水合电子与卤代芳香烃反应机理及动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卤代芳香烃作为重要的化工原料,广泛应用于农药、医药及材料合成等行业,是导致环境污染的重要物质之一,其中多氯联苯更是毒性很强的持久性有机污染物。它们在环境中的迁移转化和去除途径一直是环境科学的研究重点及热点。水合电子作为还原性较强的活性物种,在大气液相和自然水体中广泛存在。它能够导致卤代有机化合物有效脱卤,并生成相应的卤离子,对卤代有机污染物的转化和降解起到重要作用。因此本文采用纳秒级激光闪光光解瞬态吸收技术,考察了水体中不同卤代芳香烃(氯苯、溴苯、二氯苯、联苯及2-氯联苯)与水合电子的微观反应机理和动力学规律;并采用辐照降解技术研究水合电子对不同氯代芳香烃的降解效率与降解程度,并通过中间物种及终产物的检测,推测其反应途径。
     (1)本文采用激光闪光瞬态光谱吸收技术研究芘四磺酸四钠盐(PyTS)水溶液在355nm激光照射下的光解机理;首次发现PyTS激发单线态在260nm的吸收峰、激发三线态在300nm的吸收峰以及阴离子自由基在330nm的吸收峰,完善了PyTS光照条件下产生的瞬态物种的吸收特征光谱;得到PyTS光照后产生的水合电子动力学规律及其发生双光子吸收产生水合电子的量子产率为3.2×10-2。
     (2)根据水合电子在690nm的吸收随时间变化,得到卤代芳香烃与水合电子反应的动力学规律,其中水合电子与溴苯的二级反应速率常数为1.7×1010Lmol-1s-1,与氯苯的二级反应速率常数为5.3×108L mol-1s-1;间、邻、对三种二氯苯二级反应速率常数分为1.01×1010、4.76×109、3.29×109L mol-11s-1;与联苯的二级反应速率常数为1.28×1010L mol-1s-1;2-氯联苯的二级反应速率常数为1.73×1010Lmol-1s-1。
     (3)采用激光闪光瞬态光谱吸收技术探测到1,3-二氯苯阴离子自由基位于390-440nm、1,2-二氯苯阴离子自由基390-420nm、1,4-二氯苯阴离子自由基410-440nm、联苯阴离子自由基390-460nm及2-氯联苯阴离子自由基在390-430nm的吸收;但由于实验仪器的限制,并没有完全捕捉到各卤代芳香烃阴离子自由基的瞬态吸收谱图。因此研究还采用量子化学方法作为实验补充手段,计算了不同卤代芳香烃的阴离子自由基的紫外吸收光谱;同过对比可知实验所得的吸收位于计算所得的吸收波段范围内;而由计算所得的阴离子自由基在550nm以上的吸收波段,由于正处于水合电子吸收变化波段,所以在实验中未观测到。
     (4)采用辐照降解技术,研究水合电子与不同卤代芳香烃的反应。分析不同物质的降解效率及脱氯效率,并计算出各物质的G(Cl-)值;根据计算结果分析不同卤代芳香烃与水合电子反应的脱氯效率,其中氯苯与水合电子反应脱氯的有效性最低,其次是二氯苯,而2-氯联苯脱氯效果最好,这与采用激光闪光光解技术得到的结论不谋而合。
     (5)研究分别采用HPLC、GC-MS及离子色谱等分析手段对反应产物进行检测;在激光闪光光解实验和辐照降解实验中均检测出卤代芳香烃脱卤的产物以及卤离子,说明水合电子与卤代芳香烃的反应是逐步脱卤的过程;但在卤苯类物质的激光闪光实验中检测到联苯类物质的存在,说明活性物种的浓度对终产物种类的影响较大;实验中未曾检测出任何开环产物,说明苯环在反应中并未打开。
Halogenated organic compounds including polychlorinated biphenyls (PCBs), are frequently employed as solvents, pesticides and refrigerants and widely distributed in the environment. Their removal technologies and travel processes in aqueous phase and natural water are becoming hot fields which attract more and more researchers'attention at present. The hydrated electron (eaq-) is a good nucleophile and the reactions of eaq-with halogenated organic compounds are known to liberate halide ions. Nanosecond laser flash photolysis transient absorption spectroscopic technique was employed to investigate the reaction mechanisms and kinetics of halogenated organic compounds (chlorobenzene, bromobenzene, dichlorobenzene, biphenyl and2-chlorobiphenyl) with eaq-. Electron beam irradiation was employed to study the dechlorination and degradation efficiency and the G value were calculated. Based on the spectra and kinetic analysis, the reaction products were attributed, the rate constants were acquired and the reaction mechanisms were derived.
