融合支持向量机的水电机组混合智能故障诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水力资源的不断开发,水电在电力能源结构中所占比重逐渐增大,作为水电生产过程核心设备的水电机组的结构日趋复杂,集成化程度越来越高,不同部件之间动力学行为相互影响、相互作用,机组振动问题日益突出,对电网的安全稳定运行造成的影响也日益凸显。因此,常规的水电机组振动故障诊断方法已经不能很好的适应于当前的工程实际,迫切需要采用一些有效的智能故障诊断方法对机组振动故障进行诊断,以提高机组故障诊断的准确性、智能性及鲁棒性。本文针对水轮发电机组故障诊断和工程应用中的关键科学问题,运用支持向量机理论进行水电机组振动故障诊断,深入研究了支持向量机的理论及工程应用,将先进信号处理技术与智能方法和支持向量机进行融合,使支持向量机与其它智能方法取长补短、优势互补,提出了若干融合支持向量机的水电机组混合智能故障诊断方法。论文的主要研究内容和创新性成果如下:
     (1)充分研究了支持向量机的模型参数对其性能的影响,提出采用特征空间中的类均值距离作为衡量所选核函数参数优劣的准则,并在此基础上确定出多类支持向量机核参数的小而有效的搜索区间;在新的核参数搜索区间和惩罚因子的搜索区间上,利用一种具有自适应搜索因子的差分进化算法进行支持向量机参数组合寻优。工程应用结果表明所提出的方法能够有效诊断出机组的典型故障,具有一定的可行性和有效性。
     (2)提出采用集合经验模态分解及基于集合经验模态分解的Hilbert谱与Hilbe1rt边际谱对水电机组尾水管压力脉动信号进行分析;重点研究了基于集合经验模态分解的本征模态函数能量熵与奇异值分解特征提取方法,利用本征模态函数能量熵判断机组是否运行于故障状态;如果机组运行于故障状态,将本征模态函数奇异值特征输入前述经参数优化的支持向量机进行故障类型诊断;工程应用表明所提方法能够识别出设备的多种运行工况,所提方法已被成功应用在松江河发电厂故障诊断系统中。
     (3)采用模糊支持向量机进行水电机组故障诊断,模糊支持向量机在训练阶段对故障样本区别对待,能够有效消除孤立点和野点子对诊断结果的影响;在模糊支持向量机中采用一种模糊sigmoid核函数,对这种核函数的形式及优势进行了阐述;针对模糊支持向量机实际应用中隶属度函数难以确定的问题,提出一种反K近邻方法与类均值距离结合的隶属度函数确定方法;深入分析了一对一多类支持向量机,指出采用一对一方法将二类支持向量机推广到多类时,在训练阶段并不是所有的类别对形成的支持向量机对最终的决策分类都有贡献,即存在着计算冗余;在此基础上,提出一种改进的一对一方法以删除其中不必要的支持向量机的训练。将所提方法应用于水电机组振动故障诊断取得满意的诊断结果。
     (4)针对传统故障诊断分类器不能诊断出机组的不确定信息的不足,提出一种新的支持向量机与粗糙集结合的故障诊断方法。所提方法充分考虑了支持向量机和粗糙集各自的优缺点,将二者有机融合,优势互补,利用粗糙集来描述支持向量机的分类间隔,采用粗糙集上下近似的概念描述故障的不确定信息,充分利用了支持向量机强大的泛化能力和粗糙集对不确定数据的较强建模能力。将所提方法应用在某水电机组的故障诊断中能够诊断出机组的耦合故障,或亚健康状态。对二滩水电站#3号机组上导摆度偏大问题进行了综合分析,分析结论为二滩水电站管理运行人员提供了有益指导,同时进一步说明对水电机组耦合故障进行诊断的必要性。
With the rapid development of hydropower resources, the proportion of hydropower energy in electrical energy structure is gradually increasing, and hydroelectric generator units (HGU) which are the key equipment of the hydropower production process are becoming more and more large-scale, complex, high-speed and high-power. Meanwhile, the integrated degree of the HGU is becoming higher, and different parts of HGU influence each other, which makes the dynamic behavior of HGU become more complex. Consenquently, the vibaration problem of the HGU has become increasingly prominent, and the vibrant influence on the safety and stability of the grid has become increasingly large. Hence, the conventional vibration fault diagnosis methods for HGU are not adapted to current engineering practice. There is an urgent need to adopt some effective intelligent fault diagnosis methods to improve the accuracy, intelligence and robustness of fault diagnosis for HGU. To solve the Key scientific issues in engineering applications of fault diagnosis for HGU, support vector machine (SVM) is used to diagnose the vibrant faults. The theory and engineering application of SVM are deeply researched. To compensate for the shortage of SVM in engineering practice and bring the performance of SVM into full play, advanced signal processing techniques and some other intelligent methods and SVM are fused to form some hybrid intelligent fault diagnosis methods. The main contents and innovative achievements of the paper are as follows:
     (1) Model parameters selection for SVM and the influence it affected on the SVM performance are researched. Several forms of inter-class distance in the feature space (ICDF) are introduced and discussed. And, the ICDF is selected as one measure heuristic to shorten the range of the kernel parameter. Then, self-adaptive differential evolution algorithm is used to search the optimal parameter combination in the continuous intervals of kernel parameter and penalty parameter. Engineering results show that the proposed method can effectively locate the typical failure of the HGU. Thus, the proposed method is feasible and effective in fault diagnosis for HGU.
     (2) Ensemble empirical mode decomposition (EEMD) and Hilbert spectrum and Hilbert marginal spectrum are used to analyze the draft tube pressure fluctuation. Then, the research is emphasized on feature extraction for fault vibrant signals. Two types of features, the EEMD energy entropy and singular values of the matrix whose rows are intrinsic mode functions (IMFs), are extracted. EEMD energy entropy is used to specify whether the machine has faults or not. If the machine has faults, singular values are input to multi-class SVM optimized by inter-cluster distance in the feature space (ICDSVM) to specify the fault type. The proposed method is applied to rotating machinery fault diagnosis. The results show that the proposed method can identify a variety of operating conditions. And, the proposed method has been successfully applied in the fault diagnosis system of Songjianghe power plants.
     (3) Fuzzy SVM is used to diagnose faults of HGU. In the training phase, by giving different weights for different training samples, fuzzy SVM can effectively eliminate the influence of outliers or noise points for fault diagnosis. Fuzzy sigmoid kernel function is used in the fuzzy SVM, and the advantage of this fuzzy sigmoid kernel function is also described. To solve the problem that the membership function (MF) of fuzzy SVM is difficult to determine in applications, a new method based on reverse k-nearest neighbor algorithm (RkNN) and euclidean distance between class means is proposed to determine the MF for fuzzy SVM. On the basis of deep analysis of one-against-one multi-class SVM, we point out that not all SVM training is necessary for the final decision surface. To remove unnecessary SVM training, one form of improved one-against-one multi-class SVM is proposed. The proposed method is used in fault diagnosis for HGU, and the results are satisfactory.
