微小卫星低可观测关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以低可观测微小卫星设计需求为依据,进行低可观测关键技术的研究。与常规飞行器不同,微小卫星低可观测设计具备以下特征:1)探测设备均分布于卫星下方,主要威胁类型为雷达;2)微小卫星轨道机动能力有限,在有限能源下难以通过变轨实现威胁规避;3)太空环境背景简单,不存在可供卫星隐藏的遮挡体;4)强烈的太空粒子辐照、有限的可用资源及严格受限的发射重量、体积,限制了吸波材料、频率选择表面及主动电子对抗设备的有效使用。
     针对上述特征,本文重点进行了微小卫星低RCS外形设计及低可观测外形飞行姿态规划方法的研究。全文可概括为以下几个部分:
     1、在无法获取国外研究详情而国内尚无公开报道的情况下,通过对国外专利及相关技术的跟踪,结合威胁设备发展情况、相似技术研究情况及我国现有低可观测微小卫星研究进展,提出了以低RCS外形设计为基础、低可观测外形飞行姿态规划为辅助的研究方法,在目标特性分析理论、特征控制技术及优化方法研究的基础上,保证了研究成果的先进性和实用性。
     2、针对已有飞行器低可观测性能评估模型精度有限、易受先验知识影响的特点,提出了一种基于卫星轨道根数的评估模型。模型将威胁设备分布概率与威胁水平相结合,根据卫星的轨道、散射特性及威胁设备的分布、工作特征,可精确计算出不同方位的威胁性分布情况,实现有效的卫星低可观测性能评估。同时,以设计模型为依据,在对不同轨道威胁性分布进行大量计算的基础上,获得了微小卫星低可观测轨道的优化选择策略。
     3、为降低微小卫星低可观测设计对星体结构的影响,提出了一种独立于卫星热控与力学结构的微小卫星低RCS外形,避免了对光学窗口、半导体太阳能电池板等复杂结构的RCS减缩处理,在降低卫星设计难度的同时,获取了更好的低可观测性能。在低RCS外形优化设计中,提出了一种卫星低RCS外形快速优化方法,通过关键参数选择及低可观测性能评估函数设计,将外形优化转换为评估函数最小值求解问题,结合基于数据拟合的快速预估方法,实现了设计外形的快速优化处理。
     4、针对低可观测外形飞行姿态规划需求,提出了一种适用于地面站、具备全局最优解搜索能力的静环境规划算法。建立了适用于卫星外形姿态规划的数字空间图模型,提出了基于“锥形”威胁均值计算空间及局部最优姿态的规划空间压缩方法,制定了与姿控复杂度约束无关的规划空间压缩策略,结合专门设计的启发预估代价快速计算方法、OPEN/CLOSE表结构及相应操作策略,解决了已有算法计算量大、难以应用于工程实践的问题,实现了不同约束条件下稳定、有效的规划。
     5、为满足计算资源有限的微小卫星自主规划需求,设计了一种基于局部最优的动环境规划模型,提出了一种基于粒子群优化的动环境规划算法。制定了基于规划时间分段的规划搜索策略,显著降低了规划算法的搜索难度,并提升了威胁代价评估的有效性;引入粒子群优化,设计了流程简单、易于执行、存储空间需求低、规划计算量小的动环境规划算法,将规划实时性提高了近4个数量级。同时,设计算法的规划计算复杂度与规划空间维度、复杂性无关,并具备了同时降低雷达、激光探测设备及高能激光武器威胁性的能力。
     6、以基于局部最优的动环境规划模型为基础,提出了一种基于改进遗传算法的卫星外形姿态规划算法。针对规划适应度函数计算复杂度较高的特点,设计了每轮迭代只需进行1次适应度计算的自适应交换、变异策略;定义了基于实数编码的个体基因结构,并将粒子群优化中粒子追踪的思想引入遗传算法的变异操作,提升了算法的搜索效率,降低了算法执行的复杂度。与相同计算量的典型自适应遗传算法相比,在迭代步长有限的情况下,设计算法收敛速度优势明显,满足了计算资源有限的微小卫星自主规划需求。
     7、结合静环境规划算法及动环境规划算法的设计特点,以无需规划空间计算的全局最优解模型为基础,提出了一种具备全局近似最优解快速搜索能力的卫星外形姿态规划算法。建立了基于规划姿态性能评估函数的规划模型,定义了扩展链表式个体结构,设计了基于个体节点信息的适应度快速计算方法,制定了具备威胁分布预感知能力的初始种群生成方法、保留优势无效个体的进化搜索策略、基于进化收敛情况的自适应规划精度及计算量控制策略,在确保全局最优解搜寻性能的基础上,充分降低了规划算法的计算复杂度。仿真结果表明,在计算资源有限的条件下,设计算法的低可观测规划性能优于已有规划算法。
The key technologies on micro-satellite low observability are explored, to meet low observablemicro-satellite design needs. Compared to aerocraft low observable design, micro-satellite lowobservable design has some special characteristics:1) Detecting systems are distributed under themicro-satellite, and radar is the major threat.2) Most micro-satellites have limited orbitmaneuverability. It’s hard for them to avoid threat by orbit transfer.3) The out space is clear, and thereis no object to shield the micro-satellite.4) Considering micro-satellite’s limited energy, weight,cubage and strong space particle irradiation, RAM, FSS and active electronic countermeasure areunsuitable for micro-satellite.
     According to the characteristics above, micro-satellite low RCS shape design and low observableshape flight attitude planning are studied in this paper, and the following subjects are presented:
     1) Based on relative patents, similar technologies, threat development, also, considering lowobservable micro-satellite research and manufacture ability today, a research plan is proposed, whichis aimed to enhance the on-orbit micro-satellite’s operational effectiveness and survivability by lowRCS shape design and low observable shape flight attitude planning. Plenty of existed similartechnologies and theories make the plan feasible and meaningful.