     (1)The photochemical reaction mechanism of pyrenetetrasulfonate (PyTS) aqueous solution was studied with laser flash photolysis-transient absorption spectrum techniques under irradiation at355nm. The characteristic absorption peak of the excited singlet (PyTS1*) at260nm, the excited triplet (PyTS3*) at300nm, and the anion radical (PyTS-*) at330nm were first confirmed. Self-quenching and reaction with PyTS were regarded as the main decay channels for hydrated electrons and the pseudo-first-order rate constant of hydrated electrons with PyTS was determined as2.7×103s-1.The quantum yield of eaq-generated via two-photon ionization of PyTS was computed as3.2×10-2under this condition.
     (2)Based on the transient spectrum of eaq-at690nm, the rate constants of second-order reaction between eaq-with bromobenzene, chlorobenzene, m-dichlorobenzene, o-dichlorobenzene, p-dichlorobenzene,biphenyl and2-Chlorobiphenyl were1.7×1010,5.3×l08,1.01x1010、4.76×109、3.29×109, 1.28×1010and1.73×1010L mol-1s-1,respectively.
     (3) In aqueous phase, reactions of eaq-with halogenated organic compounds yield anion radicals. And the transit absorptions of m-dichlorobenzene, o-dichlorobenzene, p-dichlorobenzene,biphenyl and2-Chlorobiphenyl anion radicals lie in390-440nm,390-420nm,410-440nm,390-460nm and390-430nm according to our experiments, respectively. Because the limitation of nanosecond laser flash photolysis apparatus, we cannot get complete absorption spectrums of these anion radicals. So DFT calculations were performed to inspect the optical properties of radicals and the results were in good agreement with the experimental data.
     (4) Chlorobenzene, dichlorobenzene and2-Chlorobiphenyl removal and dechlorination efficiencies by electron beam irradiation were investigated and the G (Cl-) valve was also calculated. The results show that dichlorobenzene can be decomposed more efficiently than chlorobenzene, but less than2-chlorobiphenyl.
     (5) Qualitative and quantitative analyses of reaction products were performed by GC/MS, HPLC and IC. The major products of irradiated samples were chloride ion and lower chlorinated benzenes. However in the laser samples of halogenated benzenes, chlorinated biphenyls and biphenyl were detected. That means the concentration of transit species could affect the final products. And no ring-opening products were detected during experiments.
引文
[1]樊耀波.水科技发展及在人类社会发展中的应用[J].环境科学进展,1998,6(5):63-74.
    [2]Rogers, H.R., Campbell, J.A., Crathorne, B., Dobbs, A.J. The occurrence of chlorobenzenes and permethrins in twelve UK sewage sledges[J]. Water Res,1989, 23:913-921.
    [3]World Health Organization Regional office for Europe. Toxieological appraisal of halogenated aromatic compounds following groundwater Pollution [R]. CoPenhagen: WHO,1980:58.
    [4]US1TC United States International Trade Commission. Synthetic Organic Chemicals:United States Productionandsales,1986[M]. Washington.D.C:Government Printing Office USITC Publication,2009:1987.
    [5]胡袅.土壤中氯苯类迁移行为的模拟研究[D].北京:中国科学院生态环境研究中心.1999.
    [6]Ding, W.H., Aldous, K.M., Briggs, R.G. et al, Application of multivariate statistical analysis to evaluate local sources of chlorobenzene congeners in soil samples[J]. Chemosphere,1992,25:675-690.