     (4) Traditional fault diagnosis classifier can not reflect the uncertain information in fault pattern recognition. To overcome this disadvantage, a novel classifier based on rough set and multi-class SVM is proposed. The proposed method takes full account of the advantages and disadvantages of SVM and rough set theory, and it is an organic integration of these two methods. In the proposed method, the essential ideas of rough set: upper approximation and lower approximation are used to describe the classification results of SVM, which can well describe the uncertain information in fault diagnosis for HGU. Hence, the proposed method takes full advantage of the strong modeling capabilities for uncertain data of rough set and powerful generalization ability of SVM. Engeering application shows that the proposed method can well diagnose coupled faults and Sub-health state of HGU. We also conduct a comprehensive analysis on the "too large swing" problem in upper guide bearing of # 3 unit of the Ertan Hydropower Station. The analysis conclusions provide useful guidance for the manager and operator of the Ertan Hydropower Station, also further illustrate the need of fault diagnosis for coupling faults of HGU.
引文
[1]陈雷,大力发展水电着力改善民生促进经济社会可持续发展一在第五届”今日水电论坛”上的主旨发言.小水电,2009,3:1-3.
    [2]郑守仁,我国水能资源开发利用及环境与生态保护问题探讨.中国工程科学,2006,8(6):1-6.
    [3]Laird, T., Hoof, M. An economic strategy for turbine generator condition based maintenance. in:2004:IEEE International Symposium on Electrical Insulation. USA:2004.440-445.
    [4]Liang Q.W., Rodriguez C.G., Egusquiza E., et al., Numerical simulation of fluid added mass effect on a francis turbine runner. Computers & fluids,2007.36(6): 1106-1118.
    [5]Lam Dorjee. Analysis inherent vibration problems of a vertical hydro-electric turbine machine [D]. Germany:The Unviersity of New Brunswick,2003:30-41.
    [6]Jawaid I., Inayat-Hussain. Chaos via torus breakdown in the vibration response of a rigid rotor supported by active magnetic bearings. Chaos, Solitons and Fractals, 2007,31:912-927.
    [7]刘忠.基于人工免疫系统的水电机组智能诊断方法研究[博士学位论文].武汉:华中科技大学图书馆,2007.
    [8]付波.基于弯扭耦合振动与轴心轨迹辨识的水轮发电机组故障诊断研究[博士学位论文].武汉:华中科技大学图书馆,2006.
    [9]王海.水轮发电机组状态检修技术.北京:中国电力出版社,2004.
    [10]郭磊,陈进,朱义,等.小波支持向量机在滚动轴承故障诊断中的应用.上海交通大学学报,2009,43(4):678-682.
    [11]朱利民.旋转机械工况监视与故障诊断中若干信号处理方法的研究[博士学位论文].南京:东南大学图书馆,1999.
    [12]Vapnik V N. The Nature of Statistical Learning Theory(First Edition). N Y:Springer-Verlag,1995.
    [13]Kadri O, Mouss L H, Mouss M D. Fault diagnosis of rotary kiln using SVM and binary ACO. Journal of Mechanical Science and Technology,2012,26(2):601-608.
    [14]Widodo A, Yang B S. Support vector machine in machine condition monitoring and fault diagnosis. Mechanical Systems and Signal Processing,2007,21(6): 2560-2574.
    [15]Zhang Z, Lv W, Shen M. Active learning of support vector machine for fault diagnosis of bearings. Advances in Neural Networks,2006:390-395.
    [16]邹敏,周建中,刘忠.基于支持向量机的水电机组故障诊断.中国农村水利水电,2008,1:114-116,119.
    [17]彭兵,周建中,方仍存,等.基于开机过程信息融合的水电机组故障诊断方法.电力系统自动化,2008,32(13):76-80.
    [18]邹敏.基于支持向量机的水电机组故障诊断研究[博士学位论文].武汉:华中科技大学图书馆,2007.
    [19]彭文季,罗兴倚.基于粗糙集和支持向量机的水电机组振动故障诊断.电工技术学报,2006,21(10):117-122.
    [20]沈东,褚福涛,陈思.水轮发电机组振动故障诊断与识别.水动力学研究与进展A辑,2000,15(1):129-133.
    [21]马震岳,董毓新.水轮发电机组动力学.大连:大连理工大学出版社,2003.
    [22]Wong M, Jack L B, Nandi A K. Modified self-organising map for automated novelty detection applied to vibration signal monitoring. Mechanical Systems and Signal Processing,2006,20(3):593-610.
    [23]Lei Y, He Z, Zi Y. Application of an intelligent classification method to mechanical fault diagnosis. Expert Systems with Applications,2009,36(6):9941-9948.
    [24]Yang J, Zhang Y, Zhu Y. Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension. Mechanical Systems and Signal Processing,2007, 21(5):2012-2024.
    [25]Jardine A K S, Lin D, Banjevic D. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical systems and signal processing,2006,20(7):1483-1510.
    [26]雷亚国,何正嘉,訾艳阳,等.混合聚类新算法及其在故障诊断中的应用.机械工程学报,2007,42(12):116-121.
    [27]Sanz J, Perera R, Huerta C. Fault diagnosis of rotating machinery based on auto-associative neural networks and wavelet transforms. Journal of Sound and Vibration,2007,302(4):981-999.
    [28]李凌均,韩捷,李朋勇,等.基于矢双谱的智能故障诊断方法.机械工程学报,2011(11):64-68.
    [29]陈明,童朝南,张士勇.一类仿射型非线性系统智能故障诊断.控制与决策,2011,26(2):221-226.
    [30]刘勇,李文海,陈育良.基于人工免疫系统的智能故障诊断研究.计算机测量与控制,2010,18(12):2694-2696.
    [31]孙伟,柴世文,杨河峙.基于径向基函数神经网络的电机轴承智能故障诊断.制造业自动化,2010,8:70-72.
    [32]黄元亮,钱清泉,肖腾蛟.智能故障诊断方法及其应用[J].计算机工程,2010,36(14):150-152.
    [33]徐金良,陈五星,唐耀阳.基于粗糙集理论和支持向量机算法的核电厂故障诊断方法.核动力工程,2009,30(4):52-54.
    [34]何正嘉,陈进,王太勇,等.机械故障诊断理论及应用.北京:高等教育出版社,2010.
    [35]Doherty N F, Kochhar A K. MIDAS:an application of model-based reasoning for the diagnosis of hydraulic systems. Knowledge-Based Systems,1994,7(2): 127-134.
