数字图像处理与分析及其在故障诊断中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的不断发展,旋转机械设备的结构越来越复杂,造价越来越高,各部分之间的联系更加紧密,因而发生故障的风险也在逐渐加大。及时准确的提取表征旋转机械设备运行状态的信息,从而捕捉其中的故障信息并加以识别判断,对发现旋转机械设备的异常,提高旋转机械本身运行的可靠性有着重要的意义。
     轴心轨迹是旋转机械故障诊断的重要手段之一,反映了转子旋转时轴上任一点在其旋转平面内相对轴承座的运行轨迹,它包含了机组的各种故障信息,因此,其形状特征对判断旋转机械转子轴系故障非常重要。从这一问题入手,可将故障诊断问题转化为图像处理、分析与识别问题,传统的方法多集中在以傅里叶变换、小波变换和矩为基础的特征提取的研究上,而图像的特征提取寻求的最佳效果是用较少的数学描述来表达图像中重要的信息,将目前数字图像处理与分析的先进理论与方法引入轴心轨迹的特征提取与分类识别,无疑将为旋转机械故障诊断提供一个新的研究思路。论文的主要工作及创新性成果如下:
     (I)针对旋转机械轴心轨迹自动识别的研究需求,深入研究了数字图像模型的描述、基本运算、图像的变换、图像分割,以及目标的表示与描述方法和图像的模式识别理论,为轴心轨迹自动识别研究打下了基础。
     (2)在对轴心轨迹的几何特征如面积、周长、圆度和离散指数等进行分析的基础上,针对传统的链码不具有旋转、平移和尺度不变性的问题,提出了改进的链码直方图。然而,采用单一的改进链码直方图对轴心轨迹特征进行提取,椭圆形和外“8”字形存在特征向量相同的情况,给分类识别增加了难度。因此,本文更进一步的提出了基于边界描述的改进链码直方图和形状数融合的轴心轨迹特征提取方法,同时引入概率神经网络学习几何特征和轴心轨迹类型之间的映射关系,从而将训练好的识别器用于轴心轨迹识别。此外,对改进链码直方图与其他几何信息融合的特征提取方法进行了研究,实验结果表明,将改进链码直方图和形状数融合的特征提取方法优于其他融合形式,具有较高的识别率。
     (3)针对旋转机械振动信号常常伴有噪声导致轴心轨迹曲线不光滑的情况,利用脉冲耦合神经网络模型源于哺乳动物视觉皮层神经细胞的研究,并且不需要训练的固有属性,提出了脉冲耦合神经网络时间序列与轴心轨迹的圆度融合的特征提取方法,得到用于进行轴心轨迹图像识别的特征向量二值图像。此外,提出了基于脉冲耦合神经网络信息熵时间序列的轴心轨迹特征提取方法,将两种方法提取的特征向量分别通过概率神经网络和径向基函数神经网络进行分类识别,实验结果表明脉冲耦合神经网络时间序列与轴心轨迹的圆度融合的特征提取方法能够更精确的表达轴心轨迹的原始信息,而概率神经网络在多类别识别方面的能力优于径向基函数神经网络。
     (4)利用Contourlet变换能够在任意尺度上实现任意方向的分解,并且擅长描述图像中的轮廓信息,仅用少量系数即可有效的表达图像中的边缘轮廓的特点,提出了将小波变换与Contourlet变换融合的轴心轨迹特征提取方法,将小波变换对于点奇异性的良好稀疏性与Contourlet对线性特征的良好检测性相结合,精确的描述轴心轨迹的形状信息,为轴心轨迹的自动分类提供一种新的特征向量,也为旋转机械故障诊断自动化提供了新的思路。引入支持向量机对特征向量进行分类,使得轴心轨迹的自动分类过程变得更加快速、有效。
With the continuous development of science and technology, the structure of the rotating machinery and equipment grows more and more complicated, increasingly close ties between the different parts lead to the increasingly high manufacturing cost, etc., the risk of failure is also gradually increased. It is necessary to sample the state information of the machinery timely and accurately, then identify the working state of the machinery, thus to improve the reliability of the rotating machinery itself.
