条纹分隔颜色格雷码结构光三维测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非接触三维测量技术以其效率高、自动化程度高、造价较低等优点,被广泛地应用于工业生产和现实生活中。结构光方法是具有较高实用性和发展潜力的三维非接触测量技术。编码结构光法以其高效、高速和勿需扫描而成为结构光三维测量技术的发展方向。彩色编码较之灰度编码效率更高,相对于空间和直接彩色编码方法,时间彩色编码方法具有较高的准确度和采样密度而成为彩色编码结构光发展方向。提高准确度是测量领域的永恒追求,提高采样密度则是三维视觉测量中极具挑战性的任务。为此,本文以提高时间编码结构光三维测量的准确度和采样密度为目的,研究条纹分隔颜色格雷码结构光三维非接触测量原理及其关键技术。
     为提高编码结构光的准确度,本文从分析传统格雷码条纹中心解码原理误差出发,提出颜色边缘格雷码解码方法。该方法以彩色条纹边缘作为采样点,从原理上消除了条纹中心解码带来的0.5个最低位固有量化误差;边缘解码与其高位图像中红蓝条纹内部而非边缘相对应,大大降低了格雷码码值被误判的几率、提高解码可靠性;彩色条纹较之灰度条纹还能减少条纹扩散影响产生的边缘检测误差。
     为提高编码结构光的采样密度,基于颜色边缘格雷码在每相邻彩色条纹处嵌入其它颜色的宽度固定条纹,将宽度固定条纹的边缘和中心作为采样点,达到不增加投射幅数的前提下提高采样密度的目的。
     采用条纹分隔颜色格雷码编码方法进行三维测量时,作为采样点的彩色条纹边缘和中心的准确检测是保证系统测量精度的关键。针对编码条纹特点,基于行扫描技术,提出基于彩色分量交点亚像素检测条纹边缘算法,以及彩色分量重心法亚像素检测条纹中心算法,并用相关仿真实验初步验证了方法的可行性和准确性。
     因受系统硬件设备、环境光强度、拍摄角度及空间物体几何形状等因素影响,彩色条纹图像会产生颜色失真影响条纹检测精度,需要进行颜色校正。为此,本文基于自然光环境下对投影仪和摄像机进行颜色标定,用获得的硬件颜色标定矩阵校正所拍摄的彩色条纹图像,以消除图像各彩色分量之间的影响。基于归一化彩色模型l1l2l3空间实现彩色条纹图像归一化,以消除环境光强度、拍摄角度及空间物体几何形状等因素影响,从而提高彩色条纹边缘和中心亚像素的检测精度。
     采用3dmax软件仿真投影仪、摄像机、被测物和被测环境,所获得的仿真编码图像利用Matlab软件根据给出的系统数学模型重构被测物表面。针对不同仿真三维物面进行了颜色格雷码中心编解码和条纹分隔颜色格雷码编解码方法的对比实验。
     基于条纹分隔颜色格雷码编码方法组建实验装置,进行系统参数设计,采用线性标定法标定实验装置参数,并对系统不确定度进行了分析,针对典型表面和复杂表面进行三维测量实验。实验结果表明:在系统量程范围内,最大测量误差小于2mm,相对误差小于0.2%;重构的复杂表面与被测表面形状相符,能够较平滑细致地反映被测表面形貌。
     本文的研究为结构光提供了新的原理和技术,实现了高准确度密集采样三维测量,对提高结构光三维测量技术水平和拓展其应用领域有重要意义。
Non-contact 3D measurement technology is widely used in industry and real life for its advantages of high efficiency, high automatization and low cost. Structured light as a kind of non-contact 3D measurement technology has high practicality and developing potential. The coding structured light method which has the advantages of high efficiency, high speed and no scanning is considered as the developing direction of structured light 3D measurement technology. Color coding has much more reliability than grey coding. Compared with the space coding method and direct coding method, time coding method for its advantages of higher accuracy and high sampling density becomes the research direction of color coding structured light. Improving accuracy is the eternal pursuit of the measurement field, and improving sampling density is a highly challenging task in the 3D vision measurement. Therefore, this paper studies time color coding structured light 3D non-contact measurement technology and experimental device to improving accuracy and sampling density.