    [36]余涛,王晶,高峰,等.水电机组故障诊断的集成知识表示与推理.中国电机工程学报,2000,20(4):68-71,86.
    [37]余涛,王晶,沈善德,等.分布式水电机组故障诊断集成专家系统的研究.动力工程,2002,22(4):1902-1907.
    [38]邓正鹏,韦彩新,刘利娜,等.水电机组故障诊断专家系统中知识库的设计.华中科技大学学报(自然科学版),2003,31(9):4-5,49.
    [39]Molina J M, Isasi P, Berlanga A, et al. Hydroelectric power plant management relying on neural networks and expert system integration. Engineering Applications of Artificial Intelligence,2000,13(3):357-369.
    [40]Song G, He Y, Chu F, et al. HYDES:A Web-based hydro turbine fault diagnosis system. Expert Systems with Applications,2008,34(1):764-772.
    [41]Li Z, Ai Y, Shi H. Optimal maintenance information system of Gezhouba hydro power plant, in:Power Engineering Society General Meeting, IEEE,2007:1-5.
    [42]Li Z, Chen Y, Guo J. Integrated maintenance features of hydro turbine governors. in:International Conference on Power System Technology, IEEE,2002,3:1984 1988.
    [43]Tse P W, Li E Y, Chan J C, et al. Automatic Generator Health Assessment System that Embedded with Advanced Fault Diagnosis and Expert System, in:2010 Prognostics and System Health Management Conference,2010:294-300.
    [44]Yang X Q, Cai T, Chen J. Process of Threshold of Fault Diagnosis Expert System in LAN Based on BP Neural Network. in:Proceedings of the 27th Chinese Control Conference,2008,7:466-468.
    [45]Wang X, Niu M C. Fault diagnosis framework-based expert system of induction motor based on fuzzy theory. in:Proceedings of Information Technology and Environmental System Sciences, Itess 2008,2008,2:376-379.
    [46]Wang F, Wu D S. Expert system of Fault Diagnosis Based on Neural Network and Genetic Algorithms for Missile. in:Proceedings of the Third International Conference on Computer Science & Education,2008:12-15.
    [47]Qian Y, Xu L A, Li X X, et al. LUBRES:An expert system development and implementation for real-time fault diagnosis of a lubricating oil refining process. Expert Systems with Applications,2008,35(3):1252-1266.
    [48]Elsaadawi A M, Kalas A E, Fawzi M. Development of an expert system to fault diagnosis of three phase induction motor drive system. in:12th International Middle East Power System Conference,2008,1-2:288-293.
    [49]Zhang W, Shao Z C, Liu J X, et al. Fault diagnosis expert system based on ⅤⅪ bus for communication circuit board. in:2007 Ieee International Conference on Control and Automation,2007,1-7:2214-2217.
    [50]Lee Y B, Lee T W, Kim S J, et al. A hybrid knowledge-based expert system for rotating machnery. Condition Monitoring and Diagnostic Engineering Management, 2001:689-696.
    [51]Wang H, Chen P. Intelligent diagnosis method for rolling element bearing faults using possibility theory and neural network. Computers & amp; Industrial Engineering,2011,60(4):511-518.
    [52]Barakat M, Druaux F, Lefebvre D, et al. Self adaptive growing neural network classifier for faults detection and diagnosis. Neurocomputing,2011,74(18): 3865-3876.
    [53]Wang C, Zhou J, Qin H, et al. Fault diagnosis based on pulse coupled neural network and probability neural network. Expert Systems with Applications,2011, 38(11):14307-14313.
    [54]Chen C, Chen J. Rotor fault diagnosis system based on sGA-based individual neural networks. Expert Systems with Applications,2011,38(9):10822-10830.
    [55]Wu J, Chiang P. Application of Wigner-Ville distribution and probability neural network for scooter engine fault diagnosis. Expert Systems with Applications,2009, 36(2, Part 1):2187-2199.
    [56]Ma C, Gu X, Wang Y. Fault diagnosis of power electronic system based on fault gradation and neural network group. Neurocomputing,2009,72(13-15): 2909-2914.
    [57]Kowalski C T, Orlowska-Kowalska T. Neural networks application for induction motor faults diagnosis. Mathematics and Computers in Simulation,2003,63(3-5): 435-448.
    [58]Simani S, Fantuzzi C. Fault diagnosis in power plant using neural networks. Information Sciences,2000,127(3-4):125-136.
    [59]Barakat M, Druaux F, Lefebvre D, et al. Self adaptive growing neural network classifier for faults detection and diagnosis. Neurocomputing,2011,74(18): 3865-3876.
    [60]Wang C, Zhou J, Qin H, et al. Fault diagnosis based on pulse coupled neural network and probability neural network. Expert Systems with Applications,2011, 38(11):14307-14313.
    [61]Simani S, Fantuzzi C. Fault diagnosis in power plant using neural networks. Information Sciences,2000,127(3-4):125-136.
    [62]王海,郑莉媛.水轮发电机组轴心轨迹自动识别方法研究[J].水力发电学报,2002,3:73-80.
    [63]符向前,刘光临,蒋劲,等.基于不变性矩的径向基函数神经网络转子轴心轨迹自动识别.武汉大学学报(工学版),2003,2:133-136.
    [64]Chen C, Vachtsevanos G. Bearing condition prediction considering uncertainty:An interval type-2 fuzzy neural network approach. Robotics and Computer-Integrated Manufacturing,2012,28(4):509-516.
    [65]Tian Z, Wong L, Safaei N. A neural network approach for remaining useful life prediction utilizing both failure and suspension histories. Mechanical Systems and Signal Processing,2010,24(5):1542-1555.
    [66]Freitag S, Beer M, Graf W, et al. Lifetime prediction using accelerated test data and neural networks. Computers & amp; Structures,2009,87(19-20):1187-1194.
    [67]Huang R, Xi L, Li X, et al. Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods. Mechanical Systems and Signal Processing,2007,21(1):193-207.
    [68]Abu-Mahfouz I. Drilling wear detection and classification using vibration signals and artificial neural network. in:International Journal of Machine Tools and Manufacture,2003,43(7):707-720.
    [69]Javadpour R, Knapp G M. A fuzzy neural network approach to machine condition monitoring. Computers & amp; Industrial Engineering,2003,45(2):323-330.
    [70]Mahmoud M A, Abu Kiefa M A. Neural network solution of the inverse vibration problem. NDT & amp; E International,1999,32(2):91-99.
    [71]Niu X, Zhao X. The Study of Fault Diagnosis the High-Voltage Circuit Breaker Based on Neural Network and Expert System. Procedia Engineering,2012,29(0): 3286-3291.
    [72]Wang Y, Li Q, Chang M, et al. Research on Fault Diagnosis Expert System Based on the Neural Network and the Fault Tree Technology. Procedia Engineering,2012, 31(0):1206-1210.