    [7]Boyd, E.M., Killham, K., Wright, J. et al. Toxicity assessment of xenobiotic contaminated groundwater using lux modified Pseudomonas fluoresces[J]. Chemosphere,1997,35:1967-1985.
    [8]Masunaga, S., Yonezawa, Y., Urushigawa, Y. The distribution of chlorobenzenes in the bottom sediments of Ise Bay[J]. Water Res.,1991,25:275-288.
    [9]Oliver, B.G., Fate of some chlorobenzenes from the Niagra River in Lake Ontario[J]. Adv. Chem.,1987,16:471-489.
    [10]Wang M,Jones KC.Ocuncnce of Chlorobenzenes in nine United Kingdom retail vegetables[J].J Agric Food Chem,1994,42:2322-2328.
    [11]Oliver, B. G,Nicole. K.D. Chlorobenzenes in sediments and water-selected fish from lakes Superior, Huron, Erie and Ontaro[J]. Environ Sci Technol,1982,16: 532-536.
    [12]Lebel,G.L.,Williams,D.T. Determination of bafogenated contaminants in human adipose tissue[J].J Assoc of Anal Chem,.1986,69:451-458.
    [13]Williams,D.T., Lebe,G.L.,Junkins.E. Organohalogen residues in human antopsy samples from six Ontario municipalities[J].J Assoc of Anal Chem.,1988,71:410-414.
    [14]Gawhik,M.B., Platzer,B.,Muntan, H. Monitoring of chlorinated,other organic trace contaminants in select stretehes of the Lao, Yangtse River(China). International Cooperation with Developing Countries.European Communities.2000:95-116.
    [15]Meharg, A. A., Wright J., Osborn.D. Chlorobenzenes in rivers draining industrial catchments[J]. The Science of the Total Environment,2000,251:243-253.
    [16]杨丽香,宋健男.气相色谱法测定松花江水源水中氯苯[J].中国公共卫生,2002,18:614-615.
    [17]蔡全英,莫测辉.部分城市污泥中氯苯类化合物的初步研究[J].环境化学,2002,21:139-142.
    [18]Halfon, E.,Reggiani, M.G. On ranking chemicals for environmental hazard [J]. Environ. Sci. Technol.,1986,20(11):1173-1179.
    [19]Ona, Y.,Somiya, I.,Kawaguchi, T.Genotoxic evaluation of aromatic organo-chlorine compounds by using the umu test[J]. Water Sci. Technol.,1992, 26(1-2):61-69.
    [20]Hirota, K.,Hakoda, T.,Arai, H., Hashimoto, S. Dechlorination of chlorobenzene in air with electron beam[J]. Radiat. Phys. Chem.,2000,57:63-73.
    [21]Breivik,K., Sweetmanb,A., Pacyna,J.M. et al.Towards a global historical emission inventory for selected PCB congeners-a mass balance approach 1.Global production, consumption[J].The Science of the Total Environment,2002(290):181-198.
    [22]China SEPA. Building the capacity of the People's Republic of China to implement the Stockholm convention on POPs and develop a National implementation plan. GEF Project Brief,2003.
    [23]王连生.有机污染物化学(下)[M].北京:科学出版社,1991.
    [24]Eisenreich,S.J., Looney,B-B., Thornton,J.D.Airborne organic contaminants in the Great Lakes ecosystem[J], Environ.Sci.Technol.,1981,15:30-38.
    [25]Tolosa,I.,Readman,J.W.,Fowler,S.W.et al.PCBs in the western Mediterranean. Temporal trends, mass balance assessment[J],Deep Sea Res, II,1997,44:907-928.
    [26]高连生.有机污染化学[M].第一版.北京:高等教育出版社.2004
    [27]聂湘平.多氯联苯的环境毒理研究动态[J].生态科学,2003,22(2):171-176.
    [28]Sinkkonen,S., Paasivirta,J. Degradation life times of PCDDs, PCDFs and PCBs for environmental fate modeling[J]. Chemosphere.2000,40:943-949.