     To improve the accuracy of coding structured light, from the error analysis of traditional Gray code center decoding principle, the method of color edge Gray code decoding is proposed, which takes color stripe edge as sampling point and eliminates the 0.5 least significant bit inherent quantization error from stripe center decoding. Edge decoding is corresponding with the inside of red/blue stripe in high-order image, not with the edge of red/blue stripe in high-order image, which reduces misjudge probability of the Gray code value greatly, and enhances decoding reliability. In addition, contrast to grey stripe, color stripe can reduce the edge detection error from stripe diffusion.
     To improve sampling density of the code structured light, insert different color stripe of specific breadth between adjacent colorful stripes based on color edge Gray code, sample on the edge and center of specific breadth stripe, which can improve sampling density withnot adding project patterns.
     Adopting the coding method of stripe dividing color Gray code to 3D measurement, the key factor of ensuring measurement precision is detecting the edge and center of color stripe taken as sampling dot accurately. For the character of code stripe and line scan technology, sub-pixel stripe edge detecting algorithm based on color component intersecting point and sub-pixel stripe center detecting algorithm based on color component gravity model method are supposed. And relative simulation experiments have been made to validate the feasibility and veracity of the method.
     Considering the factors of system hardware, ambient light illumination, shooting angle and space object geometry shape, color distortion of color stripe image from these factors can impact stripe detection precision. So it is necessary to revise color. In this paper, color calibration to projection apparatus and camera under natural light is adopted to remove the influences from different color components. Normalized color model l1l2l3 space realizes the normalization of color stripe image, which can remove the influences from the factors of ambient light illumination, shooting angle and space object geometry shape, and ensure detecting the edge and center of color stripe on sub-pixel order accurately. Simulate projection apparatus, camera, measurement object and environment, and the simulation code images have been used to reconstruct object surface under specific math model with 3dmax and Matlab. Contrast experiments between color Gray code center coding, decoding and stripe dividing color Gray code coding, decoding.
     It constructs the experiment devices based on stripe dividing color Gray code coding method, and designs the system parameters, calibrates parameters of experiment devices using linear calibration. Uncertainty of the measurement has been analyzed and 3D measurement experiments for typical and complex surfaces have been made. From the results of the experiments, in the measurement range, the maximum measurement error is less than 2mm, measurement accuracy is 0.2%, and reconstructed complex surface can match the measurement surface and reflect the surface pattern smoothly and particularly.
     This research provides new principle and technology for structured light, realizes 3D measurement under high accuracy and dense sampling, which is important to improve the structured light 3D measurement technology level and enlarge application domain.