     2) An orbit-parameter-based threat evaluation model is proposed, to improve the precision andavoid the subjective analysis in existed models. According to micro-satellite orbit, RCS, LCS andthreat distribution, both threat existing probabilities and threat level in different directions could becalculated effectively in the model, which makes the evaluation result effective. Based on theorbit-parameter-based model, different micro-satellite orbits are calculated. According to the statisticalresults, a low observable micro-satellite orbit selection strategy is presented.
     3) A micro-satellite low RCS shape is proposed. The shape is separated from thermal andmechanics shape. Compared to the existed ones, the shape is simpler in structure and better inperformance. At the same time, a micro-satellite low observable shape optimization method isproposed. The optimization method includes three steps, which are key parameter selection, lowobservable performance evaluation and evaluation result fitting. Based on the optimization method,the low RCS shape optimization design is carried out quickly and efficiently.
     4) A static-environment shape attitude planning algorithm is proposed for micro-satellite earthstation, to find the global optimal flight attitude. A digital space model is established. Special planningspace compression methods are presented. Heuristic estimating function and refined OPEN/CLOSE tables are defined. Compared to the existed global optimal search algorithms, the static-environmentalgorithm has limited computational complexity, and is able to accomplish shape attitude planningunder different constrains stably and effectively.
     5) A dynamic-environment shape attitude planning algorithm based on particle swarm optimization(PSO) is proposed for micro-satellite application. The algorithm divides planning time into severalsections and processes the planning in each section separated. Taking advantage of the search strategy,the PSO-based dynamic-environment planning algorithm has very limited computational complexity,and the real-time performance is enhanced by thousands of times. In addition, the algorithm’scomputational complexity is independent of the planning space dimension and complexity, and thealgorithm is able to reduce the threat level of radar, laser detecting system and laser weapon at thesame time.
     6) Based on planning time dividing model, a dynamic-environment shape attitude planningalgorithm based on refined adaptive genetic algorithm (AGA) is proposed. A novel search strategy ispresented, special individual structure is defined, and refined crossover and mutation strategies aredesigned, to improve the algorithm’s search ability and reduce the algorithm’s computationalcomplexity. Compared to the classic AGA, within limited computational load, the algorithm has fasterconvergence speed, and meet the needs of micro-satellite with limited signal processing ability.