     Shaft orbit is an important means for rotating machinery fault diagnosis. It is synthesized by vibration signal, and reflects various fault information of rotating machinery, therefore, the shape characteristics of shaft orbit is very necessary for diagnosis shaft fault of rotating machinery. Based on these, the fault diagnosis problem can be transformed into the problems of image processing, analysis and identification. Traditional method is mainly concentrated in the research on the Fourier transform, wavelet transform, and moment-based feature extraction. But image feature extraction is to seek the best results with less mathematical description to express important information in the image. Therefore, it is undoubtedly effective to introduce a method of digital image processing for the feature extraction and identification of shaft orbit.
     The main contents and innovative results are listed as follows:
     (1) Considering the needs of automatic identification for the rotating machinery, the thesis establishes the foundation for shaft orbit automatic identification research, with digital image model description, basic computing, image transformation, image segmentation, target representation and description, and image pattern recognition theory.
     (2) By analyzing shaft orbit geometric characteristics, such as area, perimeter, roundness, and the dispersion index, the thesis put forward a method of modified chain code histogram. The method avoids the shortcomings in traditional way as rotation, translation and scale sensitive. However, it is not good for shaft orbit in ellipse and the outer "8" to only use the modified chain code histogram to extract the characteristics. It is difficult for classification and identification the state of the machinery in the case. Therefore, the thesis describes an improved extraction method based on boundary described and shape number. Meanwhile, the thesis uses probabilistic neural network to learn the mapping between the geometric characteristics and the type of shaft orbit. In addition, the fusion feature extraction methods of modified chain code histogram and other geometric information are described. The experimental results show that modified chain code histogram and shape number fusion feature extract method is better than the other fusion form, and have a high recognition rate.
     (3) Rotating machinery vibration signals are often associated with noise, which cause the shaft orbit curve not smooth. Therefore, feature extraction must have noise immunity. By pulse coupled neural network model derived from the study of the mammalian visual cortex neurons, the thesis improved pulse coupled neural network time signature and the roundness of shaft orbit fusion feature extraction method without training. In addition, the pulse coupled neural network information entropy time signature for the shaft orbit feature extraction is further used. Then, the feature vectors of two methods are all send to probability neural network and radial basis function neural network for classification. The experimental results show that the pulse coupled neural network time signature and shaft orbit roundness fusion feature extraction method can express original shaft orbit more accurate. And the probability neural network is superior to radial basis function neural network in multi-class recognition.
     (4) Contourlet transform can realize any direction decomposition at any scale, and work well at description of the image contour information. It can effective express the image contour by only using a small amount of the coefficient. The study improves wavelet transform and contourlet transform fusion shaft orbit feature extraction method. The method combines the good sparsity for singularity of wavelet transform and good detect ability for linear feature of contourlet transform to accurate description of the shape of the shaft orbit. It provides a new feature vector for shaft orbit automatic classification, also provides a new approach for rotating machinery fault diagnosis automation. The introduction of support vector machines to classify the feature vector, the shaft orbit automatic classification process becomes more rapid and effective.
引文
[1]胡爱军Hilbert-Huang变换在旋转机械振动信号分析中的应用研究[D]:[博士学位论文].北京:华北电力大学图书馆,2008.
    [2]沈路.数学形态学在机械故障诊断中的应用研究[D]:[博士学位论文].浙江:浙江大学图书馆,2010.
    [3]任玲辉,刘凯,张海燕.基于图像处理技术的机械故障诊断研究进展[J].机械设计与研究,2011,27(5):21-24.
    [4]徐敏.设备故障诊断手册[M].西安:西安交通大学出版社,1998.