    [73]Wu J, Chiang P, Chang Y, et al. An expert system for fault diagnosis in internal combustion engines using probability neural network. Expert Systems with Applications,2008,34(4):2704-2713.
    [74]ozyurt B, Kandel A. A hybrid hierarchical neural network-fuzzy expert system approach to chemical process fault diagnosis. Fuzzy Sets and Systems,1996,83(1): 11-25.
    [75]梁业国,王乘.人工神经网络在水电机组故障诊断中的应用研究,四川水力发电,2003,1:57-59.
    [76]张双全,韦彩新,邓正鹏.水电机组故障诊断专家系统中图形征兆的提取.华中科技大学学报(自然科学版),2003,31(4):51-53.
    [77]郭磊,刘德辉,李志红.智能诊断技术在水电机组振动故障诊断中的应用.水电能源科学,2009,27(4):178-180.
    [78]戴志超.神经网络对水电机组振动故障的应用研究.计算机仿真,2011,28(6):312-315.
    [79]陈进.机械设备振动监测与故障诊断.上海:上海交通大学出版社,1999.
    [80]Papadopoulos Y. Model-based system monitoring and diagnosis of failures using statecharts and fault trees. Reliability Engineering & amp; System Safety,2003, 81(3):325-341.
    [81]Sun W, Chen J, Li J. Decision tree and PCA-based fault diagnosis of rotating machinery. Mechanical Systems and Signal Processing,2007,21(3):1300-1317.
    [82]Tran V T, Yang B, Oh M, et al. Fault diagnosis of induction motor based on decision trees and adaptive neuro-fuzzy inference. Expert Systems with Applications,2009,36(2, Part 1):1840-1849.
    [83]Bartlett L M, Hurdle E E, Kelly E M. Integrated system fault diagnostics utilising digraph and fault tree-based approaches. Reliability Engineering & amp; System Safety,2009,94(6):1107-1115.
    [84]Wang Y, Li Q, Chang M, et al. Research on Fault Diagnosis Expert System Based on the Neural Network and the Fault Tree Technology. Procedia Engineering,2012, 31(0):1206-1210.
    [85]刘勇,胡柏青.基于故障树的导航装备故障诊断专家系统研究.海军工程大学学报,2002,14(1):41-44.
    [86]倪绍徐,张裕芳,易宏,等.基于故障树的智能故障诊断方法.上海交通大学学报,2008,42(8):1372-1375.
    [87]杨昌昊,胡小建,竺长安.从故障树到故障贝叶斯网映射的故障诊断方法.仪器仪表学报,2009,30(7):1481-1486.
    [88]安晨亮.故障树原理在故障诊断系统中的应用.导弹与航天运载技术,2009,1:48-51.
    [89]范会来,闫英敏,杨凤彪.基于新型故障树的微控制器系统故障诊断方法.国外电子测量技术,2012,3 1(1):56-59.
    [90]Zadeh L A. Fuzzy sets. Information and control,1965,8(3):338-353.
    [91]Zhao X, Liu Y, He X. Fault Diagnosis of Gas Turbine based on Fuzzy Matrix and the Principle of Maximum Membership Degree. Energy Procedia,2012,16, Part C(0):1448-1454.
    [92]Liu X, Ma L, Mathew J. Machinery fault diagnosis based on fuzzy measure and fuzzy integral data fusion techniques. Mechanical Systems and Signal Processing, 2009,23(3):690-700.
    [93]Wang J, Hu H. Vibration-based fault diagnosis of pump using fuzzy technique. Measurement,2006,39(2):176-185.
    [94]秦建明,吴杰,范鑫.模糊理论在水电机组振动故障诊断系统中的应用.水利电力机械,2007,29(12):28-30.
    [95]符向前,蒋劲,孙慕群,等.水电机组故障诊断系统中的模糊诊断技术研究.华中科技大学学报(自然科学版),2006,34(1):81-83.
    [96]黄锐,肖志怀,蔡维由,等.模糊故障诊断在水电机组中的应用.中国农村水利水电,2005,9:105-107.
    [97]Hu D, Sarosh A, Dong Y. A novel KFCM based fault diagnosis method for unknown faults in satellite reaction wheels. ISA Transactions,2012,51(2): 309-316.
    [98]Fu P, Li W, Guo L. Fuzzy Clustering and Visualization Analysis of Tool Wear Status Recognition. Procedia Engineering,2011,23(0):479-486.
    [99]Zhang K, Chai Y, Yang S X. Self-organizing feature map for cluster analysis in multi-disease diagnosis. Expert Systems with Applications,2010,37(9): 6359-6367.
    [100]Zogg D, Shafai E, Geering H P. Fault diagnosis for heat pumps with parameter identification and clustering. Control Engineering Practice,2006,14(12): 1435-1444.
    [101]陈铁华,陈启卷.模糊聚类分析在水电机组振动故障诊断中的应用.中国电机工程学报,2002,22(3):43-47.
    [102]刘晓波,黄其柏.基于动态核聚类分析的水轮机组故障模式识别.华中科技大学学报(自然科学版),2005,33(9):47-49,52.
    [103]李超顺,周建中,杨俊杰,等.基于混合模糊聚类分析的汽轮发电机组振动故障诊断.电力系统自动化,2008,32(5):80-84.
    [104]马震岳,董毓新.水电站机组及厂房振动的研究与治理.北京:中国水利水电出版社,2004.
    [105]金鑫,任献彬,周亮.智能故障诊断技术研究综述.国外电子测量技术,2009,28(7):30-32.
    [106]Pawlak Z. Rough sets. International Journal of Parallel Programming,1982,11(5): 341-356.
    [107]Pawalk Z. Rough sets:theoretical aspects of reasoning about data. Dordrecht: Kluwer Academic Publishers,1991.
    [108]Pawlak Z. Rough set theory and its applications to data analysis. Cybernetics & Systems,1998,29(7):661-688.
    [109]Li N, Zhou R, Hu Q, et al. Mechanical fault diagnosis based on redundant second generation wavelet packet transform, neighborhood rough set and support vector machine. Mechanical Systems and Signal Processing,2012,28(0):608-621.
    [110]Shen Q, Jensen R. Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring. Pattern Recognition,2004,37(7): 1351-1363.
    [111]胡金海,谢寿生,侯胜利,等.粗糙核主元分析方法及其在故障特征提取中的 应用.振动与冲击,2008,27(3):50-54.
    [112]郭小荟,马小平.基于粗糙集的故障诊断特征提取.计算机工程与应用,2007,43(1):221-224.
    [113]王奉涛.非平稳信号故障特征提取与智能诊断方法的研究及应用[博士学位论文].大连:大连理工大学图书馆,2003.
    [114]Shen L, Tay F E H, Qu L, et al. Fault diagnosis using rough sets theory. Computers in Industry,2000,43(1):61-72.