     7) Combined the static-environment planning algorithm’s search ability and dynamic-environmentplanning algorithm’s low computational complexity, a novel global planning algorithm is proposedfor shape attitude planning. A planning model based on threat evaluation function is established,extended link-list individual structure is defined, a simple fitness calculation method is introduced,and special individual production, reproduction, crossover and mutation strategies are presented, toenhance the global optimal flight atittude search ability and reduce the algorithm’s computationalcomplexity. Accoding to the simulation results, within limited computational load, the algorithmworks better than existed static-environment planning algorithms and dynamic-environment planningalgorithms in low observable performance.
引文
[1] William C B. Radar camouflage arrangement [P]. US:3233238,1962-6-5
    [2] William P M, Louis M. Self erectable structure [P]. US:4044358,1967-9-25
    [3] Theodore H L, William P M. Vehicle shield [P]. US:4947174,1969-2-24
    [4] Burton B, Martin R K, Lyle A N. Deployable shield [P]. US:4314682,1968-2-24
    [5] William C B, Donald M S. Crossed skirt antiradar screen structure for space vehicles [P]. US:6107952,1971-1-4
    [6] Morton T E, Karl H M, Richard M H. Satellite signature suppression shield [P]. US:5345238,1990-5-14
    [7] Robert G R, Allan C G. Conformal, low RCS, wideband, phased array antenna for satellitecommunications applications [P]. US:6300918,1999-12-22
    [8] Juan F L, Theofanis M. Bistatic and multistatic system for space situational awareness [P]. US:7119732,2005-12-1
    [9] Allen T. A Stealth Satellite Sourcebook [EL/OB].2007-9-1. http://www.fas.org/spp/military/program/track/stealth.pdf
    [10] US Navy. The naval space surveillance system [EB/OL].2002-9-19. http://www.fas.org/spp/military/program/track/nsss_fs_2002-09.pdf
    [11] Jayant S, Grant S, Curt B, et al. Toward Operational Space-Based Space Surveillance [J].Lincoln Laboratory Journal,2002,13(2):309-334
    [12]曹秀云.美国空间监视系统的新发展[J].中国航天,2010,(4):32-35
    [13]杨继何,许抗,王亚飞.美国空间监视能力分析[J].外军信息载,2009,(4):35-38
    [14]骆文辉,杨建军.国外空间监视系统的现状与发展[J].飞航导弹,2008,(4):25-31
    [15]卢小飞,曾文龙,黄振中.欧洲太空监视系统及其发展[J].外军信息载,2008,(5):39-41
    [16]程勇,郭延龙.反卫星激光武器发展现状与动态分析[J].地面防空武器,2004,4(35):51-54
    [17]反卫星武器[EL/OB]. http://baike.baidu.com/view/424739.htm
    [18]黄汉文.卫星隐身概念研究[J].航天电子对抗,2010,26(6):22-24,34
    [19] David A L. Introduction to RF stealth [M]. US: SciTech Publishing,2004
    [20]克拉特.雷达散射截面--预估、测量和减缩[M].北京:电子工业出版社,1985
    [21]飞机外形隐身设计.[EL/OB]. http://wenku.baidu.com/view/ef20da84b9d528ea81c7796e.html
    [22]王略,章仲安.低RCS飞行器外形设计实践[J].航空学报,1995,16(6):692-701
    [23]万顺生,罗屹杰,周一帆.一种翼身融合体飞行器外形的RCS计算与实验[J].南京航空航天大学学报,2005,37(5):485-487
    [24] Robert W W, George R C. Aircraft of low observability [P]. US:4019699,1975-6-21
    [25] Richard S, Denys D O, Kenneth E W. Vehicle [P]. US:5250950,1979-2-13
    [26] Brown A C. Stealth design of the F-117A[C]. Proceedings of the36th Annual TechnicalConference, Soc of Vacuum Coaters,1993:3-9