    [5]何正嘉,苦艳阳,孟庆丰.机械设备非平稳信号的故障诊断原理及应用[M].北京:高等教育出版社,2001.
    [6]付波.基于弯扭耦合振动与轴心轨迹的水轮发电机组故障诊断研究[D]:[博士学位论文].武汉:华中科技大学,2006.
    [7]杨叔子,史铁林,丁洪.机械设备诊断的理论技术与方法[J].振动工程学报,1992,5(3):193-201.
    [8]钟秉林,黄仁.机械故障诊断学[M],北京:机械工业出版社,2002.
    [9]周云燕.基于图像分析理论的机械故障诊断研究[D]:[博士学位论文].武汉:华中科技大学图书馆,2007.
    [10]Xiang X.Q., Zhou J.Z., An X.L., et al.. Fault diagnosis based on Walsh transform and support vector machine [J]. Mechanical Systems and Signal Processing,2008, 22:1685-1693.
    [11]Xiang X.Q., Zhou J.Z., Li C.S., et al.. Fault diagnosis based on Walsh transform and rough sets [J]. Mechanical Systems and Signal Processing,2009,23: 1313-1326.
    [12]向秀桥.现代智能计算及其在水电机组故障诊断中的应用[D]:[博士学位论文].武汉:华中科技大学图书馆,2009.
    [13]王延博.大型汽轮发电机组轴系不对中振动的研究[J].动力工程,2004,24(6): 768-774.
    [14]韩捷,石来德.转子系统齿式联接不对中故障的运动学机理研究[J].振动工程学报,2004,17(4):416-420.
    [15]陈宏,冯燕,韩捷等.旋转机械不对中形式的新分类及其故障诊断研究[J].机床与液压,2010,7:130-133.
    [16]张祖德,王玉强.旋转机械转子不对中的故障诊断[J].特钢技术,2010,4:56-59.
    [17]He Y. Y., Huang J., Zhang B.. Approximate entropy as a nonlinear feature parameter for fault diagnosis in rotating machinery. Measurement Science & Technology,2012,23(4).
    [18]Zhang J. H., Ma L., Lin J. W., et al. Dynamic Analysis of Flexible Rotor-Ball Bearings System With Unbalance-Misalignment-Rubbing Coupling Faults. in:Lin P. P., Zhang C. L.. eds. Applied Mechanics and Materials. Shanghai, PEOPLES R CHINA.2011. Vibration, Structural Engineering and Measurement I, PTS 1-3. 2012.105-107:448-453.
    [19]Villa L. F., Renones A., Peran J. R., et al.. Statistical fault diagnosis based on vibration analysis for gear test-bench under non-stationary conditions of speed and load [J]. Mechanical Systems and Signal Processing,2012,29:436-446.
    [20]Lal M., Tiwari R.. Multi-fault identification in simple rotor-bearing-coupling systems based on forced response measurements [J]. Mechanism and Machine Theory,2012,51:87-109.
    [21]施维新.转子不平衡引起轴系破坏机理的研究[J].河北电力技术,1992,5:18-24.
    [22]李艳妮.旋转机械故障机理与故障特征提取技术研究[D]:[博士学位论文].北京:北京化工大学图书馆,2007.
    [23]张祖德.旋转机械转子不平衡的故障诊断[J].特钢技术,2008,14(57):49-52.
    [24]楼建忠,杜红文.大型旋转机械质量不平衡故障的研究[J].现代制造工程,2008,10:23-26.
    [25]安婧红,李树臣.油膜涡动故障力学分析[J].中国设备工程,2004,7:35-36.
    [26]崔保.滑动轴承油膜涡动和油膜振荡的机理与诊断[J].机械工程师,2006,6:134-135.
    [27]张新勇,段滋华,张牢牢.滑动轴承油膜涡动及油膜振荡研究[J].太原理工大学学报,2008,39(3):232-235.
    [28]戈金华,高金吉,王文永.旋转机械动静碰摩机理研究[J].振动工程学报,2003,16(4):426-429.