    [29]Xing,Y., Lu.Y.L., Dawson.R.W., et al.A spatial temporal assessment of pollution from PCBs in China[J].Chemosphere,2005,60:731-739.
    [30]李敏学,岳贵春,高福民等,第二松花江中PCBs与有机氯农药的迁移和分布[J].环境化学,1989,8(2):49-54.
    [31]孙维湘,陈荣莉,孙安强,张洪勋,刘全友,施国涵.南迦巴瓦峰地区有机氯化合物的污染[J],环境科学,1986,6(7):64-69.
    [32]王毅,王子健,刘季昂,马梅,王春霞,利用Triolein-半渗透膜采样技术测定淮河水中的有毒有机污染物[J],中国环境监测,1999,15(4):8-10.
    [33]Zhang, Z.L., Huang, J., Yu, G.,Hong, H.S., Occurrence of PAHs, PCBs and organochlorine pesticides in the Tonghui River of Beijing, China. Environmental Pollution 2004.130 (2),249-261.
    [34]习志群、储少岗、徐晓白等.东湖水体中多氯联苯的研究[J].海洋与湖沼,1998,29(4).
    [35]Nie,X.P., Chongyu Lan, Taili Wei.Distribution of polychlorinated biphenyls in the water,sediment and fish from the pearl River estuary,China[J]. Marine Pollution Bulletin,2005,50:537-546.
    [36]Zhang, Z.L., Hong, H.S., Zhou, J.L., Huang, J.Fate and assessment of persistent organic pollutants in water and sediment from Minjiang River Estuary [J], Southeast China. Chemosphere,2003,52,:1423-1430.
    [37]张祖麟,陈玮琪,哈利德等.九龙江口水体中多氯联苯的研究[J],云南环境科学,2000,19:124-129
    [38]丘耀文,周俊良.Maskaoui.K大亚湾海域多氯联苯及有机氯农药研究[J].海洋环境科学,2002,21:46-51.
    [39]谭培攻,仕兰,曾宪杰,李静.莱州湾海域水体中有机氯农药和多氯联苯的浓度水平和分布特征[J].中国海洋大学学报,2006,36:439-446.
    [40]王泰,余刚,张祖麟.海河与渤海湾水体PCBs和OCPs污染水平与分布[A].第一届持久性有机污染物全国学术研讨会暨2006持久性有机污染物论坛文集[C],2006:102-106
    [41]Hope,B., Scatolini,S, Titus,E., et al. Distribution patterns of polychlorinated biphenyl congeners in wat.er, sediment and biota from midway Atoll (North Pacific Ocean) [J].Marine pollution Bulletin,1997,34(7):548-563.
    [42]Rissato,S.R., Galhiane,M.S., Ximenes,V.F.Organochlorine Pestieides and Polychlorinated biPhenyls in soil and water samples in the Northeastern part of Sao Paulo State;Brazil [J].ChemosPhere,2006,65:1949-1958.
    [43]Manodori,L., Gambaro.A., Piazza,R., et al. PCBs and PAHs in sea-surface microlayer and subsurface water Samples of the Venice Lagoon(Italy)[J].Marine Pollution Bulletin,2006,52:184-192.
    [44]WHO.1993. Polychlorinated biphenyls and terphenyls.2nd Ed.Geneva:154.
    [45]Pinto,B., Garritano,S.L., Cristofani,R., et al. Monitoring of Polychlorinated biphenyl contamination and estrogenic activity in water, commercial feed and farmed seafood[J]. Environ Monit Assess,2008,144:445-453.
    [46]Zhou,J.L., FilEman,T.W., Evans,S.,et al. Seasonal distribution of d issolved pestic ides and polynuclear aromatic hydrocarbons in the Humber Estuary and H umber coastalzone[J]. MarPoll Bull,1996,32:599-608.
    [47]Zeng, E.Y., Yu,C.C, Tran,K. In situ measurements of chlorinated hydrocarbons in the water column off the Palos Verdes peninsula, California [J]. Environ Sci Techno.,1999,33(3):392-398.
