河南医科大学出版社. 2000
    Dussik KT, Fritch DJ, Kyriazidou M, Robert SS. Measurements of articular tissues with ultrasound. Am. J. Phys. Med. 1958. 37:160~165
    Wild JJ, Reid JM. Further pilot echographic studies on the histologic structure of tumors of the living intact human breast. Amer J Path. 1952. 28:839~847
    鲁树坤 主编. 现代超声诊断学. 湖南科学技术出版社. 长沙. 1998
    McDicken WN, Sutherland GR, Moran CM. Color Doppler velocity imaging of the myocardium. Ultrasound Med Bio. 1992. 18:651~654
    王 炼 主编. 临床彩色多普勒诊断. 南京:航空工业出版社.1996:1~6
    陈常佩, 陆兆龄 主编. 妇产科彩色多普勒诊断学.北京:人民卫生出版社. 1998:1~3
    陆恩祥, 任卫东 主编. 血管超声诊断图谱. 沈阳:辽宁科学技术出版社.
    袁光华 主编. 超声诊断仪技术进展与操作应用. 北京:北京医科大学中国协和医科大学联合出版社. 1991:152~156
    侯传举, 邓东安 主编. 彩色多普勒血流显像图谱. 沈阳:辽宁科学技术出版社. 1989:1~7
    唐杰, 董宝玮 主编. 腹部和外周血管彩色多普勒诊断学. 北京:人民卫生出版社. 1999:4~11
    王新房, 李治安 主编. 彩色多普勒诊断学. 北京:科学技术文献出版社. 1991:1~8
    周永昌, 郭万学 主编. 超声医学. 第3版. 北京:科学技术文献出版社. 1998:100~118
    袁光华, 张 武, 简文豪 主编. 超声诊断基础与检查规范. 北京:科学技术文献出版社. 2001:77~78
    Peter N, Burns C,Carl Jaffe. Quantitative Flow Mcasurements with Doppler Ultrasound Techniques. Accuracy and limitations. Radiolology North Am. 1985:23(4):641~656
    
    Taylor KJW, Burns PN Wood cock JP et al. Blood flow in deep abdorninal and Pelvic vessels. Ultrasonic Pulsed Doppler analysis-Radiolology. 1985:154:487~492
    Kenneth JW. Taylor, Scott Holland Doppler US part II. Clinical Applications. Radiology, 1990:174:302~319
    Fredrick W. K remkau. Doppler ultrasound principles and instruments, 2nd. Philadelphi: WB, Saunders, 1995:148~157
    李治安 主编. 王新房 名誉主编.经食管超声心动图学.北京:人民卫生出版社.1993: 4~11
    Utsunomiya T.Ogawa T, Doshi R, et al. Doppler color flow “proximal isovelocity surface area” method for estimating volume flow rate”effects of erifiee shape and machine factors. JACC, 1991,17(5): 1103~1111
    Giesler MO. Stauch M. Echocardiography 1992:9(1)51~62
    Baumgartner H, Schima H, Kuhn P, et al. Value and limitation of proximal jet dimensions for the quantification of valvular regurgitation: an invitro study using Doppler flow mapping. J Am Soc.Echocardiography, 1991,4~57
    Simpson IA, Valdes-Cruz LM, Sahn DJ,et al.Doppler color flow aping of simulated in vitro regurgitant jets: evaluation of the effects of orifice size and hemodynamic variables.JACC, 1989, 13:1195
    Wisenvaugh T, Berk M, Essop R, et al. Effect of mitral regurgitation and volume loading on pressure half time before and after balloon valvolomy in mitral stenosis. AJCC, 1991,67:162
    张园园, 张运 等.超声心动图测量二尖瓣狭窄瓣口面积六种方法的对比研究.中国超声医学杂志.1999,15:274
    高上凯, 高小榕, 张志广, 吴雅峰, 郝晓辉. 三维超声成像方法的研究. 中国医疗器械信息. 2000. 6(3):29~31
    郭薇, 陈斌, 俞鈴, 张善驷, 胡锡衷. 超声动态三维重建评价心内间隔缺损. 中国医学影像学杂志. 1999. 7(4):271~272
    谢明星, 王新房, 李治安, 胡纲, 刘俐, 吕清, 杨娅. 动态三维超声心动图术中应用初步探讨. 中国超声医学杂志. 1999. 15(3):173~176
    朱天刚, 王新房. 经食管右心系统三维超声心动成像. 中华超声影像学杂志. 2000. 9(3):148~149
    
    王新房. 三维超声心动图的发展前景. 中华超声影像学杂志. 2000. 1:5~6
    胡纲, 王新房. 动态三维超声心动图成像方法学,中华超声影像学杂志,1997, 6(3), 189~192
    杨印楼, 许仁和, 张运, 王勇, 季晓平, 任长征, 刘岱, 黄承明, 李建. 多平面经食管三维超声心动图对肺心病患者右心室收缩功能的诊断价值. 中华医学杂志. 1999. 79(3): 204~205