    [29]向玲,胡爱军,唐贵基等.转子动静碰摩故障仿真与试验研究闭[J].润滑与密封,2005,5:78-80.
    [30]王润,刘智安,孔昭文等.汽轮机动静碰摩振动的诊断与处理[J].内蒙古电力技术,2009,27(1):16-19.
    [31]万召,孟光,荆建平等.燃气轮机转子-轴承系统的油膜涡动分析[J].振动与冲击,2011,3:38-41.
    [32]Fan C. C., Syu J. W., Pan M. C., et al.. Study of start-up vibration response for oil whirl, oil whip and dry whip [J]. Mechanical Syetems and Signal Processing,2011, 25(8):3102-3115.
    [33]Wang B. C., Ren Z. H.. Feature Analysis of Mechanical Fault Signals Based on the Wavelet Transform Technique. in:Zhang L. C., Zhang C. L., Shi T. L..eds. Advanced Materials Research. Guangzhou, PEOPLES R CHINA.2010. Manufacturing Engineering and Automation I, PTS 1-3.2011.139-141: 2502-2505.
    [34]Xiang L., Sun H.. Comparison of Methods for Time-frequency Analysis of Oil Whip Vibration Signal. Chen R. ed. Advanced Materials Research. Lijiang, PEOPLES R CHINA.2011. Mechatronics and Intelligent Materials. PTS 1,2. 2011.211-212:983-987.
    [35]Grossman A., Morlet J. Decomposition of hardy functions into square integrable wavelets of constant shape [J]. SIAM Journal on Mathematical Analysis,1984, 1(5):723-736.
    [36]Dsubechies I.. Orthonormal bases of compactly supported wavelets [J]. Communications on Pure and Applied Math,1988,41(7):909-996.
    [37]李文斌,张建宇,高立新.小波分析在旋转机械故障诊断中的应用现状及展望[J].冶金设备,2010,4:53-56.
    [38]刘冬.基于振动信号处理的旋转机械故障诊断[D]:[硕士学位论文].上海:上海交通大学图书馆,2010.
    [39]虞和济,周永,张省.小波神经网络诊断系统的应用与进展[J].振动、测试与诊断,1998,18(2):85-90.
    [40]何正嘉,艳阳,张周锁等.大型机械设备变工况非平稳动态分析与监测诊断关键技术[J].中国机械工程,1999,10(9):978-981.
    [41]Cheng J. S., Yu D. J., Yang Y. Application of an impulse response wavelet to fault diagnosis of rolling bearings [J]. Mechanical Systems and Signal Processing,2007, 21(2):920-929.
    [42]徐新华,杨春生,王盛卫.基于小波变换的传感器故障诊断研究[J].建筑科学,2007,12:72-75.
    [43]魏巍,韩振南.基于小波变换的滚动轴承故障诊断[J].科技情报开发与经济,2010,6:155-156.
    [44]郑海波,李志远,陈心昭.基于连续小波变换的齿轮故障诊断方法研究[J].机械工程学报,2002,3:69-73.
    [45]张邦基,于德介,杨胜.基于小波变换与粗集理论的滚动轴承故障诊断[J].中国机械工程,2008,15:1793-1795.
    [46]李辉,张安,徐琦等.连续小波变换在传感器故障诊断中的应用[J].传感技术学报,2005,4:777-781.
    [47]王衍学,向家伟,蒋占四.广义Morse解析小波变换在机械故障诊断中的应用研究[J].煤矿机械,2011,12:257-259.
    [48]周爱华,郑永伟.基于小波变换的滚动轴承内圈故障诊断[J].机械与电子,2010,6:72-74.
    [49]吴康,韩波,李平.SVR结合小波变换的SUH传感器故障诊断[J].计算机工程 与应用,2011,20:221-224.
    [50]徐英帅,王细洋,孙伟.基于小波变换的齿轮箱故障诊断[J].组合机床与自动化加工技术,2012,2:66-71.