引文
[1] SONG ZHANG. 3D surface data acquisition[D]. Department of Mechanical Engineering, SUNY at Stony Brook, Oct. 16, 2003
    [2] SANG XINZHU. A method on 3D shape measurement and its trend in development[J]. Measurement Transaction, 2001, 2: 36~37
    [3] HORN E, KIRYATI N. Toward optimal structured light patterns[J]. Image and Vision Computing, 1999, 17 (2): 87~97
    [4] T. MIYASAKA, K. KURODA, M. HIROSE, et al.. High speed 3D measurement system using incoherent light source for human performance analysis[C]. Proceedings of The 19th Congress of The International Society for Photogrammetry and Remote Sensing, The Netherlands, Amsterdam, 2000: 65~69
    [5] F. Z?LLNER, V. MATUSEVICH, R. KOWARSCHIK. 3D measurement by stereophotogrammetry[J]. Proceedings of SPIE, 2003, 5144: 311~314
    [6] C. WUST, D.W. CAPSON. Surface profile measurement using color fringe projection[J], Machine Vision and Applications, 1991, 4: 193~203
    [7] D. HUNG. 3D scene modeling by sinusoid encoded illumination[J]. Image and Vision Computing, 1993, 11: 251-256
    [8] J. TAJIMA, M. IWAKAWA. 3D data acquisition by rainbow range finder[C]. International Conference on Pattern Recognition, 1990: 309~313
    [9] JAMES DAVIS. A unifying framework for depth from triangulation[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003: 1063~6919
    [10] T. SATO. Multispectral pattern projection range finder[C]. Proceedings of the Conf. on Three-Dimensional Image Captuer and Applications II, Vol. 3640, SPIE, San Jose, California, 1999: 28~37
    [11]祝世平,强锡富.工件特征点三维坐标视觉测量方法综述[J].光学精密工程,2000:192~195
    [12] SAKARYA.UFUK, ERKMEN, ISMET. An improved method of photometric stereo using local shape from shading[J]. Image and Vision Computing, v21, n11, October, 2003, 941~954
    [13] B. NILSSON, T. E. CARLSSON. Direct three dimensional shape using light-in-flight recoding by holography[J]. App. Opt. 1998, 37(34): 7954~7959
    [14] LI L, SEHEMENAUER N, PENG X. A reverse engineering system for rapid manufacturing of complex objects[J]. Robotics and Computer Integrated Manufacturing, 2002, 18(4): 53~67
    [15] Z. JI, M. C. LEU. Design of optical triangulation devices[J]. Opt. Laser Technol. 1989, 21(5): 335~338
    [16] G.R.HALLERMAN, L.G.SHIRLEY. A comparison of surface contour measurements based on speckle pattern sampling and coordinate measurement machines[C]. Proc. SPIE 2909, 1996: 89~97
    [17] J. S. ZELENKA, J. R. VARNER. Multiple-index holographic contouring[J]. Appl. Opt. 1998, 8(7): 1431~1434
    [18] ANDREAS GRIESSER. Adaptive real-time 3D acquisition and contour tracking within a multiple structured light system[C]. Proceedings of the 12th Pacific Conference on Computer Graphics and Applications, 2004: 1550~4085
    [19] F. BERNARDINI, H. E. RUSHMEIER. 3D model acquisition[C]. Eurographics 2000, State of the Art Reports Proceedings, Eurographics Association, August 24-25 2000: 41~62
    [20] M. GAIANI, M. BALZANI, F. UCCELLI. Reshaping the coliseum in rome[J], Computer Graphics Forum (Eurographics 2000) (M. Gross and F. R. A. Hopgood, eds.), 2000, 19(3): 369~378
