高性能荧光/磷光混合式白光聚合物电致发光二极管的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白光聚合物电致发光二极管(PLED)由于其在全彩显示和照明领域巨大的潜在应用价值,特别是其可以采用工艺简单、成本低廉的溶液加工成膜技术,聚合物发光材料的分子结构与发光颜色便于调节等优势,吸引了学术界和工业界广泛的研究兴趣,已经成为有机光电领域的一个研究热点,被誉为新一代固体照明光源。
     目前,白光PLED的发光性能与基于真空蒸镀成膜技术的有机小分子电致发光二极管(OLED)相比仍然有一定的差距,主要包括发光效率、光谱稳定性和器件应用寿命等方面。因此,如要获得实际的应用,白光PLED发光性能还需要进一步提高。一般地,要想实现高效率的白光PLED,必须要充分利用发光材料的单线态和三线态激子的发光,器件的理论内量子效率达到100%。目前,高效的磷光小分子发光材料是研究的最多的材料体系之一,并且基于全磷光发射的白光PLED也实现了较高的发光效率。磷光PLED一般都是采用主客体掺杂体系结构,其发光性能一方面依赖于新型的主体和磷光客体材料的开发,另一方面需要对器件结构进行优化设计。对于主体材料,一般认为其三线态能级需要高于客体材料,同时需要具有高效、平衡的双载流子传输性能,所以开发宽带隙、双极性的主体材料是一个热点研究方向,但同时宽带隙的材料又存在合成困难和性质不稳定等缺点。鉴于此,本论文的主要研究目的就是通过采用不同聚合物主体材料和对器件结构进行优化设计,实现高性能的白光聚合物发光器件。
     本论文中我们用到的主体材料有非共轭聚合物PVK、聚芴及其衍生物。PVK由于具有较高的三线态能级、良好的成膜特性、较高的玻璃转化温度和良好的空穴传输特性,是目前最常用的主体材料。目前基于PVK为主体的全磷光白光PLED的发光效率已经超过了60cd/A,功率效率达到40lm/W。聚芴类的材料由于其具有高效率、色纯度好的蓝光发射、高电荷迁移率和良好的成膜性等,在显示应用领域是一种很有吸引力的共轭聚合物。但是,以聚芴类聚合物为主体的掺杂型磷光PLED的效率普遍较低,一般认为是主体较低的三线态能级对磷光的淬灭作用。我们采用聚芴及其衍生物作为主体材料,同时在PEDOT:PSS和发光层之间引入PVK阳极缓冲层,有效地抑制了低三线态能级的聚芴类材料对磷光的淬灭,制备了一系列高性能的全磷光、荧光和磷光混合式的双层结构白光器件。这些结果大大拓宽了主体材料的选择范围,对磷光发光器件的研究具有重要意义。特别的,我们降低磷光客体材料的掺杂浓度,通过主客体间的不完全能量转移而突出了聚合物主体的深蓝光发射,填补了全磷光白光器件中深蓝光的空白,有效地拓宽了白光的发射光谱,实现了高效率、高颜色质量的白光PLED。优化后的器件最大的电流效率和功率效率分别为21.4cd/A和15.2lm/W,白光显色指数高达90。带有氨基基团的水/醇溶性的聚芴共聚物或其衍生物(如PFN)是一类具有高效电子注入特性的共轭聚合物,它可以与高功函数金属(如铝、金、银等)一起构成双层结构的阴极,器件发光效率远高于以高功函数金属为阴极器件,接近甚至超过以低功函数金属(如钡、钙等)为阴极的器件。同时,其特殊的溶解特性有助于多层结构的PLED的实现。基于PFN主体的白光PLED,其制备工艺相对简单,阴极金属采用的是相对稳定的高功函数Al,使得其在空气中具有较好的稳定性。但是其功耗较高,导致启亮电压较高,发光功率效率较低,同时发光亮度较低,成为了其在实际应用中最大的障碍。
     最后,我们利用水/醇溶性共轭聚合物材料作为电子传输层,与高功函数金属Al和金属氧化物MoO3一起构成一种新型的电荷产生层(CGL),并将其成功的应用于串联式发光器件中,实现了含有两个发光单元的串联式聚合物单色光和白光发光器件。当采用带有氨基的聚芴共聚物PFN作为电子注入/传输层,Al膜厚度为5nm,MoO3厚度为10nm,绿光材料P-PPV为上下两个发光单元的发光材料时,实现了基于溶液旋涂方法的双发光单元的串联式聚合物单色发光器件,器件最大电流效率为16.65cd/A。对于串联式白光器件,我们采用PF-EP/Al (5nm)/MoO3(10nm)作为中间电荷产生层,同时基于溶液湿法处理的蓝、红光聚合物材料PFSO、PFO-DBT15作为底层器件的发光材料,而上层器件中的绿光小分子材料Alq3则采用真空蒸镀的方法,通过上下两层发光单元的颜色叠加得到白光发射。串联式白光器件的最大电流效率为7.16cd/A,最大功率效率为1.95lm/W,启亮电压为8.75V,约为上下两层器件启亮电压之和。同时,白光器件的CIE色坐标为(0.340,0.373),其显色指数高达97,接近于白炽灯的100。
White polymer light-emitting devices (WPLEDs) have attracted intense attentionin both scientific and industrial communities due to their potential applications infull-color flat-panel displays and solid-state lighting sources, given their uniqueadvantages, such as ease of fabrication, low-cost manufacturing usingsolution-processed technology, and tunable molecule structure and emission color.Therefore, WPLEDs have become a hot research topic in the field of organicelectronics, and represent promising candidate for the next-generation of solid-statelighting sources.
     On the other side, the performance of WPLEDs is much lower than that of theorganic light-emitting devices (OLEDs) based on vapor-deposition technology so far,mainly in terms of efficiencies. Therefore, it is an urgent task to improve theperformance of WPLEDs in order to meet practical applications. By harvesting bothsinglet and triplet excitons, it can allow an internal quantum efficiency approach100%.Currently, due to their high efficiency, phosphorescent emitters based on smallmolecule have received intense research interest, while the most efficient WPLEDscritically rely on these phosphorescent materials. For PLEDs based on phosphorescentemitters, host-guest doping system is usually employed, rendering the deviceperformance not only depends on the development of the host and the phosphorescentguest materials, but is also related to their device structure. For the host material, itstriplet energy level should be higher than that of guest in order to avoid triplet energyback transfer from the phosphor to the polymer host, and possess efficient andbalanced carriers transporting properties. Therefore, many researches have beenfocused on the development of host materials with wide band gap and bipolartransporting properties. However, the synthesis of materials with wide band gap is notso easy and the materials are very unstable. Herein, the purpose of this study is toinvestigate and realize efficient WPLEDs from different host materials and noveldevice structures.
     The host materials used in this study including non-conjugated polymerpoly(N-vinylcarbazole)(PVK), polyfluorene and its derivatives (PFs). PVK is widelyemployed as host material due to its higher triplet energy states, good film-formingproperties, higher glass transition temperature and good hole transporting property. At present, the luminous efficiency (LE) of WPLEDs based on PVK host had exceed60cd/A, and power efficiency (PE) reached40lm/W. Polyfluorene is also an attractiveconjugated material due to its efficient, good color purity of blue emission as well asgood film-forming properties. However, its lower-lying triplet energy states canseverely quench the phosphorescent emission from the triplet guest. Here, wedemonstrate that the quench effect can be effectively suppressed by incorporating ananode buffer layer PVK between PEDOT: PSS and emitting layer. On the basis of this,a series of all-phosphorescent, hybrid (with both fluorescent and phosphorescentemission) WPLEDs based on PFs host were realized. These results broaden the rangeof options of host materials for WPLEDs and have vital significance tophosphorescent PLEDs. In particularly, when using deep blue emitting emitter as host,it can greatly broaden the white emission spectra, thus, WPLEDs with high efficiencyand good color quality can be readily achieved. When incorporating water/alcohol-soluble polyfluorene copolymers or derivatives with amino group (PFN) as electroninjection layer, devices efficiency can be further enhanced. The LE and PE of theoptimized WPLEDs reached21.4cd/A and15.2lm/W, respectively. Moreover, thecolor rendering index (CRI) was as high as90. In addition, when this type ofcopolymer is used as host, air-stable metal such as Al, Ag can be used as contactcathode, despite its higher turn-on voltage (Von).