    [48]Babu,R.R., lmagawa,T., Tao.H., et al. Distribution of PCBs, H CHs and DDTs, and their ecotoxicological implications in Bay of Bengal India [J]. Environ Int.2005, 31:503-512.
    [49]蒋可.环境中多氯联苯及其代谢物的测定[J].环境污染治理技术与设备,1983,4(4):30-37.
    [50]Weyl,W. Ueber die Bildung des Ammoniums und einiger Ammoniummetalle[J]. Annalen der Physik,1964,199 (10):350-367.
    [51]Hart, E. J., Boag,J.W.Absorp tion spectrum of the hydrated electron in water and in aqueous solutions[J]. Am.Chem. Soc.1962,84:4090-4095.
    [52]Larry, K.Solvated Electron Structure in Glassy Matrices [J].Acc. Chem. Res., 1981(14):138-145.
    [53]Benjamin, J. S.,Peter,J. Rossky. Aqueous solvation dynamics with a quantum mechanical Solute:Computer simulation studies of the photoexcited hydrated electron [J]. J. Chem. Phys.,1994,101 (8):6902-6915.
    [54]Fischer, A., Kliger, D.. Winterle, J., Mill, T. Direct observation of phototransients in natural waters[J]. Chemosphere,1985,14(9):1299-1306.
    [55]Power,J. F., Sharma, D. K., Langford, C. H., Bonneau, R.,Joussot,D. J. In Photochemistry of Environmental Aquatic Systems, Zika, R. G., Cooper, W. J., Eds., ACS Symposium Series 327. And American Chemical Society:Washington, DC, 1987:157-173.
    [56]Richard,G. Z., Braun.M., Holgne, J. Photoproduction of Hydrated Electrons from Natural Organic Solutes in Aquatic Environments[J]. Environ. Sci. Technol.,1987,21: 485-490.
    [57]Trudy, E.T., Smith, N., Blough, V.Photoproduction of Hydrated Electron from Constituents of Natural Waters, Environ. Sci. Technol.,2001,35,2721-2726.
    [58]Sagar, D. M., Bain, C. D., Verlet,J.R. R..Hydrated Electrons at the Water/Air Interface [J].J. Am. Chem. Soc.,2010,132(20):6917-6919.
    [59]Bovensiepen,U., Gahl,C., StahlerJ. M. Bockstedte,M. Meyer, F.Baletto, S. Scan dolo, X. Y. Zhu, A. Rubio, M. Wolf, J. Phys.Chem. C, A Dynamic Landscape from Femtoseconds to Minutes for Excess Electrons at Ice-Metal Interfaces,2009,113: 979-988.
    [60]Kumamoto,Y., Wang,J., Fujiwara,K. Photoproduction and quenching of hydrated electrons from dissolved organic-matter in natural waters[J]. Bulletin of the Chemical Society of Japan,1994,67(3):720-727.
    [61]Katrin,R.S., Bernd.A.A.The Hydrated Electron:A Seemingly Familiar Chemical and Biological Transient[J], Chem. Int. Ed.2011,50,5264-5272.
    [62]Huang, L. Dong,W.B., Hou,H.Q. Investigation of the reactivity of hydrated electron toward perfluorinated carboxylates by laser flash photolysis[J]. Chemical Physics Letters.,2007,436:124-128.
    [63]Levin,P.P.,Brzhevskaya,O.N., Nedelina,O.S. Russian Chemical Bull. Internation-al Edition.2007,56:1325-1328.
    [64]Mucka,V., Silber, R., Kropecek.M., Plspisil,M., Klisky,V. Electron beam degradation of polychlorinated biphenyls[J], Radiat. Phys. Chem.,1997,50:503-510.
    [65]Singh,A., Kremers.W.Radiolytic dechlorination of polychlorinated biphe-nyls using alkaline 2-propanol solutions[J]. Radiat. Phys. Chem.,2002,65:467-472.
    [66]Lichtscheidl,J., Getoff,N. Radiolysis of halogenated aromatic compounds in aque-ous solutions-I conductometric pulse radiolysis and steady-state studies of the reaction of eaq-[J].Int.J. Radiat. Phys.Chem.,1976,8:661-665.