    周晓东, 钱蕴秋等. 模拟二尖瓣反流彩色多普勒血流三维重建的实验研究.中国医学影像学杂志.1999(7)1:56~58
    Liu Jie, GAO Shangkai, Gao Xiaorong et al. A new calibration method in 3D ultrasonic imaging system. IEEE/ EMBS 98, Oct, 1998
    Paul r Detmer, Gerard Bashein, Timothy Hodges et al. 3D ultrasonic image feature localization based on magnetic scanhead tracking: in vitro calibration and validation. Ultrasound in Med &Biol , 1994 ;20 (9) ∶923
    Malcolm E Legget, Daniel F Leotta, Edward L Bolson et al. System for quantitative three2dimensional echocardiography of the left ventricle based on a magnetic2field position and orientation sensing system. IEEE Trans on Biomedical Engineering, 1998; 45 (4)
    Prager RW et al. Rapid calibration for 3D freehand. Ultrasound in Med &Biol , 1998 ;24(6) ∶855
    Katherine Ferrara, Gia Dengelis. Color flow mapping. Ultrasound in Med &Biol , 1997 ;23(3) ∶321
    Salustri A, Roelandt RT. Ultrasonic three-dimensional reconstruction of the heart. Ultrasound in Med. & Biol. 1995. 21(3): 281~293
    Evans JL, Ng KH, Wiet SG, Vonesh MJ, Burns WB, Radvany MG, Kane BJ, Davidson CJ, Roth SI, Kramer BL, Meyers SN, McPherson DD. Accurate three-dimensional reconstruction of intravascular ultrasound data: spatially correct three-dimensional reconstructions. Circulation. 1996. 93:567~576
    Prager RW, Gee A, Berman L. Stradx: real-time acquisition and visualization of freehand three-dimensional ultrasound. Medical Image Analysis. 1998. 3(2): 129~140
    De Simone R, Glombitza G, Vahl CF, et al. Three-dimensional color Doppler reconstruction of intracardiac blood flow in patients with different heart valve diseases. Am J Cardiol, 2000,
    
    
    86: 1343~1348.
    谢明星, 王新房, 孙琨, 邢晋放, 吕清. 三维彩色多普勒重建评价二尖瓣偏心性反流.中华超声影象学杂志,2003,12,(11):645~647
    Miyatake K, Okamoto M, Kinoshita N, et al. Semiquantitative grading of severity of mitral regurgitation by real2time two2dimensional Doppler flow imaing technique. J Am Coll Cardiol, 1986, 7: 82~88.
    Levi GS, Bolling SF, Bach DS, et al. Eccentric mitral regurgitation jets among patients having sustained inferior wall myocardial infarction. Echocardiography, 2001, 18: 97~103.
    Chen C, Thomas JD, Anconina J, et al. Impact of impinging wall jet on color Doppler quantification of mitral regurgitation. Circulation, 1991, 84: 721~720.
    Spain MG, Smith MD, Grayburn PA, et al. Quantitative assessment of mitral regurgitation by Doppler color flow imaging: agiographic and hemodynamic correlations. J Am Coll Cardiol, 1989, 13: 585~590.
    De Simone R, Glombitza G, Vahl CF, et al. Three-dimensional color Doppler reconstruction of intracardiac blood flow in patients with different heart diseases. AmJ Cardiol, 2000, 86: 1343~1348.
    Berg S, Haugen BO, Samstad S, et al. Volumetric blood flow measurement with the use of dynamic 32dimensional ultrasound color flow imaging. J Am Soc Echocardiogr, 2000, 13: 393~402.
    De Simone R, Glombitza G, Vahl CF, et al. Three2dimensional colors Doppler: a clinical study in patients with mitral regurgitation. J Am Coll Cardiol, 1999, 33: 1646~1654.