     Finally, we also investigate the realization of stacked PLED by using a newcharge generation layer (CGL) which comprising water/alcohol-soluble conjugatedpolymer, metal Al and metal oxide MoO3. By using PFN/Al/MoO3CGL and emittingmaterial P-PPV, solution-processed stacked monochromatic PLEDs with emissionfrom two sub-units are fabricated, and the peak LE reached16.65cd/A. By using red,green, blue emitting materials PFO-DBT15, Alq3and PFSO, stacked whitelight-emitting devices were also fabricated with a PF-EP/Al/MoO3CGL. Themaximum LE reaches7.16cd/A, with a maximal PE of1.95lm/W. The Vonis foundto be8.75V, which is approximately the sum of that of sub-units. Moreover, the CIEcoordinates of white emission is (0.340,0.373), with a CRI of97, very close to that ofincandescent lamp of100.
引文
[1] Pope M., Kallmann H., Mangnante P. Electroluminescence in organic crystals [J].J. Chem. Phys,1963,38:2042-2043
    [2] Tang C. W., Vanslyke S. A., Organic electroluminescent diodes [J]. Appl. Phys.Lett.,1987,51(12):913-915
    [3] Burroughes J. H., Bradley D. D. C., Brown A. R., Marks R. N., Mackay K.,Friend R. H., Burns P. L., Holmes A. B. Light-emitting diodes based onconjugated polymer [J]. Nature,1990,347:539-541
    [4] Braun D. and Heeger A. J. Visible light emission from semiconducting polymerdiodes [J]. Applied Physics Letters,1991,58:1982-1984
    [5] Cao Y., Treacy G. M., Smith P. et al. Solution-cast films of polyaniline:optical-quality transparent electrodes [J]. Applied Physics Letters,1992,60:2711-2713,
    [6] Gustafsson G, Cao Y, Treacy G. M., et al. Flexible light-emitting diodes madefrom soluble conducting polymers [J]. Nature,1992,357:477-479
    [7] Ma Y. G., Zhang H. Y., Shen J. C. et al. Electroluminescence from tripletmetal-ligand charge-transfer excited state of transition metal complexes [J].Synthetic Metals,1998,94:245-248
    [8] Baldo M. A., O'Brien D. F., You Y. et al. Highly efficient phosphorescentemission from organic electroluminescent devices [J]. Nature (London)1998,395:151-154
    [9] Ho P. K. H., Kim J.-S., Burroughes J. H. et al. Molecular-scale interfaceengineering for polymer light-emitting diodes [J]. Nature (London),2000,404:481-484
    [10]Greenham N. C., Moratti S. C., Bradley D. D. C. et al. Efficient light-emittingdiodes based on polymers with high electron affinities [J]. Nature (London,United Kingdom),1993,365:628-630
    [11]Ohmori Y., Uchida M., Muro K. et al. Visible-light electroluminescent diodesutilizing poly(3-alkylthiophene)[J]. Japanese Journal of Applied Physics, Part2:Letters,1991,20: L1938-L1940
    [12]Berggren M., Inganas O., Gustafsson G. et al. Light-emitting diodes with variablecolors from polymer blends [J]. Nature (London),1994,372:444-446
    [13]Grem G., and Leising G. Electroluminescence of "wide-bandgap" chemicallytunable cyclic conjugated polymers [J]. Synthetic Metals,1993,57:4105-4110
    [14]Yang Y., Pei Q. and Heeger A. J. Efficient blue polymer light-emitting diodesfrom a series of soluble poly(para-phenylene)s [J]. Journal of Applied Physics,1996,79:934-939
    [15]Romero D. B., Schaer M., Leclerc M. et al. The role of carbazole in organiclight-emitting devices [J]. Synthetic Metals,1996,80:271-277
    [16]Morin J. F., Boudreault P. L., and Leclerc M. Blue-light-emitting conjugatedpolymers derived from2,7-carbazoles [J]. Macromolecular RapidCommunications,2002,23:1032-1036
    [17]Huang J., Niu Y., Yang W. et al. Novel Electroluminescent Polymers Derivedfrom Carbazole and Benzothiadiazole [J]. Macromolecules,2002,35:6080-6082
    [18]Huang J., Xu Y., Hou Q. et al. Novel red electroluminescent polymers derivedfrom carbazole and4,7-bis(2-thienyl)-2,1,3-benzothiadiazole [J]. MacromolecularRapid Communications,2002,23:709-712
    [19]Becker S., Ego C., Grimsdale A. C. et al. Optimisation of polyfluorenes for lightemitting applications [J]. Synthetic Metals,2001,125:73-80
    [20]Bernius M. T., Inbasekaran M., Woo E. P. et al. Application of polyfluorenes andrelated polymers in light-emitting diodes [J]. Proceedings of SPIE-TheInternational Society for Optical Engineering,1999,3621:93-102
    [21]Yang W., Hou Q., Liu C. et al. Improvement of color purity in blue-emittingpolyfluorene by copolymerization with dibenzothiophene [J]. Journal of MaterialsChemistry,2003,13:1351-1355
    [22]Hou Q., Xu Y., Yang W. et al. Novel red-emitting fluorene-based copolymers [J].Journal of Materials Chemistry,2002,12:2887-2892
    [23]Brütting W., Berleb S., Mückl A. G. Device Physics of Organic Light-EmittingDiodes Based on Molecular Materials [J]. Org. Electron.,2001,2(1):1-36
    [24]Ishii H., Sugiyama K., Ito E. et al. Energy Level Alignment and InterfacialElectronic Structures at Organic/Metal and Organic/Organic Interfaces [J]. Adv.Mater.,1999,11:605-625
    [25]Scott J. C. Metal-Organic Interface and Charge Injection in Organic ElectronicDevices [J]. J. Vac. Sci. Technol. A,2003,21,521-531
    [26]Patel N. K., Cina S., Burroughes J. H. High-Efficiency Organic Light-emittingDiodes [J]. IEEE J Sele. Top. Quan. Elect.,2002,8:346-361
    [27]Mark P. and Helfrich W. Space-Charge-Limited Currents in Organic Crystals [J].J. Appl. Phys.,1962,33:205-209
    [28]Blom P. W. M., Jong M. and Vleggaar J. J. M. Electron and Hole TransportinPoly(p-Phenylene vinylene) Devices [J]. J. Appl. Phys.,1996,68:3308-3310
    [29]Campbell A. J., Bradley D. D. C. and Lidzey D. G. Space-Charge LimitedConduction with Traps in Poly(phenylene vinylene) Light Emitting Diodes [J]. J.Appl. Phys.,1997,82:6326-6330
    [30]Munn R. W., Siebrand W. Sign of the Hall Effect for Hopping Transport inMolecular Crystals [J]. Phys. Rev. B.1970,2:3435-3437
    [31]Parker I. D. Carrier Tunneling and Device Characteristics in PolymerLight-Emitting Diodes [J]. J. Appl. Phys.,1994,75:1656-1666
    [32]Sheats J. R., Antoniadis H., Hueschen M. et al. Organic electroluminescentdevices [J]. Science,1996,273(5277):884-888
    [33]Scott J. S., Kaminski J. P., Wanke M. et al. Terahertz frequency response of anIn0.53Ga0.47As/AlAs resonant-tunneling diode [J]. Appl. Phys. Lett.,1994,64(15):1995-1997
    [34]Brown A. R., Pichler K., Greenham N. C. et al. Optical spectroscopy of tripletexcitons and charged excitations in poly(p-phenylenevinylene) light emittingdiodes [J]. Chem. Phys. Lett.,1993,210:61-66
    [35]Baldo M. A., O’Brien D. F., Thompson S. R. et al. Excitonic singlet-triplet ratioin a semiconducting organic thin film [J]. Phys. Rev. B,1999,60:14422-14428
    [36]黄春辉,李富友,黄维.有机电致发光材料与器件导论[M].上海:复旦大学出版社,2005,9:1-297
    [37]Adachi C., Baldo M. A., Thompson M. E. et al. Nearly100%internalphosphorescence efficiency in an organic light-emitting device [J]. Journal ofApplied Physics,2001,90:5048-5051
    [38]吴宏滨.基于高功函数金属-醇/水溶性共轭聚合物的新型高效电子注入阴极的研究[D].华南理工大学博士论文,2006.
    [39]许运华.高性能白光聚合物电致发光二极管的研究[D].华南理工大学博士论文,2008.
    [40]Greenham N. C., Friend R. H., Bradley D. D. C. Angular-Dependence of theEmission from a Conjugated Polymer Light-Emitting Diode-Implications forEfficiency Calculations [J]. Advanced Materials,1994,6:491-494
    [41]Kozlov V. G. et al. Study of lasing action based on Forster energy transfer inoptically pumped organic semiconductor thin films [J]. Journal of AppliedPhysics,1998,84:4096-4108
    [42]Kim J. S., Ho P. K. H., Greenham N. C., Friend R. H. Electroluminescenceemission pattern of organic light-emitting diodes: Implications for deviceefficiency calculations [J]. Journal of Applied Physics,2000,88:1073-1081
    [43]Kim J. S., Ho K. H., Greenham N. C. et al. Electroluminescence Emission Patternof Organci Light-Emitting Diodes: Implications for Device EfficiencyCalculations [J]. J. Appl. Phys.,2000,88:1073-1075
    [44]O’Brien D, Weaver T. M. Effects of polymeric electron transporters and thestructure of poly(p-phenylenevinylene) on the performance of light-emittingdiodes [J]. J. Am. Chem. Soc.,1995,117:11976-11980
    [45]荆其诚,焦书兰,喻柏林,胡维生.色度学[M].北京:科学出版社,1979
    [46]应根裕,胡文波,邱勇等.平板显示技术[M].北京:人民邮电出版社,2002:340-392.