    [67]Naik, D.B., Mohan,H. Radiolysis of aqueous solutions of dihalobenzenes:studies on the formation of halide ions by ion chromatography[J]. Radiat Phys Chem., 2005,73:215-223.
    [68]Park, I., Cho.K., Lee.S., Kim, K.,Joannopoulos.J. D. Ab initio atomistic dynamical study of an excess electron in water [J].Computational Materials Science, 2001,21(3):291-300.
    [69]Enomoto.K., LaVerne,J.A.Reactions of Hydrated Electrons with Pyridinium Salts in Aqueous Solutions[J].J. Phys. Chem. A,2008,112:12430-12436.
    [70]Barry,D.M., Hart,E.J. Rate constants of hydrated electron,hydrogen atom,and hydroxyl radical reactions with benzene,1,3-cyclohexadien,1,4-cyclohexadiene and cyclohe[J]x.J Phy Chem.,1979,74(15):2978-2884.
    [71]Koehle,G., Solar.S., Getoff,N., Holzwarth,A.R., Schaffner,K. Relationship between the quantum yields of electron photoejection and fluorescence of aromatic carboxylate anions in aqueous solution[J]. J. Photochem.,1985,28:383-391.
    [72]Tobien, T., Mezyk, S.P., Cooper, W.J., Nickelsen, M.G., Adams, J.W., Asmus, K.D., O'Shea, K.E., Bartels, D.M., Tornatore, P.M., Newman, K.S., Gregoire, K., Weidman, D.J. Radiation chemistry of methyl tert-butyl ether (MTBE) in aqueous solution. Environ. Sci. Technol.,2004,38(14):3994-4001.
    [73]Nenadovic, M.T., Micic,O.I. Pulse radiolysis of methyl acetate in aqueous solutions[J]. Radiat. Phys. Chem.,1978,12:85-89.
    [74]Gordon,S., Hart,E.J., Matheson,M.S., Rabani, J., Thomas,J.K. Reactions of the hydrated electron. Discuss. Faraday Soc.,1963,36:193-205.
    [75]Hardison, D. R., Cooper,W.J., Mezyk,S.P.The free radical chemistry of tert-butyl formate:rate constants for hydroxyl radical, hydrated electron and hydrogen atom reaction in aqueous solution[J].Radiation Physics and Chemistry,2002,65:309-315.
    [76]Williams,J.A., Cooper,W. J., Mezyk.S.P.Absolute rate constants for the reaction of the hydrated electron, hydroxyl radical and hydrogen atom with chloroacetones in water[J]. Radiation Physics and Chemistry,2002,65:327-334.
    [77]Schmidt,K.H., Han,P., Bartels,D.M. Radiolytic yields of the hydrated electron from transient conductivity:improved calculation of the hydrated electron diffusion coefficient and analysis of some diffusion-limited (e-)aq reaction rates[J]. J. Phys. Chem.,1995,99:10530-10539.
    [78]Balkas, T.I. The radiolysis of aqueous solutions of methylene chloride[J]. Int. J. Radiat. Phys. Chem.,1972,4:199-208.
    [79]Tobien, T., Cooper,W.J., Asmus,K.D. Removal simulation for the radiation induced degradation of the disinfection by-product chloroform. In:S.E. Barrett, S.W. Krasner and G.L. Amy, Editors. Natural Organic Matter and Disinfection By-Products Characterization and Control in Drinking Water. ACS Symposium Series 761, Oxford University Press, USA. Washington, DC.2000:270-281
    [80]Afanassiev.A.M, Okazaki,K., Freeman,G.R. Effect of solvation energy on electron reaction rates in hydroxylic solvents. J. Phys. Chem.,1979 (83):1244-1249.
    [81]Hart, E.J., Fielden,E.M., Anbar,M. Reactions of carbonylic compounds with hydrated electrons[J]. J. Phys. Chem.,1967,71:3993-3998.