    De Simone R, Glombitza G, Vahl CF, et al. Three-dimensional color Doppler for assessing mitral regurgitation during valvuloplasty. Eur J Cardiothorac Surg, 1999, 15: 127~133.
    孙鲲, 王新房, 邢晋放 等. 二尖瓣反流束的彩色三维超声重建. 中华超声影像学杂志, 2002 ,11 :140~142.
    Greenleaf JF. Three-dimensional imaging in ultrasound. J.Med.Syst. 1982.6:579
    Houi k., Mochio S., Isogai Y., et al. Comparison of color flow and 3D image by computer graphics for the evaluation of carotid disease. Angiology. 1990.41:305
    Paul a. Picot, Daniel W. Ric-key, et al. Three- Dimensional Color Doppler Imaging. Ultrasound in Med. & Biol. 1993.19(2): 95
    
    Rickey DW, Rankin RN, Fenster A. A velocity evaluation phantomfor color and pulsed Doppler instruments. Ultrasound in Med & Biol ,1992 ;18∶479
    Zhen Yuguo, Michel Moreau, Daniel W Rickey. Quantitative investigation of in vitro flow using three2dimensional color Doppler ultrasound.Ultrasound in Med &Biol , 1995 ;21(6)∶807
    Zhen Yuguo, Aaron Fenster. Three2dimensional power Doppler imaging: a phantom study to quantify vessel stenosis. Ultrasound in Med Biol, 1996; 22
    Ferrara KWhittaker, Zagar B, Sokil2Melgar J et al. High-resolution 3D color flow mapping: applied to the assessment of breast vasculature. Ul2 trasound in Med &Biol , 1996 ;22(3) ∶293
    WU YT, Chang AC, and Chin AJ. Semiquantiative assessment of mitral regurgitation by Doppler color flow imaging in patients aged < 20 years. Am J Cardiol, 1993, 71: 727
    Zhou XD, Jones M, Shiota T, et al. Vena Contracta imaged by Doppler color flow mapping predicts the severity of eccentric mitral regurgitation better than jet area: A chronic animal study. J Am Coll Cardiol, 1997, 30: 1393
    Shiota T, Sahn DJ, Zhou Xiao2dong, et al. Three-dimensional recon struction of color Doppler flow convergence regions and regurgitant jets: An in vitro quantitation study. J Am Coll Cardiol, 1996, 27: 1511
    Vogel M, Losch S. Dynamic three-dimensional echocardiography with a computed tomography-imaging probe: initial clinical experience with transthoracic application in infants and children with congenital heart defects. Br Heart J, 1994, 71: 462
    Jiang L, Vazquez de Prada JA. Handschumacher MD, et al. Quantitative three-dimensional reconstrnction of aneurysmal left ventricles: in vitro and in vivo validation. Circulation, 1995, 91: 222
    Callaerts D. Singular value decomposition in digital signal processing. Journal A , 1991 ;32∶11
    De Jong PGM, Arts T, Hokes APG et al. Determination of tissue motion velocity by correlation interpolation of pulsed ultrasonic echo signals. Ultrasonic Imaging , 1990 ;12∶84
    Ferrara KW. A new wide-band spread target maximum likelihood estimator for blood
    
    
    velocity estimation I. theory. IEEE Trans Ultrason Ferroelec Freq Control , 1991 ;38∶1
    Ansingkar K, Nanda NC, Aaluri SR, et al. Transesophageal three-dimensional color Doppler echocardiographic assessment of valvular and paravalvular mitral prosthetic regurgitation. Echocardiography, 2000, 17:579-583.
    Levi GS, Bolling SF, Bach DS, et al. Eccentric mitral regurgitation jets among patients having sustained inferior wall myocardial infarction. Echocardiography, 2001, 18: 97~103.
    Chen C, Thomas JD, Anconina J, et al. Impact of impinging wall jet on color Doppler quantification of mitral regurgitation. Circulation, 1991, 84: 721~720.
    Spain MG, Smith MD, Grayburn PA, et al. Quantitative assessment of mitral regurgitation by Doppler color flow imaging: agiographic and hemodynamic correlations. J Am Coll Cardiol, 1989, 13: 585~590.