    [47]Adachi C., Tokito et al. Organic electroluminescent device with a three-layerstructure [J]. Japanese Journal of Applied Physics, Part2: Letters,1988,27(4):713-715
    [48]Shen Z. L, Burrows P. E, Bulovic V. et al. Three-color, tunable, organiclight-emitting devices [J]. Science,1997,276(5321):2009-2011
    [49]Papadimitrakopoulos F., Konstandinidas K. et al. The role of carbonyl groups inthe photoluminescence in semiconducting polymers [J]. Nature,1999,397:414-417
    [50]Mandlik P., Han L., Brown J. J. et al. Diffusion of atmospheric gases intobarrier-layer sealed organic light emitting diode [J]. Appl. Phys. Lett.,2008,93(20):203306
    [51]Sutheland D. G. J, Carlisle J. A. et al. Photo-oxidation of electroluminescentpolymers studied by core-level photoaborption spectroscopy [J].Appl.Phys.Lett.,1996,68:2046-2048
    [52]熊艳.聚合物电致发光器件的性能改进研究[D].华南理工大学博士论文,2008
    [53]Greenham N. C., Samuel I. D. W., Hayes G. R., Phillips R. T., Kessener Y. A. R.R., Moratti S. C., Holmes A. B., Friend R. H. Measurement of absolutephotoluminescence quantum efficiencies in conjugated polymers [J]. Chem. Phys.Lett.1995,241:89-96
    [54]Su S. J., Chiba T., Takeda T. and Kido J. Pyridine-Containing TriphenylbenzeneDerivatives with High Electron Mobility for Highly Efficient PhosphorescentOLEDs [J]. Adv. Mater.2008,20:2125–2130
    [55]Su S. J., Sasabe H., Takeda T. and Kido J. Pyridine-Containing Bipolar HostMaterials for Highly Efficient Blue Phosphorescent OLEDs [J]. Chem. Mater.2008,20:1691–1693
    [56]Sasabe H, Chiba T, Su S. J. et al.2-Phenylpyrimidine skeleton-based electron-transport materials for extremely efficient green organic light-emitting devices[J]. Chem. Commun.,2008,44(44):5821-5823
    [57]Yang X., Müller D. C., Neher D. et al. Highly Efficient PolymericElectrophosphorescent Diodes [J]. Adv. Mater.2006,18,948-952
    [58]Wang L., Liang B., Huang F. et al. Utilization of Water/Alcohol-SolublePolyelectrolyte as an Electron Injection Layer for Fabrication of High-EfficiencyMultilayer Saturated Red phosphorescence Polymer Light-Emitting Diodes bySolution Processing [J]. Appl. Phys. Lett.,2006,89:151115
    [59]Wu C. H., Shih P. I., Shu C. F. et al. Highly efficient red organic light-emittingdevices based on a fluorine-triphenylamine host doped with an Os (II) phosphor[J]. Appl. Phys. Lett.,2008,92(23):233303
    [60]Tao Y., Wang Q., Yang C. et al. A simple carbazole/oxadiazole hybrid molecule:an excellent bipolar host for green and red phosphorescent OLEDs [J]. Angew.Chem. Int. Ed.,2008,47:8104-8107
    [61]Kido J., Hongawa K., Okuyamaak et al. White light-emitting organicelectroluminescent devices using the poly(N-vinylcarbazole) emitter layer dopedwith three fluorescent dyes [J]. Appl. Phy. Lett.1994,64(7):815-817
    [62]http://www.szcsot.com/sitecn/gsxw/686.html
    [63]http://article.pchome.net/content-154956.html
    [64]http://www.fpdwin.com/HTML/FPDtech/OLED/AMOLED/2012/7999197586436. html
    [65]http://www.fpdisplay.com/news/2012-03/info-144138-160.htm
    [66]Tomita Y, May C, Torker M. et al. Large Area p-i-n Type OLEDs for Lighting
    [C]. Proceedings of SID07, Long Beach Convention Center, CA, USA,2007
    [67]Sun Y. R. and Forrest S. R. High-efficiency white organic light emitting deviceswith three separate phosphorescent emission layers [J]. Appl. Phys. Letts.,2007,91:263503
    [68]Kido J, Invited Paper: High Performance OLEDs for Dispalys and GeneralLighting [C]. Proceeding of SID07, Long Beach Convention Center, CA, USA,2007
    [69]Reineke S., Lindner F., Schwart z G. et al., White organic light-emitting diodeswith fluorescent tube efficiency [J]. Nature,2009,459:234-237
    [70]Wang Q., Ding J. Q., Ma D. G. et al., Manipulating Charges and Excitons withina Single-Host System to Accomplish Efficiency/CRI/Color-Stability Trade-offfor High-Performance OWLEDs [J]. Adv. Mater.2009,21:2397–2401
    [71]Wang Q., Ding J. Q., Ma D. G. et al., Harvesting Excitons Via Two ParallelChannels for Efficient White Organic LEDs with Nearly100%Internal QuantumEfficiency: Fabrication and Emission-Mechanism Analysis [J]. Adv. Funct.Mater.2009,19:84–95
    [72]Zou J. H., Wu H., Lam C. S. et al., Simultaneous Optimization of Charge-CarrierBalance and Luminous Efficacy in Highly Efficient White PolymerLight-Emitting Devices [J]. Adv. Mater.2011,23:2976–2980
    [73]Zhou J. H., Ai N., Wang L. et al., Roughening the white OLED substrate’ssurface through sandblasting to improve the external quantum efficiency [J].Organic Electronics,2011,12:648–653
    [74]Duan Y., Mazzeo M., Maiorano V. et al. Extremely low voltage and high brightp-i-n fluorescent white organic light-emitting diodes [J]. Appl. Phys. Lett.,2008,92(11):113304
    [75]D’Andrade B. W., Forrest S. R., Chwang A. B. Operational stability ofelectrophosphorescent devices containing p and n doped transport layers [J].Appl. Phys. Lett.,2003,83(19):3858-3840
    [76]Kido J., Kimura M., Nagai K. Multilayer White Light-Emitting OrganicElectroluminescent Device [J]. Science,1995,267:1332-1334
    [77]Xie Z. Y., Huang J. S., Li C. N. et al. White light emission induced byconfinement in organic multiheterostructure [J]. Appl. Phys. Lett.,1999,74:641-643
    [78]D’Andrade B. W., Thompson M. E., Forrest S. R. Controlling Exciton Diffusionin Multilayer White Phosphorescent Organic Light Emitting Devices [J]. Adv.Mater.,2002,14:147-151
    [79]Sun Y., Giebink N., Kanno H. et al. Management of singlet and triplet excitonsfor efficient white organic light-emitting devices [J]. Nature,2006,440:908-912
    [80]Chen S. M., Tan G. P., Wong W. Y. and Kwok H. S. White OrganicLight-Emitting Diodes with Evenly Separated Red, Green, and Blue Colors forEfficiency/Color-Rendition Trade-Off Optimization [J]. Adv. Funct. Mater.,2011,21:3785–3793
    [81]Yook K. S., Jeon S. O., Joo C. W., Lee J. Y. et al. Highly efficient pure whitephosphorescent organic light-emitting diodes using a deep blue phosphorescentemitting material [J]. Organic Electronics,2009,10:681–685
    [82]Jeon S. O., Lee J. Y. Above20%external quantum efficiency in green and whitephosphorescent organic light-emitting diodes using an electron transport typegreen host material [J]. Org. Electro.,2011,12(11):1893-1898
    [83]Han C. M., Xie G. H., Xu H. et al. A Single Phosphine Oxide Host forHigh-Efficiency White Organic Light-Emitting Diodes with Extremely LowOperating Voltages and Reduced Efficiency Roll-Off [J]. Adv. Mater.,2011,23:2491-2496
    [84]Xu Y. H., Peng J. B., Mo Y. Q. et al. Efficient polymer white-light-emittingdiodes [J]. Appl. Phys. Lett.,2005,86:163502
    [85]邹建华,陶洪,吴宏滨,彭俊彪.修饰阴极界面提高聚合物白光二极管发光效率[J].物理学报,2009,58(2):1224-1228
    [86]Zhou Y., Sun Q. J., Tan Z. A. et al. Double-Layer Structured WPLEDs Based onThree Primary RGB Luminescent Polymers: Toward High Luminous Efficiency,Color Purity, and Stability [J]. J. Phys. Chem. C,2007,111:6862-6867
    [87]Niu X. D., Qin C. J., Zhang B. H., Yang J. W. et al. Efficient multilayer whitepolymer light-emitting diodes with aluminum cathodes [J]. Appl. Phys. Lett.,2007,90(20):203513
    [88]Sun Q. J., Chang D. W., Dai L. M. et al. Multiple white polymer light-emittingdiodes with deoxyribonucleic acid-cetyltrimetylammonium coplex as ahole-tranporting/electron-blocking layer [J]. Appl. Phys. Lett.2008,92:251108
    [89]Kim S. H., Jin Y., Yu J. Y. et al. Color stable white polymer light-emitting diodeswith single emission layer [J]. Synthetic Metals,2010,160:835–838
    [90]Shao Y., Yang Y. White organic light-emitting diodes prepared by a fusedorganic solid solution method [J], Appl. Phys. Lett.,2005,86(7):073510