    [115]Thangavel K, Pethalakshmi A. Dimensionality reduction based on rough set theory: A review. Applied Soft Computing,2009,9(1):1-12.
    [116]Fan Y, Bill Tseng T, Chern C, et al. Rule induction based on an incremental rough set. Expert Systems with Applications,2009,36(9):11439-11450.
    [117]Tay F E H, Shen L. Fault diagnosis based on Rough Set Theory. Engineering Applications of Artificial Intelligence,2003,16(1):39-43.
    [118]Jianmin L, Xiaolei L, Xiaoming Z, et al. Misfire Diagnosis of Diesel Engine based on Rough Set and Neural Network. Procedia Engineering,2011,16(0):224-229.
    [119]Dong L, Xiao D, Liang Y, et al. Rough set and fuzzy wavelet neural network integrated with least square weighted fusion algorithm based fault diagnosis research for power transformers. Electric Power Systems Research,2008,78(1): 129-136.
    [120]Xue Z, Shang Y, Feng A. Semi-supervised outlier detection based on fuzzy rough C-means clustering. Mathematics and Computers in Simulation,2010,80(9): 1911-1921.
    [121]项新建.基于粗糙集理论的电力变压器故障诊断研究.仪器仪表学报,2003,24(6):568-571.
    [122]黄文涛,赵学增,王伟杰,等.汽轮发电机组振动故障诊断的粗糙集模型.电力系统自动化,2004,28(15):215-218.
    [123]栗然,张烈勇,顾雪平,等.采用粗糙集联合规则挖掘算法的分布式电网故障诊断.中国电机工程学报,2010,30(4):28-34.
    [124]栗然,高聪颖,张烈勇.基于粗糙集-贝叶斯方法的分布式电网故障诊断.华北电力大学学报(自然科学版),2010,37(2):202-204.
    [125]苏宏升,李群湛.基于粗糙集理论和神经网络模型的变电站故障诊断方法.电 网技术,2005,29(16):66-70.
    [126]王红军,张建民,徐小力.粗糙集规则获取在旋转注水机组故障诊断中的应用.机械工程学报,2006,42(增刊):135-138.
    [127]刘育明,周涑,唐捷,等.粗糙集理论提取配电网故障诊断规则的方法.高电压技术,2006,32(8):43-46.
    [128]刘金福,于达仁,胡清华,等.基于加权粗糙集的代价敏感故障诊断方法.中国电机工程学报,2007,27(23):93-99.
    [129]郭庆琳,郑玲.基于模糊粗糙集数据挖掘的汽轮机组故障诊断研究.中国电机工程学报,2007,27(8):76-79.
    [130]张景明,肖倩华,王时胜.融合粗糙集和神经网络的变压器故障诊断.高电压技术,2007,33(8):488-491.
    [131]黄作维,易定伟.基于粗糙集--RBF的配电网故障诊断系统研究.西南科技大学学报,2008,23(2):56-59.
    [132]韩富春,马小波,乔晓东.基于粗糙集理论和贝叶斯网络的断路器故障诊断方法.太原理工大学学报,2008,39(5):511-514.
    [133]董辛旻,石来德,韩捷,等.基于矢谱和粗糙集理论的旋转机械故障诊断.中国工程机械学报,2008,6(1):853-855.
    [134]吕蓬.基于变精度粗糙集的齿轮故障诊断.华北电力大学学报(自然科学版),2010,37(6):99-102.
    [135]梁武科,赵道利,王荣荣,等.水电机组振动故障的粗糙集-神经网络诊断方法.西北农林科技大学学报(自然科学版),2007,35(7):223-226.
    [136]王荣荣,工利平,侯新刚.基于变精度粗糙集的水电机组故障诊断.水利水电科技进展,2009,29(3):37-40.
    [137]He Y, Chen D, Zhao W. Integrated method of compromise-based ant colony algorithm and rough set theory and its application in toxicity mechanism classification. Chemometrics and Intelligent Laboratory Systems,2008,92(1): 22-32.
    [138]彭文季.水电机组振动故障的智能诊断方法研究[博士学位论文].西安:西安理工大学图书馆,2007.
    [139]Matic N, Guyon I, Denker J, et al. Writer-adaptation for on-line handwritten character recognition. in:Proceedings of the Second International Conference on Document Analysis and Recognition, IEEE,1993:187-191.
    [140]Osuna E, Freund R, Girosi F. training support vector machine:an application to face detection. in:Conference on Computer Vision and Pattern Recognition, IEEE Computer Society, San Juan, Puerto Rico,1997:130-136.
    [141]Randall R.B., Antoni J., Rolling element bearing diagnostics--A tutorial, Mechanical Systems and Signal Processing,2011,25,485-520.
    [142]Jack L B, Nandi A K. Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms. Mechanical Systems and Signal Processing,2002,16(2-3):373-390.
    [143]Yan W, Shao H. Application of support vector machine nonlinear classifier to fault diagnoses. in:Proceedings of the 4th World Congress on Intelligent Control and Automation,2002,4:2697-2700.
    [144]Rojas A, Nandi A K. Practical scheme for fast detection and classification of rolling-element bearing faults using support vector machines. Mechanical Systems and Signal Processing,2006,20(7):1523-1536.
    [145]Xiang X, Zhou J, An X, et al. Fault diagnosis based on Walsh transform and support vector machine. Mechanical Systems and Signal Processing,2008,22(7): 1685-1693.
    [146]Konar P, Chattopadhyay P. Bearing fault detection of induction motor using wavelet and Support Vector Machines (SVMs). Applied Soft Computing,2011, 11(6):4203-4211.
    [147]Widodo A, Yang B. Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors. Expert Systems with Applications, 2007,33(1):241-250.
    [148]Lee S M. Faults Detection and Classification of Induction Motor using Wavelet Support Vector Machine.in:2006年度春季学衍大会论文集,2006,(吾6等):79-84.
    [149]Poyhonen S, Arkkio A, Jover P, et al. Coupling pairwise support vector machines for fault classification. Control Engineering Practice,2005,13(6):759-769.
    [150]Zhitong C, Jiazhong F, Hongpingn C, et al. Support vector machine used to diagnose the fault of rotor broken bars of induction motors. in:Sixth International Conference on Electrical Machines and Systems, ICEMS.2003,2:891-894.
    [151]Poyhonen S, Negrea M, Arkkio A, et al. Fault diagnostics of an electrical machine with multiple support vector classifiers. Proceedings of the 2002 IEEE International Symposium on Intelligent Control,2002:373-378.
    [152]Cho S, Asfour S, Onar A, et al. Tool breakage detection using support vector machine learning in a milling process. International Journal of Machine Tools and Manufacture,2005,45(3):241-249.