    De Simone R, Glombitza G, Vahl CF, et al. Three-dimensional color Doppler reconstruction of intracardiac blood flow in patients with different heart diseases. AmJ Cardiol, 2000, 86: 134321348.
    Berg S, Haugen BO, Samstad S, et al. Volumetric blood flow measurement with the use of dynamic 3-dimensional ultrasound color flow imaging. J Am Soc Echocardiogr, 2000, 13: 393~402.
    De Simone R, Glombitza G, and Vahl CF, et al. Three-dimensional colors Doppler: a clinical study in patients with mitral regurgitation. J Am Coll Cardiol, 1999, 33: 1646~1654.
    De Simone R, Glombitza G, Vahl CF, et al. Three-dimensional color Doppler for assessing mitral regurgitation during valvuloplasty. Eur J Cardiothorac Surg, 1999, 15: 127~133.
    Miyatake K, Okamoto M, Kinoshita N, et al. Semiquantitative grading of severity of mitral regurgitation by real-time two-dimensional Doppler flow imaging technique. J Am Coll Cardiol, 1986, 7: 82~88.
    De Simone R, Glombiza G, Vahl CF, et a1. A new diagnostic procedure for assessing intracardiac flow disturbances in patients with heart valve disease. Thorac Cardiovasc Surg.1999,47(6):369-375
    De SlmoncR, Glombiza G, Vahl CF, et a1. Three-dimensional color Doppler reconstruction of intrascardiac blood flow in patients with different heart valve diseases. Am J Cardio,2000,86(12):1343-1348
    
    De SlmoncR, Glombiza G, Vahl CF, et a1. Three-dimensional color Doppler reconstruction and its clinical applications. Echocardiography,2000, 17(8):765~771
    Timothy I, Derrich G, Morris D, et a1. Three-dimensional echocardiography reconstruction of mitral valve color Doppler flow events. Am J Cardiol,1999,84:1103-1106
    Mukhtari O,Horton CJ,Nanda NC,et a1. Tranesophageal color Doppler three-dimensional echocardiography detection of prosthetic aortic valve dehiscence:Correlation with surgical findings. Echocardiography,18(5):393
    Xiaokui T, Schwartz GA, Rusk RA, et al. A digital 3-dimensional method for computing great artery flows: in vitro validation studies. J Am Soc Echocardiography 2000,13(9): 841-848
    Tsuijino H, Shiota T, Qin JX, et al. Estimation of the spatial mean and peak flow velocities using real-time 3D color Doppler echocardiography: an in vitro experiment. J Am Coll Cardiol, 2000,Abstract: 436A
    Tsujino H, Johes M, Shiota T, et al. Real-time 3D color Doppler echocardiography for analysis of the spatial velocity distribution in the left ventricular outflow tract. J Am Coll Cardiol, 2000,Abstract: 436A
    Rusk RA, Mori Y, Li XN, et al. A validation study of aortic stroke volume using dynamic 4D color Doppler: an in vivo study. J Am Coll Cardiol, 2000,Abstract: 440A
    Qin JX, Jones M, Shita T, et al. Real-time 3D pulsed wave Doppler echocardiography for quantification of the left ventricular stroke volume. J Am Coll C ardiol, 2000,Abstract: 442A
    Irvine T, Li XN, Mori Y, et al. An automatic Volume flow method based on 4D digital color Doppler: a computer algorithm tested on an invitro flow model. J Am Coll C ardiol, 2000,Abstract: 443A
    Griewing B, Schminke U, Morgenstern C, et al.Three-dimensional ultrasound angiography (power mode) for the quantification of carotid artery atheroscle. J Neuroimagin,1992,7(1):40~45
    Keberle M, Jenett M, Beissert M, et al.Three-dimcnsional power Doppler sonography in screening for carotid artery disease. J Clin Ultrasound,2000,28(9):44l~4Sl
    Schminke U, Motsch L, Griewing B, et al. Three-dimensiona1 power-mode ultrasound for
    
    
    quantification of the progression of carotid artery atherosclerosis.J Neurol,2000,247 (2) :106~111
    Schminke U, Motsch L, Smekal U, et al. Three-dimensional transcranial color-coded sonography for the examination of the arteries of the circle of Willis. J Neuroimaging, 2000,10(3):173-176