    [82]Szutka.A., Thomas,J. K., Gordon, S., Hart.E.J. Rate Constants of Hydrated Electron Reactions with Some Aromatic Acids, Alkyl Halides, Heterocyclic Compounds, and Werner Complexes[J]. The Journal of Physical Chemistry,1965,69: 289-292.
    [83]Mezyk.S.P., Helgeson T., Cole,S. K. Free radical chemistry of disinfection by products.1. Kinetics of hydrated electron and hydroxyl radical reactions with halonitromethane in water[J]. Journal of Physical Chemistry A,2006,110: 2176-2180.
    [84]樊美公,姚建年.分子光化学与光功能材料科学[M].科学出版社,北京:2009.
    [85]Spinks, J. W. T., Woods, R. J. An Introduction to Radiation Chemistry, John Wiley & Sons:New York,1964, Chapter 8:237-308.
    [86]Grosswelner,L.L, Baugher,J.F. Decay Kinetics of the Photochemical Hydrated Electron[J].The Journal of Physical Chemistry 1977,81(2):93-98.
    [87]Fujihira, M., Nishiyama, K., Yamada,H. Photo-electrochemical responses of optically transparent electrodes modified with Langmuir-Blodgett films consisting of surfactant derivatives of electron donor,acceptor and sensitizer molecules[J]. Thin Solid Films,1985,132:77-82.
    [88]Fujihira,M., Sakomura,M., Kamei,T.Simulation of the primary process in photosynthetic reaction center by monolayer with charge separation triad and antenna molecules[J]. Thin Solid Films,1989,190:43-50.
    [89]郑博,李贺先,王国昌,刘琨,袁伟,李赫,梁波.水-甲醇混合体系的超分子复合作用[J].物理化学学报,2008,24(8):1503-1506.
    [90]Manoharan,M., Tivel,K.L. Base sequence dependence of emission lifetime for DNA oligomers and duplexes covalently labeled with pyrene:Relative electron transfer quenching efficiencies of A.G,C and T nucleoside toward pyrene[J]. J. Phys Chem.,1995,99:17461-17472.
    [91]郑少君,袁钊,曾毅,李迎迎.芘和蒽作为荧光探针探测树枝形聚合物微环境[J].物理化学学报,2008,24(10):1785-1789.
    [92]Yoshihiro,M.,Hiroyuki,S.,Taku,N., Taiji,Kitagawa. Formation and Decay Behaviors of Laser-Induced Transient Species from Pyrene Derivatives 1. Spectral Discrimination and Decay Mechanisms in Aqueous Solution[J]. J. Phys Chem.,2002,106:11743-11749.
    [93]Yoshihiro,M.,Hiroyuki,S.,Taku,N.,Taiji,K. Formation and Decay Behaviors of Laser-Induced Transient Species from Pyrene Derivatives 2. Micellar Effects[J]. J. Phys. Chem. A,2002,106:11750-11759.
    [94]Kaprovich, Blanchard,G.J.. Relating the Polarity-dependent Fluorescence response of Pyrene to Vibronic coupling:Achieving a Fundamental Understanding of the py Polarity Scale[J]. J. Phys Chem.,1995,99,3951-3958
    [95]Bohne,C., Abuin,E.B., Scaiano,J.C.Characterization of the triplet-triplet annihilation process of pyrene and several derivatives under laser excitation[J]. J. Am. Chem. Soc.,1990,112:4226-4231
    [96]刘志斌,彭俊彪,李文连,邓湘君.芘四磺酸四钠盐光物理性质的研究[J].发光学报,1997,18(2):161-164.
    [97]Janata, E., Schuler, R. H. Rate constant for scavenging eaq-in nitrous oxide-saturated solutions [J].J. Phys. Chem.,1982,86,2078-2084.
    [98]Devonshire,R.,Weiss,J.J.Nature of the transient species in the photochemistry of negative ions in aqueous solution[J],J.Phys.Chem.,1968,72(11):3815-3820
    [99]Schwarz,H.A. Reaction of the hydrated electron with water[J]. J. Phys. Chem.,1992,96 (22):8937-8941.