    [21] G. WIORA. High resolution measurement of phase-shift amplitude and numeric object phase calculation[C]. in: Proceedings Vision Geometry IX, Vol. 4117, SPIE, Bellingham, Washington, USA, 2000: 289~299
    [22]冈萨雷斯.数字图像处理[M].北京:电子工业出版社,2003.3:224
    [23] J. PAGES, J. SALVI, R. GARCIA, et al.. Overview of coded light projection techniques for automatic 3D profiling[C]. IEEE International Conference on Robotics and Automation, 2003, 1: 133~138
    [24] JOAQUIM SALVI, JORDI PAGES, JOAN BATLLE. Pattern codification strategies in structured light systems[J], Pattern Recognition, 2004, 37: 827~849
    [25] K. L. BOYER, A. C. KAK. Color-encoded structured light for rapid active ranging[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence 1987, 9 (1): 14~28
    [26] H. HüGLI, G. MA?TRE. Generation and use of color pseudo random sequences for coding structured light in active ranging[C]. in: Proceedings of Industrial Inspection, 1989, (1010): 75~82
    [27] P. GRIFFIN, L. NARASIMHAN, S. YEE. Generation of uniquely encoded light patterns for range data acquisition[J], Pattern Recognition, 1992, 25 (6): 609~616
    [28] C. J. DAVIES, M. S. NIXON. A hough transform for detecting the location and orientation of 3-dimensional surfaces via color encoded spots[J]. IEEE Transactions on systems, man and cybernetics, 1998, 28 (1): 90~95
    [29] T. MONKS, J. CARTER. Improved stripe matching for colour encoded structured light[C]. in: 5th International Conference on Computer Analysis of Images and Patterns, 1993: 476~485
    [30] J. SALVI, J. BATLLE, E. MOUADDIB. A robust-coded pattern projection for dynamic 3D scene measurement[J]. International Journal of Pattern Recognition Letters, 1998, 19: 1055~1065
    [31] P. LAVOIE, D. IONESCU, E. PETRIU. A high precision 3D object reconstruction method using a color coded grid and nurbs[C]. in: Proceedings of the International Conference on Image Analysis and Processing, Venice, Italy, 1999: 370~375
    [32] E. M. PETRIU, Z. SAKR, S. H. J. W. et al.. Object recognition using pseudo-random color encoded structured light[C]. in: Proceedings of the 17th IEEE Instrumentation and Measurement Technology Conference, 2000, 3: 1237~1241
    [33] L. ZHANG, B. CURLESS, S. M. SEITZ. Rapid shape acquisition using color structured light and multi-pass dynamic programming[C]. in: Int. Symposium on 3D Data Processing Visualization and Transmission, Padova, Italy, 2002
    [34] PAGES JORDI, SALVI JOAQUIM, MATABOSCH CARLES. Implementation of a robust coded structured light technique for dynamic 3D measurements[C]. IEEE International Conference on Image Processing,v 3, 2003, 1073~1076
    [35] ANTONIO ADáN, FERNANDO MOLINA, LUIS MORENA. Disordered patterns projection for 3D motion recovering[C]. Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’04)
    [36] OLEKS, R A. SKYDAN, MICHAEL J. LALOR et al.. Burton. Using coloured structured light in 3D surface measurement[J]. Optics and Lasers in Engineering 2005,43: 801~814