    Klotzsch C, B0zzato, Lammers C, et a1. Three-dimensional transcranial color-coded sonography of cerebral aneurysms. Stroke,1999,30(11):2285-~290
    Sparac V, Kupesic S, Kurjak A, et al. What do contrast media add to three-dimensional power Doppler valuation of adnexal mass. Croat Med J, 2000,41(3):257~261
    Kurjak A, Kupesic S, Jacobs I, et al. Preoperative diagnosis of the primary fallopian tube carcinoma by three-dimensional static and power Doppler sonography. Ultrasound Obstet Cynecol, 2000,15(3): 245~251
    Fleischer AC. Sonographic depiction of tumor vascularity and flow: from in vivo models to clinical application. J Ultrasound Med, 2000,19(1): 55~61
    Fleischer AC, Donnelly EF, Cambell MG, et al. Three-dimensional color Doppler sonography before and after fibroid embolization. J Ultrasound Med, 2000,19(10): 701~705
    Schild RL, Holthaus S, Alquen J, et al. Quantitative assessment of subendometrial blood flow by three-dimensional ultrasound is an important predictive factor of implantation in an invitro fertilization programme. Hum Reprt,2000,15(1),89~94
    徐智章. 多普勒超声在血流量测定中的理论问题与技术问题. 中华超声影像学杂志. 1994. 3(1):1~6
    丛淑珍, 张青萍, 王连生. 不同取样方法的三维超声重建对比研究. 中国超声医学杂志. 1999. 15(9):644~646
    Baum G, Chester P, Greenwood I. Orbital lesion localization by three- dimensional ultrasonography. New York State J Med. 1961. 15:4149~4157
    Dekker DL, Piziali RL, Dong EJ. A system for ultrasonically imaging the human heart in three dimensions. Comput Biomed Res. 1974. 7:544~553
    Geiser EA, Christie LG Jr, Conetta DA, Conti CR, Grossman GS. A mechanical arm for spatial registration of two-dimensional echocardiographic sections. Cathet. Cardiovasc. Diagn. 1982. 8:89~101
    
    Ghosh A, Nanda N C, Maurer G. Three-dimensional reconstruction of echo-cardiographic images using the rotation method. Ultrasound Med. Biol. 1982. 8:655~661
    Moritz WE, Shreve PL, Mace LE. Analysis of an ultrasonic spatial locating system. IEEE Trans Instrum Meas. 1976. 25(1): 43~50
    Moritz WE, Pearlman AS, MCCabe DH, Medema DK, Ainsworth ME, Boles MS. An ultrasonic technique for imaging the ventricle in three dimensions and calculating its volume. IEEE Trans. Biomedical Engineering. 1983. 30:482~492
    King DL, King DL Jr, Shao MY. Evaluation of in vitro measurement accuracy of a three-dimensional ultrasound scanner. J. Ultrasound Med. 1991. 10:77~82
    Keller AM, Gopal AS, King DL. Left and right atrial volume by freehand three-dimensional echocardiography: In vivo validation using magnetic resonance imaging. European Journal of Echocardiography. 2000. 1:55~65
    汪天富. 超声心脏图像多维重建研究进展. 生物医学工程学杂志. 2001. 18(1):133~137
    陈昱. 医学图像分析的形变模型研究. 生物医学工程学杂志. 1999. 16(4):497~501
    Greenleaf JF, Belohlavek M, Gerber TC. Multidimensional cardiac imaging. Acoustical imaging, 1993. 20:403~411
    张玮,崔汉锋,朱志红. 医学图像中的边缘分析. 上海生物医学工程. 2000. 21(4): 11~14
    Bezdek JC, Hall LO, Clarke LP. Review of MR image segmentation techniques using pattern recoginition. Med. Phys. 1993. 20:1033~1048
    Nelson TR, Pretorius DH. Interactive acquisition, analysis and visualization of sonographic volume data. International Journal of Imaging Systems and Technology. 1997. 8:26~37
    Riccabona M, Nelson TR, Pretorius DH, Davidson TE. In-vivo three-dimensional sonographic measurement of organ volume: Validation in the urinary bladder. Journal of Ultrasound in Medicine. 1996. 15(9): 627~632
    Pretorius DH, Nelson TR, Baergen RN, Pai E, Cantrell C. Imaging of placental vasculature using three-dimensional ultrasound and color power Doppler: a preliminary study. Ultrasound in Obstetrics and Gynecology. 1998. 12:45~49
    Nelson TR, Bailey MJ. Solid object visualization of 3D ultrasound data. Proceedings of SPIE - the International Society for Optical Engineering. 2000. 3982:26~34
    Downey DB, Chin JL, Fenster A. Three-dimensional US-guided cryosurgery. Radiology.