    [91]Jou J. H., Chiu Y. S., Wang C. P. et al. Efficient, color-stable fluorescent whiteorganic light-emitting diodes with single emission layer by vapor deposition fromsolvent premixed deposition source [J]. Appl. Phys. Lett.,2006,88(19):193501
    [92]Jou J. H., Wu M. H., Wang C. P. et al. Efficient fluorescent white organiclight-emitting diodes using co-host/emitter dual-role processed di(triphenyl-amine)-1,4-divinyl-naphthalene [J]. Org. Electron.,2007,8(6):735-742
    [93]Kim J. H., Herguth P., Kang M. S. et al. Bright white light electroluminescentdevices based on a dye-dispersed polyfluorene derivative [J]. Appl. Phys. Lett.2004,85(7):1116-1118
    [94]Xu Q. F., Duong H. M., Wudl F., Yang Y. Efficient single-layer"twistacene"-doped polymer white light-emitting diodes [J]. Appl. Phys. Lett.2004,85(16):3357-3359
    [95]Peng K. Y., Huang C. W., Liu C. Y., and Chen S. A.. High brightness stablewhite and yellow light-emitting diodes from ambipolar polyspirofluorenes withhigh charge carrier mobility [J]. Appl. Phys. Lett.2007,91:093502
    [96]Huang J. S., Hou W. J., Li J. H. et al. Improving the power efficiency of whitelight-emitting diode by doping electron transport material [J]. Appl. Phys. Lett.2006,89:133509
    [97]Fan S. Q., Sun M. L., Wang J., Yang W. and Cao Y. Efficient white–light-emitting diodes based on polyfluorene doped with fluorescent chromophores [J].Appl. Phys. Lett.2007,91:213502
    [98]Xue S. F., Yao L., Shen F. Z. et al. Highly Efficient and Fully Solution-Processed White Electroluminescence Based on Fluorescent Small Moleculesand a Polar Conjugated Polymer as the Electron-Injection Material [J]. Adv.Funct. Mater.,2012,22(5):1092-1097
    [99]Shih P. I., Tseng Y. H., Wu F. I. et al. Stable and Efficient WhiteElectroluminescent Devices Based on a Single Emitting Layer of Polymer Blends[J]. Adv. Funct. Mater.,2006,16:1582–1589
    [100] Lee K., Ahn T., Cho N. S. et al. Synthesis of new polyfluorene copolymerswith a comonomer containing triphenylamine units and their applications inwhite-light-emitting diodes [J]. J. Polym. Sci. Part A: Polym. Chem.2007,45(7):1199-1209
    [101] Tan Z. A., Tang R. P., Sun Q. J. et al. White polymer light-emitting diodesbased on poly(2-(4'-(diphenylamino)phenylenevinyl)-1,4-phenylene-alt-9,9-n-dihexylfluorene-2,7-diyl) doped with a poly(p-phenylenevinylene) derivative [J]. Thin Solid Films,2007,516(1):47-51
    [102] Hsieh B. Y., Chen Y. Copolyfluorenes Containing Phenothiazine orThiophene Derivatives: Synthesis, Characterization, and Application inWhite-Light-Emitting Diodes [J]. J. Polym. Sci. Part A: Polym. Chem.2009,47,833-844
    [103] Wang B. Z., Zhang A. Q., Wu H.B., Yang W., Wen S. S. Polymer whitelight-emitting diodes with a single emission layer of fluorescent polymer blend[J]. ACTA Physica Sinica,2010,69(6):4240-4244
    [104] Ferreira de Deus J., Faria G., Iamazaki E. T. et al. Polyfluorene based blendsfor white light emission [J]. Org. Electro.,2011,12(9):1493-504
    [105] Niu Q. L., Xu Y. H., Jiang J. X., Peng J. B. and Cao Y. Efficient polymerwhite-light-emitting diodes with a single-emission layer of fluorescent polymerblend [J]. J. Lumin.,2007,126:531-535
    [106] Zou J. H., Liu J., Wu H. B. et al. High-efficiency and good color qualitywhite light-emitting devices based on polymer blend [J]. Org. Electron.,2009,10:843-848
    [107] Liu J., Zou J. H., Yang W. et al. Highly Efficient and Spectrally StableBlue-Light-Emitting Polyfluorenes Containing a Dibenzothiophene-S,S-dioxideUnit [J]. Chem. Mater.,2008,20:4499-4506
    [108] Sun Q. J., Hou J. H., Yang C. H. et al. Enhanced performance of whitepolymer light-emitting diodes using polymer blends as hole-transporting layers[J]. Appl. Phys. Lett.,2006,89,153501
    [109] Huang J. S., Li G., Wu E., Xu Q. F. and Yang Y. Achieving High-EfficiencyPolymer White-Light-Emitting Devices [J]. Adv. Mater.,2006,18:114–117
    [110] Schwartz G., Reineke S., Rosenow T. C. et al. Triplet Harvesting in HybridWhite Organic Light-Emitting Diodes [J]. Adv. Funct. Mater.,2009,19:1319–1333
    [111] Sudhakar M., Djurovich P. I., Esch T. E. H., and Thompson M. E.,Phosphorescence Quenching by Conjugated Polymers [J]. J. Am. Chem. Soc.,2003,125:7796-7797
    [112] Zeng W. J., Wu H. B., Zhang C., Huang F. et al. Polymer light-emittingdiodes with cathodes printed from conducting Ag paste [J]. Adv. Mater.,2007,19:810-814
    [113] Jankus V. and Monkman A. P. Is Poly(vinylcarbazole) a Good Host for BluePhosphorescent Dopants in PLEDs? Dimer Formation and Their Effects on theTriplet Energy Level of Poly(N-vinylcarbazole) and Poly(N-Ethyl-2-Vinylcarbazole)[J]. Adv. Funct. Mater.,2011,21:3350–3356
    [114] Swensen J. S., Polikarpov E., Ruden A. V. et al. Improved Efficiency in BluePhosphorescent Organic Light-Emitting Devices Using Host Materials of LowerTriplet Energy than the Phosphorescent Blue Emitter [J]. Adv. Funct. Mater.,2011,21:3250–3258
    [115] Holmes R. J. and Forrest S. R. Blue organic electrophosphorescence usingexothermic host–guest energy transfer [J]. Appl. Phys. Lett.,2003,82(15):2422-2424
    [116] Tokito S., Iijima T., Suzuri Y. et al. Confinement of triplet energy onphosphorescent molecules for highly-efficient organic blue-light-emitting devices[J]. Appl. Phys. Lett.,2003,83:569-571
    [117] Holmes R. J., D'Andrade B. W., Forrest S. R. et al. Efficient, deep-blueorganic electrophosphorescence by guest charge trapping [J]. Appl. Phys. Lett.,2003,83:3818-3820
    [118] Hsu F. M., Chien C. H., Shih P. I. et al. Phosphine-Oxide-Containing BipolarHost Material for Blue Electrophosphorescent Devices [J]. Chem. Mater.,2009,21:1017-1022
    [119] Mathai M. K., Choong V. E., Choulis S. A. et al. Highly efficient solutionprocessed blue organic electrophosphorescence with14lm/W luminous efficacy[J]. Appl. Phys. Lett.,2006,88:243511
    [120] Zhang X., Jiang C., Mo Y. et al. High-efficiency blue light-emittingelectrophosphorescent device with conjugated polymers as the host [J]. Appl.Phys. Lett.,2006,88:051111
    [121] Lee D. H., Liu Y. P., Lee K. H., Chae H. et al. Effect of hole transportingmaterials in phosphorescent white polymer light-emitting diodes [J]. OrganicElectronics,2010,11:427–433
    [122] Cheng G., Fei T., Zhao Y. et al. White phosphorescent polymerlight-emitting devices based on a wide band-gap polymer derived from3,6-carbazole and tetraphenylsilane [J]. Organic Electronics,2010,11:498–502
    [123] Li Y. H., Fang Y. Zou J. H., Wang B. et al. Efficient polymer light-emittingdevices based on two complementary phosphorescent colors [J]. ACTAPhysico-Chimica Sinica,2010,26(10):2752-2756
    [124] Wu H. B., Zhou G. J., Zou J. H., Ho C. L. et al. Efficient PolymerWhite-Light-Emitting Devices for Solid-State Lighting [J]. Adv. Mater.,2009,21:4181–4184
    [125] Xiong Y.; Deng F. Efficient white polymer light-emitting diodes based on aphosphorescent iridium complex and a fluorescent silole and carbazolecopolymer [J]. J. Phys. Chem. Sol.,2011,72(9):1077-1080
    [126] Yook K. S., Lee J. Y. Solution processed high efficiency blue and whitephosphorescent organic light-emitting diodes using a high triplet energy excitonblocking layer [J]. Org. Electro.,2011,12(8):1293-1297
    [127] Wu H. B., Zou J. H., Liu F., Wang L., Mikhailovsky A. et al. Efficient SingleActive Layer Electrophosphorescent White Polymer Light-Emitting Diodes [J].Adv. Mater.,2008,20:696-702
    [128] Zhu M. R., Zou J. H., Hu S. J., Li C. G. et al. Highly efficient single-layerwhite polymer light-emitting devices employing triphenylamine-based iridiumdendritic complexes as orange emissive component [J]. J. Mater. Chem.,2012,22:361–366