    [51]徐龙云,芮执元,冯瑞成.基于Hilbert-Huang变换的齿轮故障诊断研究[J].机床与液压,2010,3:133-136.
    [52]刘海兰,李小平,芮延年.基于时域平均和Hilbert-Huang变换的时频熵理论轧机齿轮箱故障诊断[J].机械传动,2011,9:54-57.
    [53]乔保栋,陈果,曲秀秀.基于Hilbert-Huang变换和盲源分离的滚动轴承耦合故障诊断方法[J].飞机设计,2011,3:27-43.
    [54]向玲,朱永利,唐贵基.HHT方法在转子振动故障诊断中的应用[J].中国电机工程学报,2007,3:584-589.
    [55]Cheng J. S., Yu D. J., Tang J. S., et al.. Application of frequency family separation method based upon EMD and local Hilbert energy spectrum method to gear fault diagnosis [J]. Mechanism and Machine Theory,2008,43(6):712-723.
    [56]任学平,汤晓峰.应用Hilbert-Huang变换的齿轮箱故障诊断[J].机械与电子,2010,745-748.
    [57]雷亚国.基于改进Hilbert-Huang变换的机械故障诊断[J].机械工程学报,2011,5:71-77.
    [58]唐贵基,王维珍,胡爱军等.数学形态学在旋转机械振动信号处理中的应用[J].汽轮机技术,2005,4:271-272.
    [59]刘占生,窦唯.旋转机械振动参数图形边缘纹理提取的数学形态学方法.振动工程学报[J],2008,3:268-273.
    [60]李兵,张培林,任国全等.基于数学形态学的分形维数计算及在轴承故障诊断中的应用[J].振动与冲击,2010,5:191-194.
    [61]杨杰,郑海起,刘晓平等.多尺度柔性形态滤波在轴承故障诊断中的应用[J].轴承,2011,3:41-44.
    [62]李兵,张培林,刘东升等.基于自适应多尺度形态梯度变换的滚动轴承故障特 征提取[J].振动与冲击,2011,10:104-108.
    [63]和卫星,许莉.数学形态学和HHT在轴承故障诊断中的应用[J].轴承,2011,11:50-53.
    [64]陈琼.基于信号处理的模式识别方法在滚动轴承故障诊断中的应用[D]:[硕士学位论文].北京:北京化工大学图书馆,2011.
    [65]夏勇,张振仁,商斌梁等.基于图像处理与神经网络的内燃机故障诊断研究[J].内燃机学报,2001,19(4):356-360.
    [66]杨昌昊.基于不确定性理论的机械故障智能诊断方法研究[D]:[博士学位论文].合肥:中国科技大学图书馆,2009.
    [67]蒋玲莉.基于核方法的旋转机械故障诊断技术与模式分析方法研究[D]:[博士学位论文].长沙:中南大学图书馆,2010.
    [68]侯俊剑.基于声像模式识别的故障诊断机理研究[D]:[博士学位论文].上海:上海交通大学图书馆,2011.
    [69]刘中合,王瑞雪,王锋德等.数字图像处理技术现状与展望[J].计算机时代,2005,9:6-8.
    [70]Simon Y. Foo. A Machine Vision Approach to Detect and Categorize Hydrocarbon Fires in Aircraft Dry Bays and Engine Compartments. in:IEEE Transactions on Industry Applications,2000,36(2):459-466.
    [71]Massimo T., Manuele B., Enrico G.. Dynamic face recognition:From human to machine vision [J]. Image and Vision Computing,2007,20(5):21-31.
    [72]Moshe P., Yehoshua Y. Z.. The generalized Gabor scheme of image representation in biological and machine vision. in:IEEE Transactions on Pattern Analysis and Machine Intelligence,1988,10(4):452-468.
    [73]Murase H., Nishiura Y., Mitani K.. Environmental control strategies based on plant responses using intelligent machine vision technique [J]. Computers and Electronics in Agriculture,1997,18(2-3):137-148.