    
    
    1995. 197(P):539~539
    Downey DB, Fenster A. Vascular imaging with a three-dimensional power Doppler system. Am J. Roentgenol. 1995. 165:665~668
    Downey DB, Fenster A. Three-dimensional power Doppler detection of prostatic cancer. Am J. Roentgenol. 1995. 165(3):741~741
    Nelson TR, Pretorius DH, Hull A, Riccabona M, Sklansky MS, Greenleaf. JF. Sources and impact of artifacts on clinical three-dimensional ultrasound imaging. Ultrasound in Obstetrics and Gynecology. 2000. 16:374~383
    Riccabona M, Nelson TR, Pretorius DH. Three-dimensional ultrasound: accuracy of distance and volume measurements. Ultrasound in Obstetrics and Gynecology. 1996. 7:429~434
    Hull AD, Pretorius DH, Lev-Toaff A, Budorick NE, Salerno CC, Johnson MM, James G, Nelson TR. Artifacts and the visualizatioin of fetal distal extremities using three-dimensional ultrasound.Ultrasound Obstet Gynecol. 2000. 16:341~344
    Hao XH, Bruce C, Pislaru C, Greenleaf JF. A novel region growing method for segmenting ultrasound images. 2000 IEEE International Ultrasonics Symposium, San Juan, Puerto Rico. 2000. 22~25
    Rohling RN. 3D freehand ultrasound: Reconstruction and spatial compounding. PhD thesis. University of Cambridge, England. 1998
    Rohling RN, Gee A. Correcting motion-induced registration errors in 3-D ultrasound images. Proceedings of British Maching Vision Conference. 1996. 2:645~654
    吕维雪, 段会龙编著, 三维医学图像可视化及其应用.杭州. 浙江大学出版社, 2001.198~200
    Goodman JW. Some fundamental properties of speckle. Journal Optical Society of America. 1976. 66(11):1145~1150
    Czerwinski RN, Jones DL, O’Brien WD Jr. Detection of Lines and Boundaries in speckle images-Application to medical ultrasound. IEEE Transactions on Medical Imaging. 1999. 18(2):126~136
    Birgelen CV, Vrey EA, Mintz S, Nicosia A, Bruining N, Li WG, Slager CJ, Roelandt RTC, Serruys PW, Feyter PJ. ECG-gated three-dimensional intravascular ultrasound: Feasibility
    
    
    and reproducibility of the automated analysis of coronary lumen and atherosclerotic plaque dimensions in humans. Circulation. 1997. 96:2944~2952
    Goodman JW. Some fundamental properties of speckle. Journal Optical Society of America. 1976. 66(11):1145~1150
    Czerwinski RN, Jones DL, O’Brien WD Jr. Detection of Lines and Boundaries in speckle images—Application to medical ultrasound. IEEE Transactions on Medical Imaging. 1999. 18(2):126~136
    Maurice RL, Bertrand M. Lagrangian speckle model and tissue-motion estimation—Theory. IEEE Transactions on Medical Imaging. 1999. 18(7):593~603
    赵树魁, 李德玉, 汪天富, 郑昌琼, 郑翊. 超声医学图像滤波算法研究进展. 生物医学工程学杂志. 2001. 18(1):145~148
    Stippel G, Duskunovic I, Pizurica A, Rooms F, Philips W, Lemahieu I. A speckle suppression method for medical ultrasound images based on local statistics. STW/ProRISC 2000 Conference Proceedings, 2000. 525~530
    Loupas T, Mcdicken WN, Allan PL. An adaptive weighted median filter for speckle suppression in medical ultrasonic images. IEEE Transactions on Circuits and Systems. 1989. 36(1):129~135
    Hao XH, Gao SK, Gao XR. A novel multiscale nonlinear thresholding method for ultrasonic speckle suppressing. IEEE Transactions on Medical Imaging. 1999. 18(9):787~794
    杨晓梅, 汪天富, 郑昌琼等. 旋转扫描超声心脏图像的三维直接匹配插值. 生物医学工程学杂志, 2000, 17(1):37~40
    Chang LW, Chen HW, Ho JR. Reconstruction of 3D medical images: A nonlinear interpolation technique for reconstruction of 3D medical images. CVGIP: Graphical Models and Image Processing. 1991. 53(4):382~391
    Liu Qi, Wang Tianfu, Zheng Changqiong, Li Deyu, Zheng Yi, Speckle filtering method of ultrasonic cardio-image based on mathematical morphology, Proceedings of the SPIE - The International Society for Optical Engineering, v 4549, 2001, p 131-134.