    [37] S.Y. CHEN, Y.F. LI, JIANWEI ZHANG. Realtime Structured light vision with the principle of unique color codes[C]. 2007 IEEE International Conference on Robotics and Automation Roma, Italy, 2007: 10~14
    [38] HIROSHI KAWASAKI, RYO FURUKAWA. Dynamic scene shape reconstruction using a single structured light pattern[C]. Computer Vision and Pattern Recognition, CVPR2008, 1~8
    [39] J. TAJIMA, M. IWAKAWA. 3-D data acquisition by rainbow range finder[C]. in: International Conference on Pattern Recognition, 1990, (12): 309~313
    [40] Z. J. GENG. Rainbow 3-dimensional camera: new concept of high-speed 3-dimensional vision systems[J]. Optical Engineering, 1996, 35 (2): 376~383
    [41] T. SATO. Multispectral pattern projection range finder[C]. in:Proceedings of the Conference on Three Dimensiona Image, Captuerand Applications, 1999, California: 28~37
    [42] C. WUST, D. W. CAPSON. Surface profile measurement using color fringe projection[J]. Machine Vision and Applications, 2004, (4): 193~203
    [43] JIAHUI PAN, PEISEN S. HUANG, FU-PEN CHIANG. Color phase-shifting technique for three dimensional shape measurement[J]. Optical Engineering, 2006, 45(1): 453~456
    [44] D. CASPI, N. KIRYATI, J. SHAMIR. Range imaging with adaptive color structured light[J]. Pattern Analysis and Machine Intelligence, 1998, 20 (5): 470~480
    [45] ASLA M. S′A, PAULO CEZAR P. CARVALHO, LUIZ VELHO. (b, s)-BCSL: structured light color boundary coding for 3D photography[J]. Erlangen, Germany, 2002: 20~22
    [46] M.WEGIEL, M.KUJAWINSKA. Fast 3D shape measurement based on color structure light projection[J]. Optical Metrology for Arts and Multimedia, 2003, (16): 121~132
    [47] RONGQIAN YANG, SHENG CHENG. Robust and accurate surface measurement using structured light[J]. IEEE Transactions on Instrumentation and Measurement, 2008, 57(6): 1275~1280
    [48] JIAHUI PAN, PEISEN S. HUANG, FU-PEN CHIANG. Color-coded binary fringe projection technique for 3D shape measurement[J]. Optical Engineering, 2005, 44(2): 023606-1-9
    [49] ALEKSEI KAZANTSEV, EMIL M. PETRIU. Robust pseudo-random coded colored structured light technique for 3d object model recovery[C]. ROSE 2008– IEEE International Workshop on Robotic and Sensors Environments Ottawa– Canada, 2008: 17~18
    [50]孙军华,杨扬,张广军.基于相移的彩色结构光编码三维扫描技术[J].光学技术,2008,34( 1):122~125
    [51]曹茂永,郁道银,孙农亮.基于RGB三基色和像素自身变换的灰度图像伪彩色编码[J].工程图学学报,2001,(增刊):94~98
    [52]曹茂永,郁道银.基于感知颜色空间的灰度图像伪彩色编码[J].光学技术,2002,(4):367~369
    [53]张宗华.一种新型彩色三维光学成像系统[J].光学学报,2002,22(8):994~996
    [54]陶立.彩色三维激光扫描成像系统的研究[D].天津大学博士学位论文,2004
    [55] TAO LI, SUN CHANGKU, HE LI, et al.. Research on the color 3D profilometry and parameter calibration technology[C]. Proceedings of SPIE-The International Society for Optical Engineering, v5638, Optical Design and Testing II, 2005, 464~472
    [56]张勇斌,卢荣胜,费业泰.机器视觉中彩色伪随机编码投影系统及标定[J].哈尔滨工业大学学报,2004,(1):59~62
    [57] ZHANG YONGBIN, LU RONGSHENG. Multi-parameter measurement of complex part based on color encoded structured light[C]. Proceedings of the 2004 International Conference on Information Acquisition, ICIA 2004, 319~322