    [27] Piccirillo, Albert C. Origins of the F-22Raptor [C]. Proceedings of the1998World AviationConference, AIAA and SAE,1998:28-30
    [28] Paul B. Genesis of the F-35Joint Strike Fighter [J]. Journal of Aircraft,2009,46(6):1825-1836
    [29] Ma D L, Huang P L. low RCS Modified Design of external carriage and analysis of its scatteringcharacteristic[J]. Chinese Journey of Aeronautics,2000,13(3):152-156
    [30]黄沛霖,马东立,武哲.低RCS选型挂架参数选择研究[J].北京航空航天大学学报,2001,27(3):293-296
    [31]张云飞,张考.常规外挂物散射特性及RCS减缩设计[J].飞机设计,1999,(4):1-5,14
    [32]李启鹏,王和平.腹部进气道电磁散射特性及RCS减缩方法研究[J].航空计算技术,2009,39(6):67-70
    [33]郭景丽.飞行器上铆钉和螺钉的散射研究[D].西安电子科技大学,2002
    [34]高强,闫敦豹,袁乃昌等.双频双极化频率选择表面[J].电子与信息学报,2007,29(2):506-508
    [35]马金平,陈国瑞,李春晖.“十”字环形缝隙阵频率选择表面的频率特性研究[J].电子学报,1997,25(4):125-127
    [36]赵明桂,史为民,刘立国.频率选择表面机载雷达天线的研究[J].航空学报,1993,14(12):B604-B608
    [37]高文坤,刘鹏,孙建勋.导弹隐身外形布局设计方法初步研究[J].战术导弹技术,2009,(4):7-12
    [38]王略,章仲安.低RCS无人驾驶飞行器的外形设计与实验研究[J].南京航空航天大学学报,1994,26(1):17-25
    [39]白振东,刘虎,武哲.低可探测机身参数化造型与优化[J].北京航空航天大学学报,2007,33(12):1391-1394
    [40]胡添元,余庆熊.基于二级优化的低RCS外形设计方法[J].飞机设计,2007,27(1):27-31
    [41]李启鹏,王和平,孙珍等.鸭翼电磁散射特性分析与RCS减缩方法研究,航空计算技术,2010,40(5):48-51.
    [42]宋绪宝,沈喆,张崇学.常规飞航导弹低RCS外形方案设计方法研究[J].战术导弹技术,1994,(3):1-11
    [43]胡添元,余雄庆.目标函数的选择对雷达隐身优化设计的影响[J].南京航空航天大学学报,2008,40(4):447-450
    [44]余雄庆,杨景佐.关于低RCS目标外形优化中目标函数的确定[J].宇航学报,1997,18(1):108-111
    [45]李莹,黄沛霖,武哲.隐身飞行器突防仿真的特征信号新建模方法.北京航空航天大学学报,2009,35(1):40-43
    [46]李莹,黄沛霖,武哲.基于不同角域RCS均值的雷达探测模型,北京航空航天大学学报,2008,34(6):627-629
    [47]颜丙新,黄俊.基于模糊层次法的战斗机隐身性能评估[J].电光与控制,2007,4(14):77-81
    [48] John P. Overview of Low Observable Technology and Its Effects on Combat AircraftSurvivability [J]. Journal of Aircraft,1999,36(2):380-388
    [49] John P. Measuring Low Observable Technology's Effects on Combat Aircraft Survivability [C].Proceedings of the1997World Aviation Congress, AIAA and SAE,1997:13-16
    [50] Jeffrey M H. Air Vehicle Path Planning [M].Air Fore Institute of Technology,2001
    [51]郑昌文,严平,丁明跃等.飞行器航迹规划研究现状与趋势[J].宇航学报,2007,28(6):1441-1446
    [52]杜萍,杨春.飞行器航迹规划算法综述[J].飞行力学,2005,23(2):10-14
    [53]闵昌万,袁建平.军用飞行器航迹规划综述[J].飞行力学,1998,16(04):14-19
    [54] Cheng H L. Automatic Guidance and Control for Helicopter Obstacle avoidance [J]. Journal ofGuidance, Control and Dynamics,1994,17(6):1252-1259
    [55] Amalia F F, Panos E T. Predictive Autonomous Robot Navigation [C]. Proceedings of the2002Intenational Conference on Intelligent Robots and Systems. IEEE,2002
    [56] Cassandra A R, Kaelbling L P, Kurien J A. Acting under Uncertainty: Discrete Bayesian Modelsfor Mobile-robot Navigation [C]. Proceedings of the1996Intenational Conference on IntelligentRobots and Systems. IEEE,1996
    [57] Thrun S. Probabilistic Algorithms and the Interactive Musuem Tour-guide Robot Minerva [J].Intenational Journey of Robots Research.2000,19(11):972-999
    [58] Yung N H C, Ye C. An Intelligent Mobile Vehicle Navigator Based on Fuzzy Logic andReinforcement learning. IEEE Transactions on Systems, Man and Cybernetics,1999,29(2):314-321