    [153]Sun J, Rahman M, Wong Y S, et al. Multiclassification of tool wear with support vector machine by manufacturing loss consideration. International Journal of Machine Tools and Manufacture,2004,44(11):1179-1187.
    [154]Sun J, Hong G S, Rahman M, et al. The application of nonstandard support vector machine in tool condition monitoring system. in:Second IEEE International Workshop on Electronic Design, Test and Applications,2004:295-300.
    [155]Yang B S, Hwang W W, Kim D J, et al. Condition classification of small reciprocating compressor for refrigerators using artificial neural networks and support vector machines. Mechanical Systems and Signal Processing,2005,19(2): 371-390.
    [156]Gao J, Shi W, Tan J, et al. Support vector machines based approach for fault diagnosis of valves in reciprocating pumps. in:Canadian Conference on Electrical and Computer Engineering,2002,3:1622-1627.
    [157]彭文季,罗兴猗.基于小波包分析和支持向量机的水电机组振动故障诊断研究.中国电机工程学报,2006,26(24):164-1 68.
    [158]邹敏,周建中,刘忠,等.基于SVM的集成预测方法及其在水电机组故障诊断中的应用.水电自动化与大坝监测,2007,05:33-36.
    [159]Yuan S F, Chu F L. Support vector machines-based fault diagnosis for turbo-pump rotor. Mechanical Systems and Signal Processing,2006,20(4):939-952.
    [160]Xiang X, Zhou J, An X, et al. Fault diagnosis based on Walsh transform and support vector machine. Mechanical Systems and Signal Processing,2008,22(7): 1685-1693.
    [161]雷亚国.混合智能技术及其在故障诊断中的应用研究[博士学位论文].西安:西安交通大学图书馆,2007.
    [162]Abbasion S, Rafsanjani A, Farshidianfar A, et al. Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine[J]. Mechanical Systems and Signal Processing.2007,21(7):2933-2945.
    [163]Widodo A, Yang B, Han T. Combination of independent component analysis and support vector machines for intelligent faults diagnosis of induction motors. Expert Systems with Applications,2007,32(2):299-312.
    [164]Xian G, Zeng B. An intelligent fault diagnosis method based on wavelet packer analysis and hybrid support vector machines. Expert Systems with Applications, 2009,36(10):12131-12136.
    [165]Fei S, Zhang X. Fault diagnosis of power transformer based on support vector machine with genetic algorithm. Expert Systems with Applications,2009,36(8): 11352-11357.
    [166]Tang X, Zhuang L, Cai J, et al. Multi-fault classification based on support vector machine trained by chaos particle swarm optimization. Knowledge-Based Systems, 2010,23(5):486-490.
    [167]Yuan S, Chu F. Fault diagnosis based on support vector machines with parameter optimisation by artificial immunisation algorithm. Mechanical systems and signal processing,2007,21(3):1318-1330.
    [168]Yuan S F, Chu F L. Fault diagnostics based on particle swarm optimisation and support vector machines. Mechanical Systems and Signal Processing,2007,21(4): 1787-1798.
    [169]Wu Q, Ni Z. Car assembly line fault diagnosis based on triangular fuzzy Gaussian support vector classifier machine and modified genetic algorithm. Expert Systems with Applications,2011,38(5):4734-4740.
    [170]Li N, Zhou R, Hu Q, et al. Mechanical fault diagnosis based on redundant second generation wavelet packet transform, neighborhood rough set and support vector machine. Mechanical Systems and Signal Processing,2012,28(0):608-621.
    [171]程军圣,李宝庆,杨宇,等.基于广义解调时频分析的包络阶次谱在齿轮故障诊断中的应用[J].振动工程学报.2009,22(5):467-473.
    [172]程军圣,于德介,杨宇.基于SVM和EMD包络谱的滚动轴承故障诊断方法.系统工程理论与实践,2005,9:131-136.
    [173]Cheng J S, Yu D J, Yang Y. A fault diagnosis approach for gears based on IMF AR model and SVM. Eurasip Journal on Advances in Signal Processing,2008:1-7.
    [174]程军圣,于德介,杨宇.基于内禀模态奇异值分解和支持向量机的故障诊断方法[J]自动化学报,2006,32(3):475-480.
    [175]Jenssen R, Kloft M, Sonnenburg S, et al. A new scatter-based multi-class support vector machine. in:2011 IEEE International Workshop on Machine Learning for Signal Processing (MLSP),2011:1-6.
    [176]Balabin R M, Lomakina E I. Support vector machine regression (SVR/LS-SVM)—an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data, Analyst,2011,136:1703-1712.
    [177]Widodo A, Yang B S. Machine health prognostics using survival probability and support vector machine. Expert Systems with Applications,2011,38(7): 8430-8437.
    [178]张学工.关于统计学习理论与支持向量机.自动化学报,2000,26(1):32-42.
    [179]Weston J, Watkins C. Support vector machines for multi-class pattern recognition. in:Proc European Symposium on Artificial Neural Networks, Bruges, Belgium, 1999,4(6):219-224.
    [180]Crammer K, Singer Y. On the learnability and design of output codes for multiclass problems. Machine Learning,2002,47(2):201-233.
    [181]Dietterich T G, Bakiri G. Solving Multiclass Learning Problems via Error-Correcting Output Codes. Journal of Artificial IntelligenceResearch,1995,2: 263-286.
    [182]Platt J C, Cristianini N, Shawe-Taylor J. Large margin DAGs for multiclass classification. Advances in neural information processing systems,2000,12(3): 547-553.
    [183]Hsu C W, Lin C J. A comparison of methods for multiclass support vector machines. Neural Networks, IEEE Transactions on,2002,13(2):415-425.
    [184]Shawe-Taylor J, Sun S. A review of optimization methodologies in support vector machines. Neurocomputing,2011,74(17):3609-3618.
    [185]Cortes C, Vapnik V. Support-vector networks. Machine learning,1995,20(3): 273-297.
    [186]Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machines. in:Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing, NewYork, IEEE Press,1997:276-285.
    [187]Platt J C. Fast Training of Support Vector Machines using Sequential Minimal Optimization. In:Advance in Kernel Methods-Support Vector Learning, Cambridge, MA, MIT Press,1999:185-208.
    [188]Chang C C, Lin C J. LIBSVM:a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST),2011,2(3):27.
    [189]Zanghirati G, Zanni L. A parallel solver for large quadratic programs in training support vector machines. Parallel computing,2003,29(4):535-551.
    [190]Graf H P, Cosatto E, Bottou L, et al. Parallel support vector machines:The cascade svm. Advances in neural information processing systems,2004,17:521-528.
    [191]Cao L J, Keerthi S S, Ong C J, et al. Parallel sequential minimal optimization for the training of support vector machines. Neural Networks, IEEE Transactions on, 2006,17(4):1039-1049.