    [129] Huang F., Wu H. B., Wang D. L. et al. Novel Electroluminescent ConjugatedPolyelectrolytes Based on Polyfluorene [J]. Chem. Mater.,2004,16(4):708-716
    [130] Wu H. B., Huang F., Mo Y. Q. et al. Efficient Electron Injection from aBilayer Cathode Consisting of Aluminum and Alcohol-/Water-SolubleConjugated Polymers [J]. Adv. Mater.,2004,16:1826-1830
    [131] Huang F., Hou L. T., Shen H. L., Jiang J. X. et al. Synthesis, photophysics,and electroluminescence of high-efficiency saturated red light-emittingpolyfluorene-based polyelectrolytes and their neutral precursors [J]. J. Mater.Chem.,2005,15:2499-2507
    [132] Huang F., Niu Y. H., Zhang Y., Ka J. W. et al. A Conjugated, NeutralSurfactant as Electron-Injection Material for High-Efficiency PolymerLight-Emitting Diodes [J]. Adv. Mater.,2007,19:2010-2014
    [133] Zhou G., Qian G., Ma L., Cheng Y. X. et al. Polyfluorenes with PhosphonateGroups in the Side Chains as Chemosensors and Electroluminescent Materials[J], Macromolecules2005,38,5416-5424
    [134] Yang R. Q., Garcia A., Korystov D., Mikhailovsky A. et al. Control ofInterchain Contacts, Solid-State Fluorescence Quantum Yield, and ChargeTransport of Cationic Conjugated Polyelectrolytes by Choice of Anion [J]. J. Am.Chem. Soc.,2006,128,16532-16539
    [135] An D., Zou J. H., Wu H. B., Peng J. B. et al. White emission polymerlight-emitting devices with efficient electron injection from alcohol/water-solublepolymer/Al bilayer cathode [J]. Organic Electronics,2009,10:299–304
    [136] Zhang Y., Huang F., Chi Y., and Jen A. K. Y., Highly Efficient WhitePolymer Light-Emitting Diodes Based on Nanometer-Scale Control of theElectron Injection Layer Morphology through Solvent Processing [J]. Adv.Mater.,2008,20:1565–1570
    [137] Xu Y. H., Yang R. Q., Peng J. B., Mikhailovsky A. et al. Solvent Effects onthe Architecture and Performance of Polymer White-Light-Emitting Diodes withConjugated Oligoelectrolyte Electron-Transport Layers [J]. Adv. Mater.,2009,21:584–588
    [138] Huang F., Shih P. I., Shu C. F., Chi Y. and Jen A. K.-Y., Highly EfficientPolymer White-Light-Emitting Diodes Based on Lithium Salts Doped ElectronTransporting Layer [J]. Adv. Mater.,2009,21,361–365
    [139] Ye T. L., Zhu M. R., Chen J. S., Ma D. G. et al. Efficient multilayerelectrophosphorescence white polymer light-emitting diodes with aluminumcathodes [J]. Organic Electronics,2011,12:154–160
    [140] Niu Y. H., Liu M. S., Ka J. W., Bardeker J. et al. CrosslinkableHole-Transport Layer on Conducting Polymer for High-Efficiency WhitePolymer Light-Emitting Diodes [J]. Adv. Mater.,2007,19(12):300-304
    [141] Cheng G., Fei T., Duan Y. et al. Highly efficient white polymerlight-emitting devices based on wide bandgap polymer doped with blue andyellow phosphorescent dyes [J]. Opt. Lett.,2010,35(14):2436-2438
    [142] Liu J., Li L. and Pei Q. B., Conjugated Polymer as Host for High EfficiencyBlue and White Electrophosphorescence [J]. Macromolecules,2011,44:2451–2456
    [143] Wang R. J., Liu D., Zhang R., et al. Solution-processable iridium complexesfor efficient orange-red and white organic light-emitting diodes [J]. J. Mater.Chem.,2012,22(4):1411-1417
    [144] Jiang W. Duan L. Qiao J., et al. Tuning of Charge Balance in Bipolar HostMaterials for Highly Efficient Solution-Processed Phosphorescent Devices [J].Org. Electro.,2011,13(12):3146-3149
    [145] Jiang J., Xu Y., Yang W., et al. High-efficiency white-light-emitting devicesfrom a single polymer by mixing singlet and triplet emission [J]. AdvancedMaterials,2006,18:1769-1773
    [146] Zhang K., Chen Z., Yang C. et al. Saturated red-emittingelectrophosphorescent polymers with iridium coordinating to b-diketonate unitsin the main chain [J]. Macromolecular Rapid Communications,2006,27:1926-1931
    [147] Zhang K., Chen Z., Yang C., et al. Stable white electroluminescence fromsingle fluorene-based copolymers: using fluorenone as the green fluorophore andan iridium complex as the red phosphor on the main chain [J]. Journal ofMaterials Chemistry,2008,18:291-298
    [148] Zhang K., Chen Z., Yang C., et al. Iridium complexes embedded into andend-capped onto phosphorescent polymers: optimizing PLED performance andstructure-property relationships [J]. Journal of Materials Chemistry,2008,18:3366-3375
    [149] Kappaun S., Eder S., Sax S., Saf R., Mereiter K. et al. WPLEDs preparedfrom main-chain fluorine-iridium(III) polymers [J]. J. Mater. Chem.,2006,16(45):4389-4392
    [150] Xiong Y., Zhang Y., Zhou J. L., Peng J. B. et al. Polymerwhite-light-emitting diodes with high work function cathode based on a novelphosphorescent chelating copolymer [J]. Chin. Phys. Lett.,2007,24:3547-3550
    [151] Tokito S., Suzuki M., Sato F., Kamachi M. and Shirane K., High-efficiencyphosphorescent polymer light-emitting devices [J]. Org. Electron.,2003,4:105-111
    [152] Zhang Y., Huang F., Jen A. K. Y. and Chi Y., High-efficiency and solutionprocessible multilayer white polymer light-emitting diodes using neutralconjugated surfactant as an electron injection layer [J]. Appl. Phys. Lett.,2008,92:063303
    [153] Shih P. I., Shu C. F., Tung Y. L. and Chi Y., Efficient white-light-emittingdiodes based on poly(N-vinylcarbazole) doped with blue fluorescent and orangephosphorescent materials [J]. Appl. Phys. Lett.,2006.88:251110
    [154] Niu X. D., Ma L., Yao B., Ding J. Q. et al. White polymeric light-emittingdiodes with high color rendering index [J]. Appl. Phys. Lett.,2006,89:213508
    [155] Kim T. H., Lee H. K., Park O O., Chin B. D. et al. White-Light-EmittingDiodes Based on Iridium Complexes via Efficient Energy Transfer from aConjugated Polymer [J]. Adv. Funct. Mater.2006,16(5):611-617
    [156] Lee H. K., Kima T. H., Park J. H. et al. White-light-emitting diodes usingmiscible polymer blend doped with phosphorescent dye [J]. Organic Electronics,2011,12(6):891-896
    [157] Huang S. P., Lu H. H., Chen S. A., Highly efficient white light with sharpred–green–blue emissions from iridium complexes doped carbazole-graftedpoly(para-phenylene)[J]. Synthetic Metals,2009,159:1940–1943
    [158] Attar H. A. A., Monkman A. P., Tavasli M., Bettington S. and Bryce M. R.,White polymeric light-emitting diode based on a fluorene polymer/Ir complexblend system [J]. Appl. Phys. Lett.,2005,86:121101
    [159] Liang B., Xua Y. H., Chen Z., Peng J. B., Cao Y. White polymerphosphorescent light-emitting devices with a new yellow-emitting iridiumcomplex doped into polyfluorene [J]. Synthetic Metals,2009,159:1876–1879
    [160] Niu Q. L., Peng J. B., Zhang Y., Liang B. High efficiency all phosphorescentwhite light-emitting diodes based on conjugated polymer host [J]. SyntheticMetals,2011,16:2149–2153
    [161] Wang H. Y., Qian Q., Lin K. H., Peng B. et al. Stable and Good Color PurityWhite Light-Emitting Devices Based on Random Fluorene/SpirofluoreneCopolymers Doped with Iridium Complex [J]. JOURNAL OF POLYMERSCIENCE: PART B: POLYMER PHYSICS,2012,50:180–188
    [162] Xu Y. H., Zhang X. J., Peng J. B. et al. Efficient polymerwhite-light-emitting diodes with a phosphorescent dopant [J]. Semicond. Sci.Technol.,2006,21:1373–1376
    [163] Gong X., Ma W., Ostrowski J. C., Bazan G. C. et al. WhiteElectrophosphorescence from Semiconducting Polymer Blends [J]. Adv. Mater.,2004,16:615-619
    [164] Gong X., Wang S., Moses D., Bazan G. C., and Heeger A. J. MultilayerPolymer Light-emitting Diodes: White-Light Emission with High Efficiency [J].Adv. Mater.,2005,17:2053-2058
    [165] Xu Y. H., Peng J. B., Jiang J. X., Xu W. et al. Efficient white-light-emittingdiodes based on polymer codoped with two phosphorescent dyes [J]. Appl. Phys.Lett.2005,87:193502.