    [59] Szczerba R J. Threat Netting for Real-time, Intelligent Route Planners [C].Proceedings of theInformation, Decision and Control Symposium. IEEE,1999:377-382
    [60] Martin N. Multistage Trajectory Optimization with Radar Range Constraints, Journal ofAeronautical and Vehicle Engineering,2005,42(4):849-857
    [61] Martin N. Radar Cross Section Constraints in Flight-Path Optimization [J]. Journal of Aircraft,2003,40(2):412-415
    [62]史和生,李丹,赵宗贵等.电子干扰对低可观测飞行器飞行路径规划的影响[J].南京航空航天大学学报,2007,39(2):154-158
    [63] Inanc T, Muezzinoglu M, Misovec K, et al. Framework for low-observable trajectory generationin presence of multiple radars [J]. Journal of Guidance, Control, and Dynamics,2008,31(6):1740-1749
    [64] Misovee K, Inanc T, Wohletz J, et al. Low-observable Nonlinear Trajectory Generation forUnmanned Air Vehicles [C]. Proceedings of the IEEE Conference on Decision and Control.IEEE,2003:3103-3110
    [65] Moore, Frank W. Radar Cross Section Reduction via Route Planning and Intelligent Control [J].IEEE Transactions on Control Systems Technology,2002,10(5):696-700
    [66]丁晓东,刘毅,李为民.基于动态RCS的无人机航迹实时规划方法研究[J].系统工程与电子技术,2008,30(5):868-871
    [67]郭琳,周德云,汪凌霄.低可探测性飞机威胁建模及航迹规划仿真研究[J].计算机仿真,2009,26(2):89-92
    [68] Rathinam S, Sengupta R A. A Safe Flight Algorithm for Unmanned Aerial Vehicles [C].Proceedings of the IEEE Aerospace Conf erence, IEEE,2004:3025-3030
    [69] Bead R W, Timothy W M, Goodrich M A, et al. Coordinatedtarget Assignment and Intercept forUnmanned Air Vehicles [J].IEEE Transactions on Robotics and Automation,2002,18(6):911-922
    [70] Zheng C, Ding M, Zhou C, et al. Coevolving and Cooperating Path Planner for MultipleUnmanned Air Vehicles [J]..Engineering Application of Artificial Intelligence,2004,17(8):887-896
    [71] Chandler P, Rasumussen S, Pachter M. UAV Cooperative Path Planning [C]. Proceedings ofAIAA Guidance, Navigation and Control Conference, AIAA,2000
    [72] Pritesh N, Duncan C, Rodney W. Computationally Adaptive Multi-Objective TrajectoryOptimization for UAS with Variable Planning Deadlines [C]. IEEE,2009
    [73] Krozel, Jimmy, Dominick, et al. Navigation Path Planning for Autonomous Aircraft: VoronoiDiagram Approach [J]. Journal of Guidance, Control and Dynamics,1990,13(3):1152-1154
    [74] McLain T, Beard R. Trajectory Planning for Coordinated Rendezvous of Unmanned Air Vehicles
    [C]. Proceedings of the AIAA Guidance,Navigation,and Control Conference, AIAA,2000
    [75]刘振,史建国,高晓光. Voronoi图在航迹规划中的应用[J].航空学报,2008,29(z):15-19
    [76]赵文婷,彭俊毅.基于Voronoi图的无人机航迹规划[J].系统仿真学报,2006,18(z2):159-162,165
    [77] Chiou Y C, Kou C Y. Geometric Approach to Three Dimensional Missile Guidance Problem [J].Journal of Guidance, Control and Dynamics,1998,21(2):199-205
    [78]周其忠,闫利,苏康等.基于矢量数据的三维航迹规划方法[J].宇航学报,2006,27(4):704-708
    [79]李善寿,方潜生,肖本贤.全局路径规划中基于改进可视图的环境建模[J].华东交通大学学报,2008,25(6):73-77
    [80] Zheng C W, Li L, Xu F J, et al. Evolutionary route planner for unmanned air vehicles [J]. IEEETransactions on Robotics,2005,21(4):609-620.