    [58]廖素引.基于彩色伪随机编码的图像识别技术研究[D].合肥工业大学硕士学位论文,2005
    [59] ZHANG Y.B, XIAO H, JI F. Error distribution of color-encoded projector[C]. The Seventh International Conference on Electronic Measurement and Instruments ICEMI’2005: 2-681~2-684
    [60]黄红强,冯华君,徐之海等.彩色结构光三维成像技术[J].浙江大学学报,2001,(6):588~590
    [61]夏冰冰.基于彩色结构光的三维立体视觉方法研究[D].浙江大学硕士学位论文,2006
    [62]刘维一,王肇沂.两位二进制彩色编码光栅三维轮廓术[J].光电子?激光,2000,11(2):179~182
    [63]刘维一,王肇沂,母国光等.彩色组合编码条纹光栅轮廓术[J].光学学报,2000,(9):1219~1224
    [64]朱清溢,苏显渝.基于最大色差彩色组合编码的三维面形测量方法[J].激光技术,2006,30(4):340~343
    [65]朱清溢.彩色编码结构光三维测量的研究[D].四川大学硕士学位论文,2006
    [66]李粉兰.颜色编码三维测量系统的结构参数设计及仿真[J].光电工程,2005,32(2):25~29
    [67]李粉兰,于晓洋,苑惠娟.颜色编码三维测量系统参数分析与设计[J].哈尔滨理工大学学报,2003,8(5):102~104
    [68] YUAN HUIJUAN, YU XIAOYANG, GUO JIANYING, et al.. 3D Measuring system on color-encoded and its errors analysis[C]. International Committee on Measurements and Instrumentation(ICMI). 2nd International Symposium on Instrumentation Science and Technology. 2002: 523~528
    [69] HUIJUAN YUAN, BAOGUO ZHOU. The principle of 3D measurement on structure light and color-encoded method[C]. Proc. SPIE 5633, 2004: 497~505
    [70]苑惠娟.彩色条纹组合编码三维测量技术研究[D].哈尔滨理工大学博士学位论文,2006
    [71]曲芳,钟金钢.基于数字彩色结构光投影的唇动三维测量[J].光学技术,2006,32(5):196~496
    [72]于晓洋.激光扫描空间编码三维深度映射及视觉传感研究[D].哈尔滨工业大学博士学位论文,1998:10~18
    [73] TSAI R. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses[J]. IEEE Journal of Robotics and Automation, 1987, RA-3(4): 323~344
    [74]吴海滨.灰度边缘格雷码与线移条纹结合的三维测量技术研究[D].哈尔滨理工大学博士学位论文,2008:21~25
    [75]章毓晋.图像工程(上册)[M].北京:清华大学出版社, 2005,159~163
    [76]日下秀夫.彩色图像工程[M].北京:科学出版社,2003:5~8
    [77] KIM. DAESIK, RYU. MOONWOOK, LEE. SUKHAN. Antipodal gray codes for structured light[C]. IEEE International Conference on Robotics and Automation, 2008: 3016~3021
    [78] ETZION. TUVI. Single-track gray codes and sequences[R]. Lecture Notes in Computer Science, SSC, 2007, 4893: 129~133
    [79]战丽,刘国忠.用格雷编码结构光法测量三维面形[J].计算机测量与控制,2006,14(10):1287~1289
    [80] KOSCHAN A, ABIDI M. Detection and classification of edges in color images[J]. IEEE Signal Processing,2005,22(1):64~73
    [81] T GEVERS, AWM SMEULDERS. Image search engines: An overview. Emerging Topics in Computer Vision. Prentice Hall, 2004, 11~14
    [82]王文明,赵荣椿.不同彩色空间的彩色图像边缘检测研究[J].计算机测量与控制,2006,14(12):1607~1645
    [83] J. SCHARCANSKI, A. N. VENET SANOPOULOS. Edge detection of color images using directional operators[J]. IEEE Trans. Circuits Syst. Video Technol, 1997, 7 (2): 397~401
    [84] P. E. TRAHANIAS, A. N. VENET SANOPOULOS. Vector order statistics operators as color edge detectors[J] . IEEE Trans. Syst. Man and Cybern, 1996, 26: 135~143
    [85] DONY R D, WESOLKOWSKI S. Edge detection on color images using RGB vector angles[A]. In: Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering[C]. Shaw Conference Center, Edmonton, Canada, 1999, 687~692
    [86]张引,潘云鹤.复杂背景下文本提取的彩色边缘检测算子设计[J].软件学报,2001,12(08):1229~1235
    [87]刘倩.基于彩色图像的文本区域提取研究[D].西南交通大学硕士学位论文,2003:38~40