    [166] Wang B. Z., Liu J. Wu H. B., Zhang B. Wen S. S., Yang W., Highly efficientpolymer phosphorescent light-emitting devices based on a new polyfluorenederivative as host [J]. Chinese Physics B,2011,20(8):088502
    [167] Li A. Y., Li Y. Y., Cai W. Z., Zhou G. J. et al. Realization of highly efficientwhite polymer light-emitting devices via interfacial energy transfer frompoly(N-vinylcarbazole)[J]. Organic Electronics,2010,11(4):529-534
    [168] Wang L., Jiang Y., Luo J., Zhou Y. et al. Highly Efficient and Color-StableDeep-Blue Organic Light-Emitting Diodes Based on a Solution-ProcessibleDendrimer [J]. Adv. Mater.,2009,21:1–5
    [169] Yang X. H., Zheng S. J., Bottger R. et al. Efficient Fluorescent Deep-Blueand Hybrid White Emitting Devices Based on Carbazole/BenzimidazoleCompound [J]. J. Phys. Chem. C,2011,115(29):14347-14352
    [170] Baldo M. A., Thompson M. E., Forrest S. R. High-efficiency fluorescentorganic light-emitting devices using a phosphorescent sensitizer [J]. Nature,2000,403:750-753
    [171] Lei G., Wang L., Qiu Y. Blue phosphorescent dye as sensitizer and emitterfor white organic light-emitting diodes [J]. Appl. Phys. Lett.,2004,85:5403-5405
    [172] Zhang Y., Cheng G., Zhao Y. et al. White organic light-emitting devicesbased on4,4'-bis(2,2'-diphenyl vinyl)-1,1'-biphenyl and phosphorescencesensitized5,6,11,12-tetraphenylnaphthacene [J]. Appl. Phys. Lett.,2005,86:011112-011114
    [173] Hou L. D., Duan L., Qiao J., Zhang D. Q. et al. Efficient solution-processedphosphor-sensitized single-emitting-layer white organic light-emitting devices:fabrication, characteristics, and transient analysis of energy transfer [J]. J. Mater.Chem.,2011,21:5312–5318
    [174] Hamada Y., Sano T., Fujii H. et al. White-Light-Emitting Material forOrganic Electroluminescent Devices [J]. Jpn. J. Appl. Phys. Part II,1996,35:L1339-L1341
    [175] Li J. Y., Liu D., Ma C. et al. White-Light Emission from a Single–Emitting-Component Organic Electroluminescent Device [J]. Adv. Mater.,2004,16:1538-1541
    [176] Tu G. L., Zhou Q. G., Cheng Y. X., Wang L. X. et al. Whiteelectroluminescence from polyfluorene chemically doped with1,8-napthalimidemoieties [J]. Appl. Phys. Lett.,2004,85(12):2172-2174
    [177] Sun M. L., Niu Q. L., Du B., Peng J. B. et al. Fluorene-based single-chaincopolymers for color-stable white light-emitting diodes [J]. Macromol. Chem.Phys.2007,208(9):988-993
    [178] Lee S. K., Jung B. J., Ahn T., Jung Y. K. et al. White electroluminescencefrom a single polyfluorene containing bis-DCM units [J]. J. Polym. Sci. Part A:Polym. Chem.2007,45(15):3380-3390
    [179] Hsieh B. Y. and Chen Y., Polyfluorenes minimally doped with1,4-bis(2-thienyl-2-cyanovinyl) benzene chromophore: Their synthesis,characterization, and application to white-light-emitting materials [J]. J. Polym.Sci. Part A: Polym. Chem.2008,46(11):3703-3713
    [180] Liu J., Gao B. X., Cheng Y. X., Xie Z. Y. et al. Novel whiteelectroluminescent single polymer derived from fluorene and quinacridone [J].Macromolecules,2008,41(4):1162-1167
    [181] Chien C. H., Shih P. I. and Shu C. F. White electroluminescence from asingle polymer: A blue-emitting polyfluorene incorporating orange-emittingbenzoselenadiazole segments on its main chain [J]. J. Polym. Sci. Part A: Polym.Chem.2007,45:2938-2946
    [182] Park M. J., Lee J., Jung I. H., Park J. H. et al. Synthesis, Characterization,and Electroluminescence of Polyfluorene Copolymers with PhenothiazineDerivative; Their Applications to High-Efficiency Red and White PLEDs [J].Macromolecules,2008,41(24):9643-9649
    [183] Tu G. L., Mei C. Y., Zhou Q. G., Cheng Y. X. et al. Highly efficientpure-white-light-emitting diodes from a single polymer: Polyfluorene withnaphthalimide moieties [J]. Adv. Funct. Mater.,2006,16(1):101-106
    [184] Liu J., Zhou Q. G., Cheng Y. X. et al. White electrolumineseence from asingle-polymer system with simultaneous two-color emission: Polyfluorene as theblue host and a2,1,3-benzothiadiazole derivative as the orange dopant on themain chain [J]. Adv. Funct. Mater.,2006,16(7):957-965
    [185] Liu J., Guo X., Bu L. J., Xie Z. Y. et al. White electroluminescence from asingle-polymer system with simultaneous two-color emission: Polyfluorene asblue host and2,1,3-benzothiadiazole derivatives as orange dopants on the sidechain [J]. Adv. Func. Mater.,2007,17(12):1917-1925
    [186] Liu J., Shao S. Y., Chen L., Xie Z. Y., Cheng Y. X. et al. Whiteelectroluminescence from a single polymer system: Improved performance bymeans of enhanced efficiency and red-shifted luminescence of theblue-light-emitting species [J]. Adv. Mater.,2007,19(14):1859-1863
    [187] Liu J., Cheng Y. X., Xie Z. Y., Geng Y. H. et al. White electroluminescencefrom a star-like polymer with an orange emissive core and four blue emissivearms [J]. Adv. Mater.,2008,20(7):1357-1362
    [188] Mei C. Y., Ding J. Q., Yao B., Cheng Y. X. et al. Synthesis andcharacterization of white-light-emitting polyfluorenes containing orangephosphorescent moieties in the side chain [J]. J. Polym. Sci. Part A: Polym.Chem.2007,45(9):1746-1757
    [189] Furuta P. T., Deng L., Garon. S., Thompson M. E. and Fréchet J. M. J.Platinum-functionalized random copolymers for use in solution-processible,efficient, near-white organic light-emitting diodes [J]. J. Am. Che. Soc.,2004,126(47):15388-15389
    [190] Deng L., Furuta P. T., Garon S. et al. Living radical polymerization ofbipolar transport materials for highly efficient light emitting diodes [J]. Chem.Mater.2006,18(2):386-395
    [191] Lee S. K., Hwang D. H., Jung B. J. et al. The fabrication and characterizationof single-component polymeric white-light-emitting diodes [J]. Adv. Funct.Mater.,2005,15(10):1647-1655
    [192] Liu J., Zhou Q. G., Cheng Y. X., Geng Y. H. et al. The first single polymerwith simultaneous blue, green, and red emission for white electroluminescence[J]. Adv. Mater.2005,17(24):2974-2978
    [193] Luo J., Li X., Hou Q., Peng J. B. et al. High-Efficiency White-LightEmission from a Single Copolymer: Fluorescent Blue, Green, and RedChromophores on a Conjugated Polymer Backbone [J]. Adv. Mater.,2007,19(8):1113-1117
    [194] Chuang C. Y., Shih P. I., Chien C. H. et al. Bright-white light-emittingdevices based on a single polymer exhibiting simultaneous blue, green, and redemissions [J]. Macromolecules,2007,40(2):247-252
    [195] Wang F., Wang L., Chen J. W. and Cao Y. Simple silole-containingpolyfluorene for white electroluminescence with simultaneous blue, green, andred emission [J]. Macromol. Rapid Commun.2007,28(20):2012-2018
    [196] Liu J., Xie Z. Y., Cheng Y. X., Geng Y. H. et al. Molecular design on highlyefficient white electroluminescence from a single-polymer system withsimultaneous blue, green, and red emission [J]. Adv. Mater.2007,19(4):531-535