    [81] Yan P, Ding M Y, Zheng C W. Coordinated Route Planning via Nash Equilibrium andEvolutionary Computation [J]. Chinese Journal of Aeronautics,2006,19(1):18-23.
    [82] Nikolos I K, Valavanis K P. Evolutionary Algorithm Based Offline/Online Path Planner for UAVNavigation. IEEE Transactions on SMAC-Part B: Cybernetics [J],2003,33(6):898-912
    [83]郑昌文,李磊,徐帆江等.基于进化计算的无人飞行器多航迹规划[J].宇航学报,2005,26(2):227-233
    [84]李士勇,杨丹.基于改进蚁群算法的巡航导弹航迹规划[J].宇航学报,2007,28(4):903-907
    [85]李栋,曹义华,苏媛等.基于改进蚁群算法的低空突防航迹规划[J].北京航空航天大学学报,2006,32(3):258-262
    [86] Dijkstra E W. A Note on Two Problems in Connexion with Graphs [J]. Numerische Mathematik,1959,(1):269-271
    [87] Hart P, Nilsson N, Raphael B. A Formal Basis for the Heuristic Determination of Minimum CostPaths. IEEE Transactions of Systems Science and Cybernetics,1968,(2):100-107
    [88] Robert J S, Peggy G, Ira S G, et al. Robust algorithm for real-time route planning [J]. IEEETransactions on Aerospace and Electronic Systems,2000,36(3):869-878
    [89]李春华,郑昌文,周成平等.一种三维航迹快速搜索方法[J].宇航学报,2002,23(03):13-17
    [90] Tulum K, Durak U, Kemal S I. Situation aware UAV mission route planning [C]. IEEEAerospace Conference Proceedings. IEEE Computer Society Press,2009
    [91]孟中杰,黄攀峰,闫杰.基于改进稀疏A*算法的高超声速飞行器航迹规划技术[J].西北工业大学学报,2010,28(2):182-186
    [92]严江江,丁明跃,周成平等.一种基于可行优先的三维航迹规划方法[J].宇航学报,2009,30(1):139-144
    [93] Ahrabian H, Nowzari D A. On the Generation of Binary Trees in A*[J]. International Journey ofComputer Mathematics.1999,71:1-7
    [94]任波,周焘,于雷.基于改进A*算法的飞行器三维航迹规划算法.系统工程与电子技术,2008,30(2):324-326
    [95] Ahrabian H, Nowzari D A. Parallel generation of binary trees in A*[J]. Parallel Computing,2005,31:948-955
    [96]许立军,鲜勇,杨其等.基于A*算法的多线程并行航迹规划方法研究[J].电光与控制,2009,16(9):32-36,46
    [97]周成平,陈前洋,秦筱楲.基于稀疏A*算法的三维航迹并行规划算法.华中科技大学学报,2005,33(5):42-45
    [98] John H. Adaptation in Natural and Artificial Systems [M]. University of Michigan Press,1975
    [99]戴晓晖,李敏强,寇纪淞.遗传算法的性能分析研究[J].软件学报,2001,12(05):742-750
    [100]朱剑英.智能系统非经典数学方法[M].武汉:华中科技大学出版社,2001
    [101] Dragan C, Parmee C. Preferences and Their Application in Evolutionary MultiobjectiveOptimization [C]. IEEE Transactions on Evolutionary Computation,2002,6(1):42-57
    [102] Schultz A C. Using a Genetic Algorithm to Learn Strategies for Collision Avoidance and LocalNavigation. ADA294053,1990
    [103] Mahmoud T. Genetic Path Planning with Fuzzy Logic Adaptation for Rovers Traversing RoughTerrain [M]. Springer-Verlag,2007:215-218
    [104] Reid A L, Meir P, Mark J M. Path Planning by Unmanned Air Vehicles for Engaging anIntergrated Radar Network [C]. Proceedings of the AIAA Guidance, Navigation, and ControlConference and Exhibit. AIAA,2005