    [74]Inigo R.M.. Application of machine vision to traffic monitoring and control. in: IEEE Transactions on Vehicular Technology,1989,38(3):112-122.
    [75]Golnabi H., Asadpour A.. Design and application of industrial machine vision systems [J]. Robotics and Computer-Integrated Manufacturing,2007,23(6): 630-637.
    [76]马丽明,李艳婷,黄兆佳等.医学图像处理技术[J].现代医院,2007,11:15-19.
    [77]杨艳妮,严碧歌.小波变换及其在医学图像处理中的应用[J].现代生物医学进展,2006,11:95-96.
    [78]张玲.医学图像处理中的小波变换应用[J].中国医学影像技术,2010,2:372-374.
    [79]李璟,朱善安,Bin He医学图像分割技术生物[J].医学工程学杂志,2006,4:891-894.
    [80]李靖宇,张裕,冯利民等.分割技术在医学图像中处理的应用[J].齐齐哈尔医学院学报,2009,14:1747-1748.
    [81]曹会志,王晨,罗述谦.结合蚁群算法的Snake模型的医学图像分割方法[J].北京生物医学工程,2007,3:245-248.
    [82]刘自德,冯成德,黄秀娟.基于区域生长法的超声图像分割[J].影像技术,2007,3:59-61.
    [83]郑亚琴,田心.医学图像配准技术研究进展[J].国际生物医学工程杂志,2006,2:88-92.
    [84]严朝福,李德玉,林江莉等.超声医学图像非线性滤波算法研究进展[J].生物医学工程学杂志,2006,5:1123-1125.
    [85]盖立平,刘铁利.图像插值技术及其在医学图像处理中的应用[J].中国医学物理学杂志,2007,2:106-107.
    [86]刘芳,陈英茂,白净.基于医学图像处理的放射性药物内照射剂量计算[J].北京生物医学工程,2007,2:120-123.
    [87]关百峰.黑白航空照相侦察图像处理技术研究[D]:[硕士学位论文].沈阳:东北大学图书馆,2008.
    [88]韩丽.航空数码相机图像处理研究[D]:[硕士学位论文].西安:西北工业大学, 2007.
    [89]赵育良,许兆林.基于图像处理技术的航空相机镜头焦面自准直定位研究[J].应用光学,2012,2:288-292.
    [90]赵志彬,刘晶红.基于图像处理的航空成像设备自动调焦设计[J].液晶与显示,2010,6:863-868.
    [91]谭真臻,陈果,陈立波等.基于图像分析和野点检测的航空发动机磨损状态识别[J].中国机械工程,2010,7:827-831.
    [92]陈凤,李金宗,黄建明等.航天相机的特殊结构与地面图像处理技术研究[J].红外与激光工程,2002,6:485-489.
    [93]袁小平,童敏明,许金林.图像处理在煤矿工业电视图像报警中的应用研究[J].计算机工程与设计,2008,18:4833-4835.
    [94]张晓静,冯琴.图像处理技术在泵站工业电视系统中的应用[J].黑龙江水专学报,2005,1:91-92.
    [95]袁利华,俞春华.计算机图像处理技术在纺织工业的应用[J].广西轻工业,2009,7:77-79.
    [96]郭乾东.工业摄影测量图像处理方法研究[J].企业技术开发,2009,12:14-15.
    [97]许万里,苑惠娟,郑伟.工业视觉检查系统中的图像处理及模式识别(英文)[J].哈尔滨理工大学学报,2001,4:22-27.
    [98]Wang C. Q., Zhou J. Z., Qin H., et al.. Fault diagnosis based on pulse coupled neural network and probability neural network [J]. Expert Systems with Applications,2011,38(11):14307-14313.
    [99]彭兵.基于改进支持向量机和特征信息融合的水电机组故障诊断[D]:[博士学位论文].武汉:华中科技大学图书馆,2008.