    [192]Dong J, Krzyzak A, Suen C Y. Fast SVM training algorithm with decomposition on very large data sets. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2005,27(4):603-618.
    [193]Mangasarian O L. A finite Newton method for classification. Optimization Methods and Software,2002,17(5):913-929.
    [194]Chapelle O. Training a support vector machine in the primal. Neural Computation, 2007,19(5):1155-1178.
    [195]Valentini G, Dietterich T G. Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods. The Journal of Machine Learning Research,2004,5:725-775.
    [196]Chapelle O, Vapnik V, Bousquet O, et al. Choosing multiple parameters for support vector machines. Machine learning,2002,46(1):131-159.
    [197]Duan K, Keerthi S S, Poo A N. Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing,2003,51:41-59.
    [198]Vapnik V, Chapelle O. Bounds on error expectation for support vector machines. Neural computation,2000,12(9):2013-2036.
    [199]Chung K M, Kao W C, Sun C L, et al. Radius margin bounds for support vector machines with the RBF kernel. Neural Computation,2003,15(11):2643-2681.
    [200]Chapelle O, Vapnik V. Model selection for support vector machines. Advances in neural information processing systems,1999,12:230-236.
    [201]Keerthi S S. Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms. Neural Networks, IEEE Transactions on,2002,13(5): 1225-1229.
    [202]Wu C H, Tzeng G H, Goo Y J, et al. A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy. Expert Systems with Applications,2007,32(2):397-408.
    [203]Saini L M, Aggarwal S K, Kumar A. Parameter optimisation using genetic algorithm for support vector machine-based price-forecasting model in National electricity market. Generation, Transmission & Distribution, IET.2010,4(1): 36-49.
    [204]Li S, Tan M. Tuning SVM parameters by using a hybrid CLPSO-BFGS algorithm. Neurocomputing,2010,73(10):2089-2096.
    [205]Aydin I, Karakose M, Akin E. A multi-objective artificial immune algorithm for parameter optimization in support vector machine. Applied Soft Computing,2011, 11(1):120-129.
    [206]Zhang X L, Chen X F, He Z J. An ACO-based algorithm for parameter optimization of support vector machines. Expert Systems with Applications,2010, 37(9):6618-6628.
    [207]Mangasarian O L, Musicant D R. Successive overrelaxation for support vector machines. Neural Networks, IEEE Transactions on,1999,10(5):1032-1037.
    [208]Scholkopf B, Smola A J, Williamson R C, et al. New support vector algorithms. Neural computation,2000,12(5):1207-1245.
    [209]Suykens J A K, Vandewalle J. Least squares support vector machine classifiers. Neural processing letters,1999,9(3):293-300.
    [210]Tax D M J, Duin R P W. Support vector domain description. Pattern recognition letters,1999,20(11):1191-1199.
    [211]Lee Y J, Mangasarian O L. SSVM:A smooth support vector machine for classification. Computational optimization and Applications,2001,20(1):5-22.
    [212]Lin C F, Wang S D. Fuzzy support vector machines. Neural Networks, IEEE Transactions on,2002,13(2):464-471.
    [213]Wu K P, Wang S D. Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space. Pattern Recognition,2009,42(5): 710-717.
    [214]Vesterstrom J, Thomsen R. A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems, in:Proceedings of the 2004 Congress on Evolutionary Computation, 19-23 June 2004, IEEE, Piscataway, NJ, USA,2004:1980-1987.
    [215]Blake C. L., Merz C J. UCI Repository of machine learning databases. University of California Department Information and Computer Science, Irvine, CA. Online: available at http://www.ics.uci.edu/mlearn/MLRepository.html.
    [216]Michie D., D. Spiegelhalter J., Taylor C C. Machine learning, neural and statistical classification Online:available at ftp.ncc.up.pt/pub/statlog/.
    [217]Gold C, Sollich P. Model selection for support vector machine classification, Neurocomputing,2003,55:221-249.
    [218]Jaakkola T, Haussler D. Probabilistic kernel regression models. In:Proceedings of the 1999 Conference on AI and Statistics, San Mateo, CA,1999:1-9.
    [219]Wahba G, Lin Y, Zhang H. Generalized approximate cross validation for support vector machines, or, another way to look at margin-like quantities. Advances in large margin classifiers,2000:297-309.
    [220]Opper M, Winther O. Gaussian processes and SVM:Mean field results and leave-one-out. In:Smola A. J., Bartlett P. L., Sch'olkopf B.,& Schuurmans D. (Eds.). Advances in large margin classifiers, Cambridge, MA:MIT Press.2000: 311-326.
    [221]Ayat N.E., Cheriet M., Suen C.Y., Automatic model selection for the optimization of SVM kernels. Pattern Recognition,2005,38:1733-1745.
    [222]Bezdek J C, Pal N R. Some new indexes of cluster validity. Systems, Man, and Cybernetics, Part B:Cybernetics, IEEE Transactions on,1998,28(3):301-315.
    [223]Debnath R, Takahide N, Takahashi H. A decision based one-against-one method for multi-class support vector machine. Pattern Analysis & Applications,2004,7(2): 164-175.
    [224]Storn R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization,1997,11(4): 341-359.
    [225]颜学峰,余娟,钱锋,等.基于改进差分进化算法的超临界水氧化动力学参数估计.华东理工大学学报(自然科学版),2006,32(1):94-97.
    [226]Lorena A C, de Carvalho A C. Evolutionary tuning of SVM parameter values in multiclass problems. Neurocomputing,2008,71(16-18):3326-3334.
    [227]Liepert M. Topological fields chuncking for German with SVMs:optimizing SVM-parameters with GAs. in:Proceedings of the International Conference on Recent Advances in Natural Language Processing, RANLP,2003:32-45.
    [228]Hsu C W, Chang C C, Lin C J. A practical guide to support vector classification. http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
    [229]Loparo K A. Bearings vibration dataset. Case Western Reserve University, http://www.eecs.case.edu/laboratory/bearing/download.htm.
    [230]李郁侠,刘立峰,陈继尧,等.基于神经网络和证据理论融合的水电机组振动故障诊断研究.西北农林科技大学学报(自然科学版),2005,33(10):115-119.
    [231]彭文季,郭鹏程,罗兴绮.基于最小二乘支持向量机和信息融合技术的水电机组振动故障诊断研究.水力发电学报.2007,26(6):137-142.
    [232]Jia R, Huang G Hydroelectric generating unit vibration fault diagnosis via BP neural network based on particle swarm optimization, in:International Conference on 2009 Sustainable Power Generation and Supply,2009:1-4.
    [233]Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences,1998,454:903-995.
    [234]Huang N E, Shen Z, Long S R. A new view of nonlinear water waves:The Hilbert Spectrum 1. Annual Review of Fluid Mechanics,1999,31(1):417-457.