    [105] Xu Z J, Tang S. UAV Path Planning Based on Adaptive Genetic Algorithm [J]. Journal ofSystem Simulation,2008,20(19):5411-5418
    [106]熊建国,李杰,翟崎.基于自适应遗传算法的无人机航路规划[J].河南大学学报,2007,37(6):635-638
    [107] Srinivas M, Patnaik L M. Adaptive Probabilities of Crossover and Mutation in GeneticAlgorithm. IEEE Transactions on Systems, Man and Cybernetics,1994,24(4):656-667
    [108] Arabas J, Michalewicz Z, Mulawka J. A Genetic Algorithm with Varying Population Size [C].Proceedings of the IEEE World Congress on Computational Intelligence. IEEE,1994:73-78
    [109] Kuo T, Hwang S Y. A Genetic Algorithm with Disruptive Selection. IEEE Transactions onSystems, Man and Cybernetics, Part B:Cybernetics,1996,26(2):299-307
    [110] Arnold D V, Hans-Georg B A. A General Noise Model and Its effects on Evolution StrategyPerformance [C]. IEEE Transactions on Evolutionary Computation.2006,10(4):380–391
    [111] Galantucci L M, Percoco G, Spina R. Assembly and Disassembly by Using Fuzzy Logic&Genetic Algorithms [J]. International Journal of Advanced Robotic Systems,2004,1(2):67-74
    [112]陈世哲,刘国栋,浦欣等.基于优势遗传的自适应遗传算法,哈尔滨工业大学学报,2007,39(7):1021-1024
    [113]徐正军,唐硕.遗传蚁群融合算法求解航迹规划问题对比研究[J].计算机仿真,2008,(4):65-68,83
    [114]司应涛,朱庆保,国海涛.基于正反馈遗传算法的机器人全局路径规划[J].计算机工程与应用,2008,44(1):54-56,62
    [115] Juris V. Parallel Evolutionary Algorithms for UAV Path Planning [C]. Proceedings of the AIAA1st Intelligent Systems Technical Conference, AIAA,2004
    [116] Kennedy J, Eberhart R. Particle Swarm Optimization [C]. Proceedings of the IEEEInternational Conference on Neural Networks, IEEE,1995:1942-1948
    [117] Eberhart R, Kennedy J. A New Optimizer Using Swarm Optimization [C]. Proceedings of the6th International Symposium on Micro Machine and Human Science, IEEE,1995:39-43
    [118] Eberhart R C, Shi Y. Comparison between genetic algorithms and particle swarm optimization.Proceedings of the7th International Conference on Evolutionary, Springer-Verlag,1998
    [119]唐强,王建元,朱志强.基于粒子群优化的三维突防航迹规划仿真研究[J].系统仿真学报,2004,16(9):2033-2036
    [120]魏桥,赵英俊,俞群等.改进粒子群算法的巡航导弹路径规划[J].电光与控,2008,15(3):49-52
    [121] Shi Y, Eberhart R C. Particle swarm optimization: developments, applications and resources [C].Proceedings of the Conference on Evolutionary Computation, IEEE,2001
    [122] Shi Y, Eberhart R C. A modified particle swarm optimizer [C]. Proceedings of the IEEE AnnualConference on Evolutionary Computation, IEEE,1998:69-73
    [123] Clerc M. The Swarm and the Queen: Towards a Deterministic and Adaptive Particle SwarmOptimization [C]. Proceedings of Congress on Evolutionary Computation. IEEE,1999:1951-1957
    [124]倪庆剑,张志政,王蓁蓁等.一种基于可变多簇结构的动态概率粒子群优化算法[J].软件学报,2009,20(2):339-349
    [125]张长胜,孙吉贵,欧阳丹彤.一种自适应离散粒子群算法及其应用研究[J].电子学报,2009,37(2):299-304