    [100]Myran,C.,Sauer,J., Crowell,R.A., Shkrob.I.A. Electron Photodetachment from Aqueous Anions.1. Quantum Yields for Generation of Hydrated Electron by 193 and 248 nm Laser Photoexcitation of Miscellaneous Inorganic Anions[J] J. Phys. Chem. A,2004,108 (25):5490-5502.
    [101]刘志斌,邓湘君.芘四硫酸四钠盐/甲基紫精复合物光物理性质的研究[J].感光科学与光化学,1997,15(3):210-216.
    [102]Hirota,K., Hakoda,T. Dechlorination of chlorobenzene in air with electron beam[J],J.Radiat.Phys.Chem.,2000,57:63-73.
    [103]Mohan, H., Mittal,J.P. Pulse Radiolysis Investigations on Acidic Aqueous Solutions of Benzene:Formation of Radical Cations[J]. J.Phys.Chem.A, 1999,103:379-383.
    [104]Devonshire,R., Weiss, J.J. Nature of the Transient Species in the Photochemistry of Negative Ions in Aqueous Solution[J]. J.Phys.Chem,1968,72:3815-3818.
    [105]Bunnett,J.F.,Kim,J.K.Alkali Metal Promoted Aromatic "Nucleophilic" Substi-tution [J]. J.Am.Chem.Soc.,1970,92(25):7464-7466.
    [106]Bunnett,J.F. Aromatic Substitution by the SRN1 Mechanism[J]. Acc. Chem. Res. 1978,11 (11):413-420.
    [107]Saki,H., Akinori,S., Kazumasa,O., Seiichi,T., Takahiro,K.Famation and Decay of Fluorobenzene Radical Anions Affected by Their Isomeric Structures and the Number of Fluorine Atoms [J]. J. Phys. Chem. A,2010,114:8069-8074.
    [108]Anbar.M., Hart.E.J. The Reactivity of Aromatic Compounds toward Hydrated Electrons [J]. Am.Chem.Soc.,1964,86:3929.
    [109]Wu, M., Shi, W., Wang, Y., Jiao, Z., Wang, J., Ding, G., Fu,J. Degradation of halogenated benzenes in solution by electron beam irradiation method[J]. Environmental Technology.,2009,30(2):191-197
    [110]Saveant,J.M.Dynamics of Cleavage and Formation of Anion Radicals into and from Radicals and Nucleophiles. Structure-Reactivity Relationships in SRN1 Reactions[J]. J. Phys. Chem.,1994,98:3116-3124.
    [111]Prasad,M.A., Sangaranarayanan,M.V. Hammett-type relationship for the cleavage of radical anions of aromatic chlorides and bromides,Tetrahedron, 2005,61:3755-375.
    [112]Beregovaya, I.V., Shchegoleva,L.N.Potential energy surface and dissociative cleavage of chlorobenzene radical anion[J].Chemical Physics Letters.2001, 348:501-506.
    [113]Atkins,A.W. Physical Chemistry.Sixth ed. Oxford:Oxford University Press. 1998:501-506.
    [114]Jordan, K. D., Michejda, J. A., Burrow,P. D.Electron Transmission Studies of the Negative Ion States of Substituted Benzenes in the Gas Phase[J].Journal of the American Chemical Society,1976,98(23):7189-7191.
    [115]GrimaIt, J.O., Sunyer, J., Moreno, V., Amaral,O.C., Sala, M., Rosell, A., Anto,J.M., Albaiges,J. Risk excess of soft-tissue sarcoma and thyroid cancer in a community exposed to airborne organochlorinated compound mixtures with a high hexachloro-benzene content, Int. J. Cancer,1994,56:200-203
    [116]Sehested,K., Hart, E.J. Formation and Decay of the Biphenyl Cation Radical in Aqueous Acidic Solution[J]. The Journal of Physical Chemistry,1975,79: 1639-1641.
    [117]Shigeyoshi,A.,Grev, D.A. Pulse Radiolysis Studies. X. Electron Transfer Reactions of Aromatic Molecules in Solution[J]. The Jouranl of Chemical Physics, 1967,46:2572-2578.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700