    [235]Huang N E. A new view of earthquake ground motion data:The Hilbert spectrum analysic. In:Pro. Int'l workshop on annual commemoration of Chi-Chi Earthquake. 2000,2:64-75.
    [236]Lei Y, He Z, Zi Y. Application of the EEMD method to rotor fault diagnosis of rotating machinery. Mechanical Systems and Signal Processing,2009,23(4): 1327-1338.
    [237]Lin W Y, Chuang L C, Young H T. Condition-based shaft fault diagnosis with the empirical mode decomposition method. in:Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture.2011,225(5): 723.
    [238]Yang Y, Yu D, Cheng J. A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM[J]. Measurement.2007,40(9-10):943-950.
    [239]Cheng J, Yu D, Yang Y. Application of support vector regression machines to the processing of end effects of Hilbert-Huang transform. Mechanical systems and signal processing,2007,21(3):1197-1211.
    [240]Wu Z, Huang N E. Ensemble empirical mode decomposition:A noise-assisted data analysis method. Advances in Adaptive Data Analysis,2009,1(1):1-41.
    [241]于德介,程军圣,杨宇.机械故障诊断的Hilbert-Huang变换方法.北京:科学出版社,2006.
    [242]赵进平.异常事件对EMD方法的影响及其解决方法研究.青岛海洋大学学报(自然科学版),2001(06).
    [243]Deng Y, Wang W, Qian C, et al. Boundary-processing-technique in EMD method and Hilbert transform. Chinese Science Bulletin,2001,46(11):954-960.
    [244]Cheng J, Yu D, Tang J, et al. Application of SVM and SVD technique based on EMD to the fault diagnosis of the rotating machinery. Shock and Vibration,2009, 16(1):89-98.
    [245]Ocak H, Loparo K A. Estimation of the running speed and bearing defect frequencies of an induction motor from vibration data. Mechanical Systems and Signal Processing,2004,18(3):515-533.
    [246]Samanta B, Al-Balushi K R, Al-Araimi S A. Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection. Engineering Applications of Artificial Intelligence,2003,16(7):657-665.
    [247]Samanta B, Al-Balushi K R. Artificial neural network based fault diagnostics of rolling element bearings using time-domain features. Mechanical Systems and Signal Processing,2003,17(2):317-328.
    [248]William P E, Hoffman M W. Identification of bearing faults using time domain zero-crossings. Mechanical Systems and Signal Processing,2011,25:3078-3088.
    [249]Han-Pang-Huang Y H L. Fuzzy support vector machines for pattern recognition and data mining. International Journal of Fuzzy Systems,2002,4(3):826-835.
    [250]Camps-Valls G, Martin-Guerrero J D, Rojo-Alvarez J L, et al. Fuzzy sigmoid kernel for support vector classifiers. Neurocomputing,2004,62:501-506.
    [251]刘三阳,杜喆.一种改进的模糊支持向量机算法.智能系统学报,2007,2(3):30-33.
    [252]Korn F, Muthukrishnan S. Influence sets based on reverse nearest neighbor queries. In:Proc. of ACM SIGMOD,2000:201-212.
    [253]Debnath R, Takahide N, Takahashi H. A decision based one-against-one method for multi-class support vector machine. Pattern Analysis & Applications,2004,7(2): 164-175.
    [254]Cristianini J S T N. Data-dependent structural risk minimisation for perceptron decision trees. MIT Press, Cambridge, MA 1998,10:336-342.
    [255]Freund Y, Iyer R, Schapire R E, et al. An efficient boosting algorithm for combining preferences. The Journal of Machine Learning Research,2003,4: 933-969.
    [256]Opper M, Urbanczik R. Universal learning curves of support vector machines. Physical Review Letters,2001,86(19):4410-4413.
    [257]张孝远,周建中,黄志伟,等.基于粗糙集和多类支持向量机的水电机组振动故障诊断.中国电机工程学报,2010,30(20):88-93.
    [258]朱永利,吴立增,李雪玉.贝叶斯分类器与粗糙集相结合的变压器综合故障诊断.中国电机工程学报.2005,25(1 0):159-165.
    [259]张晓丹,赵海,谢元芒,等.用于水电厂设备的故障诊断的贝叶斯网络模型.东北大学学报,2006,27(3):276-279.
    [260]张文修.粗糙集理论及其应用.北京:科学出版社,2003.
    [261]刘清Rough集及Rough推理.北京:北京科学出版社,2001.
    [262]束洪春,孙向飞,司大军.电力变压器故障诊断专家系统知识库建立和维护的粗糙集方法.中国电机工程学报,2002,22(2):32-36.
    [263]周瑞,杨建国.基于粗糙集与支持向量机的发动机故障诊断研究[J].内燃机学报.2006,24(4):379-383.
    [264]Xiang X, Zhou J, Li C, et al. Fault diagnosis based on Walsh transform and rough sets. Mechanical Systems and Signal Processing,2009,23(4):1313-1326.
    [265]Hao X, Cai-Xin S. Artificial immune network classification algorithm for fault diagnosis of power transformer. Power Delivery, IEEE Transactions on,2007, 22(2):930-935.
    [266]张孝远,周建中,王常青,等.考虑样本交叠的水电机组振动故障诊断.电力系统保护与控制,2012,40(3):8-14.
    [267]Pawlak Z. Rough set. Journal of Computer and Information Sciences,1982,11: 341-356.
    [268]Wang D S G, Duntsch M S I, Yao Y. Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. In:Proceedings of the 9th International Conference (RSFDGrC 2003), LNAI 2639,2003:44-51.
    [269]Wang G, Peters J F, Skowron A. Rough Sets and Knowledge Technology. Proceedings of RSKT2008, LNAI5009, Springer-Verlag, Berlin, Germany,2008.
    [270]Vapnik V. Problems of empirical inference in machine learning and philosophy of science, in:Invited Talk at the Tenth International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, Regina, Saskatchewan, September 1-3,2005.
    [271]Lingras P, Butz C. Rough set based 1-v-1 and 1-vr approaches to support vector machine multi-classification. Information Sciences,2007,177(18):3782-3798.
    [272]Pavlidis P, Wapinski I, Noble W S. Support vector machine classification on the web. Bioinformatics,2004,20(4):586-587.
    [273]Abe S, Sakaguchi K. Generalization improvement of a fuzzy classifier with ellipsoidal regions. The 10th IEEE International Conference on Fuzzy Systems, 2001,1:207-210.
    [274]彭文季,罗兴椅,赵道利.基于频谱法与径向基函数网络的水电机组振动故障诊断.中国电机工程学报,2006,26(9):155-158.
    [275]王荣荣.基于变精度粗糙集与神经网络的水电机组振动故障诊断研究[硕士学位论文].西安:西安理工大学图书馆,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700