    [126] Pant M, Radha T, Singh V P. A simple Diversity Guided Particle Swarm Optimization [C]. TheIEEE Congress on Evolutionary Computation. IEEE,2007:3294-3299
    [127] Christopher K M, Kevin D S. Adaptive Diversity in PSO [C]. Proceedings of the8th AnnualConference on Geneticand Evolutionary Computation, IEEE,2006:59-66
    [128]巩固,赵向军,郝国生.优化搜索空间划分的遗传算法的研究与实现[J].河南大学学报(自然科学版),2009,39(6):631-636
    [129] Oussama K. Real-time Obstacle Avoidance for Manipulators and Mobile Robots [J]. TheInternational Journey of Robotics Research,1986,5(1):90-98
    [130]郑昌文,丁明跃,关世义等.一种针对运动目标的飞行器航迹搜索算法[J].宇航学报,2003,24(5):444-450
    [131]谭皓,王金岩,沈春林.巡航导弹中制导阶段航迹规划算法[J].南京航空航天大学学报,2005,37(1):1-5
    [132]沈海冰,黄攀峰,孟中杰等.高超声速飞行器实时航迹规划研究[J],系统仿真学报,2010,22(5):1301-1308
    [133]李士波,孙秀霞,王栋等.无人机动态环境实时航迹规划[J].系统工程与电子技术,2007,29(3):399-401
    [134] Koeng S, Likhchev M, Furcy D. Lifelong Planning A*[J]. Artificial Intelligence,2004,155(3):93-146
    [135]鲍帆,姜长生.基于LPA*算法的无人机三维航迹快速规划研究,电光与控制,2008,15(12):10-13,41
    [136] Anthony S. Optimal and Efficient Path Planning for Partially-Known Environments [C].Proceedings of the International Conference on Robotics and Automation, IEEE,1994:3310–3317
    [137] Anthony S. The Focussed D*Algorithm for Real-Time Replanning [C]. Proceedings of theInternational Joint Conference on Artificial Intelligence, IEEE,1995,1652–1659
    [138] Koenig S, Likhachev M. Fast Replanning for Navigation in Unknown Terrain [J]. Transactionson Robotics,2005,21(3):354–363
    [139]郭军,朱凡.未知环境中的无人机航迹搜索策略[J].电光与控制,2008,15(3):57-59,71
    [140]洪晔,王宏健,边信黔.基于分层马尔可夫决策过程的AUV全局路径规划研究[J].系统仿真学报,2008,20(9):2361-2367
    [141]洪晔,房建成.基于HMDP的无人机三维路径规划[J].北京航空航天大学学报,2009,35(1):100-103
    [142]陈世明.动态环境中基于改进粒子群的机器人路径规划[J].计算机工程与应用,2008,44(1):25-27,65
    [143]魏子卿.关于2000中国大地坐标系的建议[J].大地测量与地球动力学.2006,26(2):1-4
    [144]肖亚伦.航天器飞行动力学原理[M].宇航出版社,1995
    [145]许树声.高等学校教材--信号检测与估计[M].国防工业出版社,1984
    [146]庄钊文,袁乃昌,莫锦军等.军用目标雷达散射截面预估与测量[M].北京:科学出版社,2007
    [147] Yee K S. Numerical Solution of Initial Boundary Value Problems Involving Maxwell’sEquations in Isotropic Media [J]. IEEE Transactions on Antennas and Propagation,1966,(3):302-307
    [148]葛德彪,闫玉波.电磁波时域有限差分法[M].西安:西安电子科技大学出版社,2002
    [149] Harrington R E. Field Computation by Moment Method [M]. IEEE Press,1993
    [150] Juan M R, Miguel F, Luis J. High-Frequency RCS of Complex Radar Targets in Real-Time [J].IEEE Transactions on Antennas and Propagation,1993,9(41):1308~1319
    [151]昂海松,舒永泽,周建江等.复杂目标RCS计算的新方法—曲面像素法[J].电子与信息学报,2001,10(23):962~969
    [152]周建江,舒永泽,昂海松.像素法射频信号产生及实时仿真研究[J].数据采集与处理,2001,1(16):77-80
    [153]苏抗,周建江.微小卫星低可观测外形飞行姿态规划[J],航空学报,2011,32(4):720-728

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700