    [197] Liu J., Chen L., Shao S. Y., Xie Z. Y., Cheng Y. X. et al. Three-color whiteelectroluminescence from a single polymer system with blue, green and reddopant units as individual emissive species and polyfluorene as individualpolymer host [J]. Adv. Mater.,2007,19(23):4224-4228
    [198] Zhen H. Y., Xu W., Yang W., Chen Q. L. et al. White-light emission from asingle polymer with singlet and triplet chromophores on the backbone [J].Macromol. Rapid Commun.,2006,27(24):2095-2100
    [199] Wu F. I., Yang X. H., Neher D. et al. Efficient white-electrophosphorescentdevices based on a single polyfluorene copolymer [J]. Adv. Funct. Mater.,2007,17(7):1085-1092
    [200] Chien C. H., Liao S. F., Wu C. H., Shu C. F. et al. Electrophosphorescentpolyfluorenes containing osmium complexes in the conjugated backbone [J].Adv. Funct. Mater.2008,18(9):1430-1439
    [201] Xu Y., Guan R., Jiang X. et al. Molecular Design of EfficientWhite-Light-Emitting Fluorene-Based Copolymers by Mixing Singlet and TripletEmission [J]. J. Polym. Sci. Part A,2008,46:453–463
    [202] Niu X. D., Zhang B. H., Xie Z. Y. et al. Balanced charge transport andenhanced white electroluminescence from a single white emissive polymer viathermal annealing [J]. Appl. Phys. Lett.,2010,96(7):073303
    [203] Gebler D. D.,Wang Y. Z., Blatchford J. W., et al. Exciplex emission inbilayer polymer light-emitting devices [J]. Appl. Phys. Lett.,1997,70:1644-1646
    [204] Mazzeo M., Pisignano D., Sala F. D., et al. Organic single-layer whitelight-emitting diodes by exciplex emission from spin-coated blends ofblue-emitting molecules [J]. Appl. Phys. Lett.,2003,82:334-336
    [205] Sun Q. J., Fan B. H., Tan Z. A., Yang C. H. et al. White light from polymerlight-emitting diodes: Utilization of fluorenone defects and exciplex [J]. Appl.Phys. Lett.,2006,88:163510
    [206] Willianms E. L., Haavisto K., Li J. et al. Excimer-Based WhitePhosphorescent Organic Light Emitting Diodes with Nearly100%InternalQuantum Efficiency [J]. Adv. Mater.,2007,19:197-201
    [207] Kalinowski J., Cocchi M., Virgili D. et al. Mixing of Excimer and ExciplexEmission: A New Way to Improve White Light Emitting OrganicElectrophosphorescent Diodes [J]. Adv. Mater.,2007,19:4000-4004
    [208] Duggal A. R., Shiang J. J., Heller C. M. et al. Organic light-emitting devicesfor illumination quality white light [J]. Appl. Phys. Lett.,2002,80(19):3470-3472
    [209] Krummacher B. C., Choong V. E., Mathai M. K., et al. Highly efficient whiteorganic light-emitting diode [J]. Appl. Phys. Lett.,2006,88(11):113506
    [210] Bera D., Maslov S., Qian L. et al. Optimization of the Yellow PhosphorConcentration and Layer Thickness for Down-Conversion of Blue to White Light[J]. J. Disp. Tech.,2010,6(12):645-651
    [211] Dodabalapur A., Rothberg L.J., Miller T. M. Color variation withelectroluminescent organic semiconductors in multimode resonant cavities [J].Appl. Phys. Lett.,1994,65:2308-2310
    [212] Shiga T., Fujikawa H., Taga Y. Design of multiwavelength resonant cavitiesfor white organic light-emitting diodes [J]. J. Appl. Phys.,2003,93:19-21
    [213] Gu G, Bulovic V., Burrows P. E. et al. Transparent organic light emittingdevices [J]. Appl. Phys. Lett.,1996,68(19):2606-2608
    [214] Liao L. S., Klubek K. P., Tang C. W., High-efficiency tandem organiclight-emitting diodes [J]. Appl. Phys. Lett.,2004,84:167-169
    [215] Matsumoto T., Nakada T., Endo J. Multiphoton organic EL device havingcharge generaton layer [C]. SID2003,2003:979-981
    [216] Lee D. S., Lee J. H., Kim J. J. and Kang J. W. Highly efficient tandem p-i-norganic light-emitting diodes adopting a low temperature evaporated rheniumoxide interconnecting layer [J]. Appl. Phys. Lett.,2008,93(10):103304
    [217] Kanno H., Holmes R. J., Sun Y. et al. White Stacked ElectrophosphorescentOrganic Light-Emitting Devices Employing MoO3as a Charge-Generation Layer[J]. Adv. Mater.,2006,18:339-343
    [218] Kanno H., Giebink N. C., Sun Y. and Forrest S. R. Stacked white organiclight-emitting devices based on a combination of fluorescent and phosphorescentemitters [J]. Appl. Phys. Lett.,2006,89(2):023503
    [219] Lee T. W., Noh T. Y., Choi B. K., Kim M. S. and Shin D. W.,High-efficiency stacked white organic light-emitting diodes [J]. Appl. Phys. Lett.,2008,92(4):043301
    [220] Chen Y. H., Chen J. S., Ma D. G. et al. Tandem white phosphorescentorganic light-emitting diodes based on interface-modified C60/pentacene organicheterojunction as charge generation layer [J]. Appl. Phys. Lett.,2011,99(10):103304
    [221] Chen S. M., Kwok H. S., Alleviate microcavity effects in top-emitting whiteorganic light-emitting diodes for achieving broadband and high color renditionemission spectra [J]. Org. Electro.,2011,12(12):2065-2070
    [222] Gohri V., Hofmann S., Reineke S. et al. White top-emitting organiclight-emitting diodes employing a heterostructure of down-conversion layers [J].Org. Electro.,2011,12(12):2126-2130
    [223] Hofmann S., Thomschke M., Luessem B. et al. Top-emitting organiclight-emitting diodes [J]. Optics Express,2011,19(23): A1250-A1264
    [224] Chen S. F., Deng L. L., Xie J. et al. Recent Developments in Top-EmittingOrganic Light-Emitting Diodes [J]. Adv. Mater.,2010,22(46):5227-5239
    [225] Hung L. S., Chan W. C., Mason M. G. et al. Application of an ultrathinLiF/Al bilayer in organic surface-emitting diodes [J]. Appl. Phys. Lett.,2001,78(4):544-546
    [226] Han S., Feng X., Lu Z. H. et al. Transparent-cathode for top-emissionorganic light-emitting diodes [J]. Appl. Phys. Lett.,2003,82(16):2715-2717
    [227] Liao L. S., Hung L. S., Chan W. C. et al. Ion-beam-induced durface damageson tri-(8-hyroxyquinoine) aluminum [J]. Appl. Phys. Lett.,1999,75(11):1619-1621
    [228] Hung L. S., Chan W. C. Interface engineering in preparation of organicsurface-emitting diodes [J]. Appl. Phys. Lett.,1999,74(21):3209-3211
    [229] Parthasarathy G., Adachi C., Burrows P. E. et al. High-efficiency transparentorganic light-emitting devices [J]. Appl. Phys. Lett.,2000,76(15):2128-2130
    [230] Lee J., Pode R. B., Han J. I. et al. Implanted ZnO thin films: Microstructure,electrical and electronic properties [J]. Appl. Surf. Sci.,2007,253(9):4249-4253
    [231] Zhang T., Zhang L., Ji W. et al. Transparent white organic light-emittingdevices with a LiF/Yb: Ag cathode [J]. Opt. Lett.,2009,34(8):1174-1176
    [232] D'Andrade B. W., Holmes R. J., Forrest S. R. Efficient OrganicElectrophosphorescent White Light-Emitting Device with a Triple DopedEmissive Layer [J]. Adv. Mater.,2004,16:624-628
    [233] Wong W. Y., Ho C. L. Heavy metal organometallic electrophosphors derivedfrom multi-component chromophores [J]. Coordination Chemistry Reviews,2009,253:1709-1758.