    Liu Qi, Wang, Tian Fu. Segmentation of ultrasonic medical image based on wavelet transform and mathematical morphology, Proceedings of the International Conference on Wavelet Analysis and Its Applications (WAA), v 2, 2003, p 757-760.
    
    Pandian NG,Nanda NC,Schwartz SL,et al.Three-dimensional and four-dimensional transesophageal echocardiographic imaging of the heart and aorta in humans using a computed tomographic imaging probe.Echocardiography,1992,9:677~687
    Fulton DR,Marx GR,Pandian NG,et al.Dynamic three-dimensional echocardiographic imaging of congential heart defects in infants and children by computer-controlled tomographic parallel slicing using a single integrated ultrasound instrument.Echocardiography,1994,11:155~163
    Chwartz SL, Cao QL, Azevedo J, et al. Simulation of intraoperative visualization of cardiac structures and study of dynamic surgical anatomy with real-time three-dimensional echocardiography. Am J Cardio, 1994,73:501~507
    Roslandt J, Cate FJ, Bruining N, et al. Transesophageal rotoplane echo-CT: A novel approach to dynamic three-dimensional echocardiography. The Thorax J, 1993,94(6): 4~8
    Roelandt J, Cate FJ, Vlette WB, et al. Ultrasonic dynamic three-dimensional visualization of the heart with a multiplane transesophageal imaging transdure. Journal of the American society of echocardiography.1994, 7:217~229
    Martin RW, Bashein G.Zimmer R, Sutheland J.An endoscopic micromanipulator for transeophageal imaging. Ultrasound Med Biol, 1986,12:965~975
    Chandrasekaran K., Sehgal S., Hsn TL, et al. Three-dimensional intravascular ultrasound imaging of arterial athesosclerosis and its complications. J Am Coll Cardiol, 1991,17:233A
    Evans JL, Kok-Hwee Ng.Spatially correct 3-D Reconstruction of intravascular ultrasound data.Circulation,1991,84:Ⅱ-685
    Mele D, Nahle J, Pratola C, et al. Application in patients of a new simplified system for 3DE reconstruction of the left ventricle.J Am Socie of echocardio,1995,8:343
    Lee MY, Jiang L.Gilon D, et al. Quantiative transthracic three-dimensional voxel imaging of the left ventricle in normal children and adolescents. J Am Soc Echo, 1995,8:343
    Chang LW, Chen HW, Ho JR. Reconstruction of 3D medical images: A nonlinear interpolation technique for reconstruction of 3D medical images. CVGIP: Graphical Models and Image Processing. 1991. 53(4): 382~391
    Greenleaf JF, Belohlavek M, Gerber TC. Multidimensional cardiac imaging. Acoustical imaging, 1993. 20:403~411
    
    Greenleaf JF, Belohlavek M, Gerber TC, Foley DA, Seward JB. Multidimensional visualization in echocardiography: An introduction. Mayo Clin. Proc. 1993. 68:213~220
    Belohlavek M, Foley DA, Gerber TC, Greenleaf JF, Seward JB. Three-dimensional ultrasound imaging of the atrial septum: normal and pathologic anatomy. Journal of American College of Cardiology. 1993. 22(6):1673~1678
    Martin RW, Bashein G. Measurement of stroke volume with three-dimensional transesophageal ultrasonic scanning: comparison with thermodilution measurement. Anesthesiology. 1989. 70:470~476
    Martin RW, Bashein G, Demer PR, Moritz WE. Ventricular volume measurement from a multiplanar transesophageal ultrasonic imaging system: an in vitro study. IEEE Transactions on Biomedical Engineering. 3:442~449
    Smith SW, Pavy HG Jr, Olaf T. von Ramm. High-speed ultrasound volumetric imaging system—Part I: Transducer design and beam steering. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 1991. 38(2):100~108
    O. T. von Ramm, Smith SW, Pavy HG. High-speed ultrasound volumetric imaging system—Part II: Parallel Processing and Image Display. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 1991. 38(2): 109~115
    Olaf T. von Ramm. 2-D arrays. Ultrasound in Medcine & Biology. 2000. 26(S1): S10-S12
    Ansingkar K, Nanda NC, Aaluri SR, Mukhtar O, Puri VK, Kirklin JT, Pacifico A. Transesophageal three-dimensional color Doppler echocardiographic assessment of valvular and paravalvular mitral prosthetic regurgitation. Echocardiograhy: A Journal of Cardiovascular Ultrasound & Allied Techniques. 2000. 17(6):579~583
    Nagueh SF, Mikati I, Kopelen HA, Middleton KJ, Quinones MA, Zoghbi WA. Doppler estimation of left ventricular filling pressure in sinus tachycardia: A new application of tissue Doppler imaging. Circulation. 1998. 98:1644~1650
    Zeidam Z, Buck T, Barkhausen J, et al. Real-time three-dimensional echocardiography for improved evaluation of diastolic function using Volume time curves. Herz, 2002, 27:237-245.