    [100]张征凯,薛松,张优云.基于特征参数的旋转机械智能故障诊断方法[J].振动、测试与诊断,2009,3:256-260.
    [101]周训强.旋转机械轴心轨迹的提纯、特征提取与自动识别研究[D]:[硕士学位论文].重庆:重庆大学图书馆,2010.
    [102]杨志荣.基于多源信息融合的水电机组故障诊断与轴心轨迹识别技术研究[D]:[博士学位论文].武汉:华中科技大学图书馆,2011.
    [103]Mark S. N., Alberto S. A.特征提取与图像处理[M].第二版.李实英,杨高波.北京:电子工业出版社,2011.
    [104]Davies E R. Machine vision:theory, algorithms, practicalities [M]. London: Academic press,1997.
    [105]陈爱军.数学形态学及其在图像分析中的应用[J].红外与激光工程,2006,35:465-468.
    [106]Wang C. Q., Zhou J. Z., Kou P. G., et al.. Identification of shaft orbit for hydraulic generator unit using chain code and probability neural network [J]. Applied Soft Computing,2012,12(1):423-429.
    [107]Freeman H., Saghri A.. Generalized chain codes for planar curves, in:Proceedings of the 4th International Joint Conference on Pattern Recognition, Kyoto, Japan, 1978,701-703.
    [108]Freeman H.. Computer processing of line-drawing images [J], Computing Surveys, 1974,6(1):57-97.
    [109]Sklansky J., Chazin R. L., Hansen B. J.. Minimum Perimeter Polygons of Digitized Silhouettes. in:IEEE Trans. Computers,1972,21(3):260-268.
    [110]Kim C. E., Sklansky J.. Digital and Cellular Convexity [J]. Pattern Recognition, 1982,15(5):359-367.
    [111]Bribiesca E., Guzman A.. How to describe pure form and how to measure differences in shape using shape numbers [J]. Pattern Recognition,1980,12(2): 101-112.
    [112]Bribiesca E.. Arithmetic operation among shapes using shape numbers [J]. Pattern Recognition,1981,13(2):123-137.
    [113]Wu J. D., Chiang P. H., Chang Y. W., et al.. An expert system for fault diagnosis in internal combustion engines using probability neural network [J]. Expert Systems with Applications,2008,34:2704-2713.
    [114]Wu J. D., Chiang P. H. Application of Wigner-Ville distribution and probability neural network for scooter engine fault diagnosis [J]. Expert Systems with Applications,2009,36:2187-2199.
    [115]Wang C. Q., Zhou J. Z., Wang Y. Q., et al.. Hybrid Neural Network Based Fault Diagnosis of Rotating Machinery, in:The 3rd International Congress on Image and Signal Processing,2010,4230-4233.
    [116]Eckhorn R., Reitboeck H. J., Arndt M., et al.. A neural network for feature linking via synchronous activity:results from cat visual cortex and from simulations [M]. In Models of Brain Function, Cambridge University Press,1989,255-272.
    [117]Eckhorn R., Reitboeck H. J., Arndt M., et al.. Feature linking via synchronization among distributed assemblies:simulation of results from cat cortex [J]. Neural Computing,1990,2:293-307.
    [118]Johnson J. L. Pulse-coupled neural nets:Translation, rotation, scale, distortion, and intensity signal invariance for images [J]. Applied Optics,1994,33(26): 6239-6253.
    [119]Johnson J. L., Padgett M. L.. PCNN models and applications. in:IEEE Transactions on Neural Networks,1999,10(3):480-498.
    [120]Ranganath H. S., Kuntimad G,& Johnson J. L.. Pulse coupled neural networks for image processing, in:Proceedings of IEEE Southeast Raleigh,1995,37-43.
    [121]Wang Z. B., Ma Y. D., Cheng F. Y., et al.. Review of pulse-coupled neural network [J]. Image and Vision Computing,2010,285-293.