    [234] Su S. J., Conmori E., Sasabe H., Kido J. Highly Efficient Organic Blue-andWhite-Light-Emitting Devices Having a Carrier-and Exciton-ConfiningStructure for Reduced Efficiency Roll-Off [J]. Adv. Mater.,2008,20:4189-4194
    [235] Zhou G. J., Wong W. Y., Yao B., Xie Z. Y. et al.Triphenyla-mine-Dendronized Pure Red Iridium Phosphors with Superior OLEDEfficiency/Color Purity Trade-Offs [J]. Angew. Chem. Int. Ed.,2007,46:1149-1151
    [236] D’Andrade B. W., Forrest S. R., White organic light-emitting devices forsolid-state lighting [J]. Adv. Mater.,2004,16:1585-1595
    [237] Kirchmeyer S. and Reuter K. Scientific importance, properties and growingapplications of poly(3,4-ethylenedioxythiphene)[J]. J. Mater. Chem.,2005,15:2077-2088
    [238] Wu H. B., Zou J. H., An D., Liu F. et al. A new approach to efficiencyenhancement of polymer light-emitting diodes by deposition of anode bufferlayers in the presence of additives [J]. Organic Electronics,2009,10:1562-1570
    [239] Wu H. B., Huang F., Peng J. B. and Cao Y. High-efficiency electroninjection cathode of Au for polymer light-emitting devices [J]. Org. Electron.,2005,6:118-128
    [240] Adachi C., Kwong R. C., Djurovich P. et al. Endothermic energy transfer: Amechanism for generating very efficient high-energy phosphorescent emission inorganic materials [J]. Applied Physics Letters,2001,79:2082-2084
    [241] Mathai M. K., Choong V., Choulis A. et al. Highly efficient solutionprocessed blue organic electrophosphorescence with14lm/W luminous efficacy[J]. Appl. Phys. Lett.,2006,88:243512
    [242] Zhang X., Jiang C., Mo Y. et al. High-efficiency blue light-emittingelectrophosphorescent device with conjugated polymers as the host [J]. Appl.Phys. Lett.,2006,88:051116
    [243] Kim T., Yoo D., Park J. et al. Enhanced electrophosphorescence via highlyefficient energy transfer from conjugated polymer [J]. Appl. Phys. Lett.,2005,86:171198
    [244] Jiang C. Y., Yang W., Peng J. B. et al. High-efficiency, saturated red-phosphorescent polymer light-emitting diodes based on conjugated andnon-conjugated polymers doped with an Ir complex [J]. Adv. Mater.,2004,16(6):537-541
    [245] Chen Z., Jiang C. Y., Niu Q. L. et al. Enhanced greenelectrophosphorescence by using polyfluorene host via interfacial energy transferfrom polyvinylcarbazole [J]. Organic Electronics,2008,9:1002–10091
    [246] Gong X., Robinson M. R., Ostrowski J. C. et al. High-efficiencypolymer-based electrophosphorescent devices [J]. Adv. Mater.,2002,14:581-585
    [247] Li Y. Y., Wu H. B., Zou J. H., Ying L. et al. Enhancements on Efficiencyand Spectral Stability of Blue Light-Emitters via Introducing Dibenzothiopene-S, S-dioxide Isomers into Polyfluorene Backbone [J]. Organic Electronics,2009,10(5):901-909
    [248] Liu J., Hu S. J., Zhao W., Zou Q. H. et al. Novel Spectrally Stable SaturatedBlue-Light-Emitting Poly[(fluorene)-co-(dioctyldibenzothiophene-S,S-dioxide)]s[J]. Macromol. Rapid Commun.,2010,31:496–501
    [249] Cadby A. J., Lane P. A., Mellor H. et al. Film Morphology and Photophysicsof Polyfluorene [J]. Phys. Rev. B,2000,62:15604
    [250] Lu H. H., Liu C. Y., Chang C. H. et al. Self-Dopant Formation inPoly(9,9-di-n-octylfluorene) Via a Dipping Method for Efficient and StablePure-Blue Electroluminescence [J]. Adv. Mater.,2007,19:2574-2578
    [251] Hung L. S., Tang C. W., Mason M. G. Enhanced electron injection in organicelectroluminescence devices using an Al/LiF electrode [J]. Appl. Phys. Lett.,1997,70:152-154
    [252] Hung L. S., and Tang C. W., Bilayer eletron-injeting electrode for use in anelectroluminescent device [P]. US patent,1998.5:776
    [253] Hung L. S., et al, Electron-injecting layer providing a modified interfacebetween an organic light-emitting structure and a cathode buffer layer [P]. USpatent,2001,6:172
    [254] Xu Y. H., Liang B., Peng J. B. et al. Efficient red phosphorescence polymerlight-emitting diodes with dual function polymer [J]. Organic Electronics,2007,8:535–539
    [255] Chen Z., Niu Q. L., Zhang Y. et al. Efficient Green Electrophosphorescencewith Al Cathode Using an Effective Electron-Injecting Polymer As the Host [J].ACS Applied materials&Interfaces,2009,1(12):2785–2788
    [256] Lane P. A., Palilis L. C., O’Brien D. F. et al. Origin ofelectrophosphorescence from a doped polymer light emitting diode [J]. Phys.Rev. B,2001,63:235206
    [257] Kido J., Matsumoto T., Nakada T. High Efficiency Organic EL Deviceshaving Charging Generation Layer [C]. SID2003,2003:372-375
    [258] Liao L. S., Klubek K. P. Power efficiency improvement in a tandem organiclight emitting diode [J]. Appl. Phys. Lett.,2008,92:223311.
    [259] Gu G., Khalfin V. and Forrest S. R. High-efficiency, low-drive-voltage,semitransparent stacked organic light-emitting device. Appl. Phys. Lett.,1998,73(17):2399-2401
    [260] Zheng T., Choy W. C. H. An effective intermediate Al/Au electrode forstacked color-tunable organic light emitting devices [J]. APPLIED PHYSICSA-MATERIALS SCIENCE&PROCESSING.2008,91:501-506
    [261] Kwok H. S., Sun J. X., Zhu X. L. et al. Bright and efficient white stackedorganic light-emitting diodes [J]. Org. Electron.,2007,8(4):305-310
    [262] Chen C. W. Effective connecting architecture for tandem organiclight-emitting devices [J]. Appl. Phys. Lett.,2005,87:241121
    [263] Cho T. Y., Lin C. L., and Wu C. C. Microcavity two-unit tandem organiclight-emitting devices having a high efficiency [J]. Appl. Phys. Lett.,2006,88:111106
    [264] Ho M. H. and Chen T. M. Highly efficient p-i-n white organic light emittingdevices with tandem structure [J]. Appl. Phys. Lett.,2007,91:233507
    [265] Qi X. F., Li N., and Forrest S. R. Analysis of metal-oxide-based chargegeneration layers used in stacked organic light-emitting diodes [J]. J. Appl. Phys.,2010,107:014514
    [266] Bao Q. Y., Yang J. P., Li Y. Q. and Tang J. X. Electronic structures ofMoO3-based charge generation layer for tandem organic light-emitting diodes [J].Appl. Phys. Lett.,2010,97:063303
    [267] Guo F. W. and Ma D. G. White organic light-emitting diodes based ontandem structures [J]. Appl. Phys. Lett.,2005,87:173510
    [268] Zhang H. M., Dai Y. F., and Ma D. G. High efficiency tandem organiclight-emitting devices with Al/WO3/Au interconnecting layer [J]. Appl. Phys.Lett.,2007,91:123504
    [269] Huang F., Wu H. B. and Cao Y. Water/alcohol soluble conjugated polymersas highly efficient electron transporting/injection layer in optoelectronic devices[J]. Chem. Soc. Rev.,2010,39:2500–2521
    [270] Huang F., Hou L. T., Wu H. B. et al. High-efficiency, environment-friendlyelectroluminescent polymers with stable high work function metal as a cathode:Green-and yellow-emitting conjugated polyfluorene polyelectrolytes and theirneutral precursors [J]. J. Am. Chem. Soc.,2004,126(31):9845-9853

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700