    [88] KNISS J, KINDLMANN G, HANSEN C. Multidimensional transfer functions for interactive volume rendering[J]. IEEE Transactions on Visualization and Computer Graphics, 2002, 8 (3) : 270~285
    [89] EBERT D, MORRIS C, RHEINGANS P, et al.. Designing effective transfer functions for volume rendering from photographic volumes[J]. IEEE Transactions on Visualization and Computer Graphics, 2002, 8(2):183~197
    [90] QINJIE SUN, ENHUAWU. A color edge detector with texture analysis ability[C]. Proeeedings of the Eighth International Conference on Computer Aided Design and Computer Graphics, Macau, Oct.29-31, 2003, 99~104
    [91] S. C. CHENG, Y. L. WU. Subpixel edge detection of color images by principal axis analysis and moment-preserving principle[J]. Pattern Recognition, 2005, 38: 527~537
    [92] F. RUSSO, A. LAZZARI. Color edge detection in presence of Gaussian noise using nonlinear prefiltering[J]. IEEE Trans. Instrumentation and Measurement. 2005, 54 (1) : 35~298
    [93]夏泽邑.向量空间的彩色图像边缘检测[J].光电工程,2005,32(1):63~66
    [94]季丽琴.彩色图像内文字的自动提取与去除的研究[D].苏州大学硕士学位论文,2006,25~26
    [95]左森,郭晓松,万敬等.基于支持向量机的彩色图像边缘检测[J].计算机应用与软件,2007,24(9):151~161
    [96]郎方年,周激流,阎斌等.四元数与彩色图像边缘检测[J].计算机科学,2007,34(11):212~216
    [97]余成文,郭雷,李晖晖.基于改进颜色张量的照度不变轮廓检测[J].西北工业大学学报,2007,25(6):814~819
    [98]张金霞.一种不受光照和阴影影响的图像边缘检测方法[J].兰州理工大学学报,2007,33(3):100~103
    [99] RAYMOND PHAN, DIMITRIOS ANDROUTSOS. Content-based unconstrained color logo and trademark retrieval with color edge gradient co-occurrence[J]. 2008, Vol.6820 68200K-1
    [100]李源,郑东,陈淑珍.彩色边缘检测在邮政函件图象处理中的应用[J].计算机工程,2000,26(5):32~34
    [101]吕明忠,罗鹏,高敦岳.一种基于色差的彩色图像的边缘检测方法[J].华东理工大学学报,2001,27(5):561~564
    [102] H. C. CHEN, W. J. CHIEN, S. J. WANG. Contrast-based color image segmentation[J]. IEEE Signal Processing Letters, 2004, 11(7): 641~644
    [103]王岩,许增朴,于德敏等.基于主色色差的彩色图像边缘检测方法[J].计算机与信息技术,2007,5:37~42
    [104] CARRON T, LAMBERT P. Color edge detection using jointly hue, saturation and intensity[A]. In: Proceedings of IEEE International Conference on Image Processing[C], Austin, Texas, USA, 1994, 3: 977~981
    [105] P. W. M. TSANG, W. H. TSANG. Edge detection on object color[C]. ICIP, 1996, 3: 1049~1052
    [106]李文举,梁德群,张旗等.基于方向区域距离测度的彩色边缘检测方法[J].计算机应用,2003,23(1):23~25
    [107]白晓明,石勤.基于HSV空间的彩色边缘检测[J].北京工业大学学报,2004,30(4):500~504
    [108]郎文辉,冯焕清.一种基于HIS的距离联合RGB3维场边缘探测方法[J].中国图象图形学报,2005,10(3):301~305
    [109]林生佑,石教英.基于HSV的彩色图像边缘检测算子[J].中国图象图形学报,2005,10(1):43~48
    [110]范立南,韩晓微,徐心和.基于HIS空间彩色图像多结构元形态边缘检测[J].工程图学学报,2005,2:110~113
    [111]王宁,张颖.基于HIS空间的柔性形态学的彩色图像边缘检测[J].计算机应用,2007,27:95~96
    [112]周亮,刘云.基于改进的PCNN的彩色图像边缘检测算法[J].青岛科技大学学报(自然科学版),2007,28(5):447~450
    [113]王小芳,闫光荣,雷毅.彩色图像的复变函数模型及其边缘检测[J].光电工程,2008,35(2):90~96
    [114]彭振龙.一种带权色差的彩色图像边缘检测方法[J].华侨大学学报(自然科学版),2008,29(3):367~369
    [115]赵景秀,王刚,张静远等.基于彩色信息区分度的彩色边缘检测[J].计算机应用,2001,21(8):29~31
    [116]田振兴.舌象信息的采集处理及模式识别[D].南京理工大学硕士学位论文,2003:18~19
    [117]付玉芳,李际军.基于模糊增强的彩色边缘检测研究[J].计算机工程与科学,2005,27(2):23~44
    [118]朱代先,王晓华.一种彩色图像边缘检测方法[J].应用光学,2007,28(4):501~507