    Gill EA. Live three-dimensional echo: a major incremental step in the development of cardiac ultrasound. J Cardiovasc Manag, 2003, 14: 13-17.
    
    American Heart Association, 1999 Heart and Stroke Statistical Update (1998). [Online]. Available: http://www.americanheart.org
    Alejandro F, Wiro JN, Max AV. Three-dimensional modeling for functional analysis of cardiac images: A review. IEEE Transactions on Medical Imaging. 2001. 20(1):2~25
    Ahmad M, Xie T, Chamoun AJ, et al. Images in cardiovascular medicine. Real-time three-dimensional echocardiography with real-time volume rendering in assessment of left ventricular apical thrombi. Circulation. 2002, 106(13): 53.
    Suematsu Y, Takamoto S , Kaneko Y, et al . Beating atrial septal defect closure monitored by epicardial real-time three-dimensional echocardiography without cardiopulmonary bypass. Circulation. 2003, 107(5): 785~790.
    Schindera ST, Mehwald PS, Sahn DJ, et al. Accuracy of real - time three-dimensional echocardiography for quantifying right ventricular volume: static and pulsatile flow studies in an anatomic in vitro model. J Ultrasound Med. 2002, 21 (10):1 069~1 075.
    Zeidan Z, Erbel R, Barkhausen J, et al. Analysis of global systolic and diastolic left ventricular performance using volume - time curves by real–time three-dimensional echocardiography. J Am Soc Echocardiogr.2003, 16 (1): 29~37.
    Camarano G, Jones M, Freidlin RZ, et al. Quantitative assessment of left ventricular perfusion defects using real - time three - dimensional myocardial contrast echocardiography. J Am Soc Echocardiogr. 2002 ,15(3) :206~213.
    Masudata H, Peters B, Lafitte S. Comparison of Open and Closed Chest Canine Model for Quantification of Coronary Stenosis Severity by Myocardial Contrast Echocardiography. Iveest Radiol. 2003, 38 (1): 44~50.
    Sitges M, Jones M, Shiota T, et al. Real-time three-dimensional color Doppler evaluation of the flow convergence zone for quantification of mitral regurgitation: Validation experimental animal study and initial clinical experience. J Am Soc Echocardiogr. 2003 ,16(1) :38~45.
    Gill EA. Live three2dimensional echo2a major incremental step in the development of cardiac ultrasound. J Cardiovasc Manag, 2003, 14: 13~17.
    Zeidam Z , Buck T , Barkhausen J , et al. Real2time three-dimensional echocardiography for improved evaluation of diastolic function using volume-time curves. Herz, 2002,
    
    
    27:237~245.
    Bauer F, Shiota T, Qin JX, et al. Measurement of left atrial and ventricular volumes in real-time 3D echocardiography. Validation by nuclear magnetic resonance. Arch Mal Coeur Vaiss. 2001, 94 (1): 31~38.
    Prager RW, Gee A, Berman L. Stradx: real-time acquisition and visualization of freehand three-dimensional ultrasound. Medical Image Analysis. 1998. 3(2):129~140
    Ney DR, Fishman EK, Magid D. Volumetric rendering of computed tomography data: Principles and techniques. IEEE Computer Graphics and Applications. 1990. 9(2):24~32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700