    [122]马义德,李廉,绽琨等.脉冲耦合神经网络与数字图像处理[M].北京:科学出版社,2008.
    [123]刘勃.基于脉冲耦合神经网络的图像处理若干问题研究[D]:[博士学位论文].西安:西安电子科技大学图书馆,2011.
    [124]Liu C. C., Li C., Zhang Z. M. PCNN-based texture feature extraction of sonar images [J]. Process Automation Instrumentation,2009,3018-3020.
    [125]Timoszczuk A. P., Cabral E.F. Speaker recognition using pulse coupled neural networks [J], International Joint Conference on Neural Networks Orlando,2007, 1965-1969.
    [126]Wang C. Q., Zhou J. Z., Zhang X. Y, et al.. Shape feature and RBF based intelligent fault identification of rotating machine. in:2010 Second Global Congress on Intelligent Systems.2010,3:352-355.
    [127]Broomhead D.S., Lowe D.. Multivariable functional interpolation and adaptive networks [J]. Complex Systems,1988, vol.2 (2):321-335.
    [128]Shi Z.Z.. Neural Networks [M]. PR China:Higher Education Press,2009.
    [129]Ding S. F., Jia W. K., Su C. Y., et al. Research of Neural Network Algorithm Based on FA and RBF. in:2010 2nd International Conference on Computer Engineering and Technology,7:228-232.
    [130]Do M. N., Vetterli M.. Contourlets. J. Stoeckler, Welland G. V.. Beyond Wavelets, Academic Press,2002.
    [131]焦李成,侯彪,王爽等.图像多尺度几何分析理论与应用——后小波分析理论与应用[M].西安:西安电子科技大学出版社,2008.
    [132]许贵.星载遥感图像压缩中的变换算法研究[D]:[硕士学位论文].南京:南京理工大学图书馆,2009.
    [133]李祥.多源影像融合过程中关键技术研究[D]:[博士学位论文].南京:南京理工大学图书馆,2010.
    [134]Do M. N., Vetterli M.. Framing pyramids. in:IEEE Trans,2003, Signal Proc-51(9): 2329-2342.
    [135]Lu Y, Do M. N.. CRISP-contourlet a critically sampled directional multiresolution image representation. in:Proc. SPIE conf. on Wavelets X, San Diego,2003.
    [136]Cunha A. L., Zhou J. P., Do N. M.. The Nonsubsampled Contourlet Transform: Theory, Design, and Applications. in:IEEE Trans. on Image Processing,2006, 15(10):3089-3101.
    [137]孙建中,熊忠阳,张玉芳.各向异性扩散的遥感图像边缘增强方法[J].计算机应用研究,2012,29(5):1993-1996.
    [138]Keerthi S. S., Shevade S. K., Bhattacharyya C., et al.. Improvements to Platt's SMO algorithm for SVM classifier design [J]. Neural Computation,2001,13(3): 637-649.
    [139]Scolkopf B, et al.. Estimating the support of a high dimensional distribution. TR 99-87, Microsoft Research,1999,25-36.
    [140]Vapnik V. N.. Statistical learning theory [M]. John Wiley, New York,1998.
    [141]Yiqiang Zhan, Dinggang Shen. Design efficient support vector machine for fast classification [J]. Pattern Recognition,2005,38:157-161
    [142]Wu F. F., Zhao Y. L.. Least squares support vector machine based on scaling kernel function [J]. Chinese Journal of PR&AI,2006,19(5):598-603.
    [143]杨俊燕,张优云,赵荣珍.支持向量机在机械设备振动信号趋势预测中的应用[J].西安交通大学学报,2005,39(9):950-953.
    [144]唐浩,屈梁生.基于支持向量机的发动机故障诊断[J].西安交通大学学报,2007,41(9):1124-1126.
    [145]Fletcher R.. Practical Methods of Optimization [M]. John Wiley, Sons,1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700