    [119] S. J. SANGWINE. Colour image edge detector based on quaternion[J]. Electronics Letters, 1998, 34(10): 969~971
    [120] CANHUI CAI, S.K.MITRA. A normalized color difference edge detector based on quaternion representation[C]. Proceedings IEEE International Conference on Image Processing, Sept.10-13, 2000, Vancouver, Canada, 816~819
    [121]韩耀东,狄红卫.基于色彩空间非线性变化的彩色图像边缘检测[J].光学技术,2004,30(6):685~687
    [122]张树忠.基于Canny理论的彩色图像边缘检测[D].成都理工大学硕士学位论文,2006
    [123]郑海红,王义峰.误差分散类彩色半调图的边缘检测算法[J].光子学报,2007,36(5):941~944
    [124]翁秀梅,肖志涛,杨洪薇.基于边缘检测和区域生长的自然色图像分割[J].天津工业大学学报,2008,27(1):50~52
    [125] ONG S H, YEO N C, LEE K H, et al.. Segmentation of color images using a two-stage self-organizing network[J]. Image and Vision Computing, 2002, 20(4): 279~239
    [126]胡斌,李德华.基于方向模板的结构光条纹中心检测方法[J].计算机工程与应用.2002,(11): 59~60
    [127]熬磊,谭久彬,崔继文.一种快速高精度激光CCD自准直仪圆目标中心的定位方法[J].光学学报,2007,27(2):253~258
    [128]王刚,肖亮,姜志静.亚像素多重分形方法在图像处理中的应用[J].光学学报,2006,26(9):1345~1349
    [129]杨雪荣等.基于可变形模型的光条纹中心提取方法研究[J].中国机械工程,2009,20(3):334~336
    [130] MARC RIOUX, TONY BIRD. White Laser Synced Scan. IEEE Computer Graphics & Applications. 1993, 13(3): 15~17
    [131]贾波.采用激光光刀的叶片三维面形测量方法.中国激光.1992, 19(4): 271~275
    [132]张修宝.亚像素分辨力线结构光物体截面轮廓测量系统研究[D].哈尔滨理工大学硕士学位论文,2007:28~33
    [133]黄丽华.彩色金相显微图像分析系统的建立与彩色图像分割方法的研究[D].浙江大学硕士学位论文,2004:47~50
    [134]徐晓昭,沈兰荪.颜色校正方法及其在图像处理中的应用[J].计算机应用研究,2008,25(8):2250~2254
    [135]吕品,张金芳,王宇心.多投影仪无缝拼接显示中的颜色校正技术比较研究[J].中国图象图形学报,2008,13(7):1272~1280
    [136] S.SHAFER. Using color to separate reflection components[J]. Color Research Application, 1985, vol.10: 210~218
    [137] HUIQIONG WANG. S. LIN, et al.. Separating corneal reflections for illumination estimation[J]. Neurocomputing, 2008, 71(10-12): 1788~1797
    [138] THEO GEVERS, W M SMEULDERS. Color-based object recognition[J]. Pattern Recognition, 1999, 32(3): 453~464
    [139] YU X Y, JI R, WU M Y. Simulation of 3D measurement system based on structured light calibration[C]. International Conference on Sensing, Computing and Automation, 2006, 13: 1481~1484
    [140] SKARBEK WLADYSLAW, TOMASZEWSKI MICHAL, NOWAKOWSKI ARTUR. Camera calibration by linear decomposition[C]. Proceedings of SPIE the International Society for Optical Engineering, 2006, 6159: 61593D
    [141] GANDHI TARAK, TRIVEDI MOHAN M. Reconfigurable omnidirectional camera array calibration with a linear moving object[J]. Image and Vision Computing, 2006, 24(9): 935~948
    [142] VANDEPORTAELE BERTRAND, CATTOEN MICHEL, MARTHON PHILIPPE, et al.. A new linear calibration method for paracatadioptric cameras[C]. Proceedings International Conference on Pattern Recognition,2006, 4: 647~650
    [143] YONEYAMA SATURU, KIKUTA HISAO, KITAGAWA AKIKAZU. Lens distortion correction for digital image correlation by measuring rigid body displacement[J]. Optical Engineering, 2006, 45: 02360
    [144] GOCKEL TILO, AZAD PEDRAM, DILLMANN RUDIGER. Calibration issues for projector-based 3D-scanning[J]. Shape Modeling International Proceedings, 2004: 367~370

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700